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• Week 2:  NP-Completeness, Probabilistic and Counting Complexity Classes  
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• Week 7:  Cryptographic Concepts for  Finite Automata 
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• Week 13:  Quantum State Complexity and Advice 
• Week 14:  Quantum Cryptographic Systems 
• Week 15:  Quantum Interactive Proofs 
• Week 16:  Final Evaluation Day (no lecture) 

Subject to Change 



YouTube Videos 

• This lecture series is based on numerous papers of T. 
Yamakami. He gave conference talks (in English) and 
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.  

• Use the following keywords to find a playlist of those 
videos.  

• YouTube search keywords: 
    Tomoyuki Yamakami  conference  invited talk playlist 
 

Conference talk video 
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✎ T. Yamakami. Oracle pushdown automata, nondeterministic 
reducibilities, and the hierarchy over the family of context-free 
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complete version is available at  arXiv:1303.1717. 

✎ T. Yamakami. One-way bounded-error probabilistic 
pushdown automata and Kolmogorov complexity (preliminary 
report). In Proc. of DLT 2017, Lecture Notes in Computer 
Science, vol. 10396, pp. 353-364 (2017). A complete and 
corrected version will be posted at arXiv.org shortly. 
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I. Basic Complexity Classes 



Complexity Measures 

• A notion of complexity measure is used to classify various 
“problems” (i.e., languages and functions). 

• Basic complexity measures of algorithms include the 
running time and the usage of memory space. 

• We say that problem A is of time complexity t(n) if there 
exists an algorithm that solves A in time t(n) for all length-n 
inputs.   

• Similarly, problem A is of space complexity s(n) if there 
exists an algorithm that solves A in space s(n) for all length-
n inputs.   

• (*) Other complexity measures, including circuit complexity 
and state complexity, will be discussed in Weeks 3 and 6. 



Complexity Classes 

• Assume that a specific complexity measure is given. 

• Informally, we define a complexity class as a collection  
of decision problems, solutions of which is measured by 
a complexity measure of an algorithm. 

• Namely, a complexity class is a set of problems, which 
can be solved by algorithms of the given complexity 
measure. 

• In particular, a complexity class of decision problems is 
also called a family of languages because decision 
problems are identified with languages (see Week 1).  



Complexity Class P 

• The complexity class P is the set of decision problems 
(or languages) that are polynomial-time solvable.  

• More precisely, a decision problem (or a language) L is 
in P if there exist a constant k≥1 and a multi-tape DTM 
(deterministic Turing machine) M s.t., for any input x,   
1. x∈L → M accepts x in O(nk) time, and 
2. x∉L → M rejects x in O(nk) time. 

 
• Many natural problems belong to this complexity class P. 
• (Example) The problem PRIMES of determining whether 

a given positive integer is a prime number belongs to P. 
[Agrawal-Kayal-Saxena (2002)]. 



Who Introduced Class P? 

• The class P was introduced in 1964 by Alan Cobham, 
and independently, in 1965 by Jack Edmonds.  
 Alan Cobham. The intrinsic computational difficulty of 
functions. In Proceedings of the 1964 Congress for Logic, 
Methodology, and the Philosophy of Science, pp. 24-30, 
1964. 
 Jack Edmonds. Paths, trees, and flowers. Canadian 
Journal of Mathematics, Vol. 17, pp. 449-467, 1965. 

 
 

A. Cobham J. Edmonds 



Closure Properties of P 

• The complexity class P is closed under Boolean 
operations, concatenation, and Kleene star. 
 

• (Claim) If L1,L2∈P, then  
           L1∪L2∈P,  L1∩L2∈P, L1

c∈P, L1L2∈P, and  L1*∈P. 
 
 L1∪L2  : union 

 L1∩L2  :  intersection 
 L1

c : complement 
 L1L2 : concatenation 
 L1* : Kleene star  (or Kleene closure) 

Boolean operations 



Acceptance vs Rejection for NTMs (revisited) 

• On input x, an NTM M is said to accept x if M enters an 
accepting state along a certain computation path.  

• An input that is not accepted is said to be rejected. 
 

input  x 

accepted not accepted 

input  x 
NTM M 

non-
deterministic 
computation 

M accepts x M rejects x 
or 

not accepted 

computation 
paths 



Complexity Class NP 

• A decision problem (or a language) L is in NP if there is 
an NTM (nondeterministic Turing machine) M such that, 
for any input x, 
1. x∈L ↔ there exists an accepting computation path 

of M on x (or x is accepted by M), and 
2. M halts in polynomial time. 

 
• (Claim)  P ⊆ NP NP 

P 
 Proof:  This is because every 

deterministic computation is a 
special case of a 
nondeterministic computation.  

Many believe in this way 



Natural NP Problems  I 

• There are many natural decision problems that fall into 
the complexity class NP. For example: 
 

• Boolean Formula Satisfiability Problem (SAT) 
 instance: a Boolean formula φ 
 question: Is there any satisfying assignment for φ? 

 
• Traveling Salesperson Problem (TSP) 
 instance: a set of cities, a table of traveling cost 

between two cities, and a budget k 
 question: Is there any tour (i.e., visiting each city 

exactly once and finishing at the starting city) with 
cost at most k? 

This problem will be 
explained later. 



Natural NP Problems  II 

• Here are more examples of NP problems. 
 

• 0-1 Knapsack Problem (KNAPSACK) 
 instance: a finite set U of items, size s(u)∈N+, value 

v(u)∈N+ for each u∈U, bounds B∈N+, and k∈N+  
 question: Is there a subset A⊆U s.t. Σu∈As(u)≤B and 
Σu∈Av(u)≥k? 

• Graph 3-Colorability Problem (3-COLOR) 
 instance: a graph G=(V,E)  
 question: Is G 3-colorable? 

“3-colorable” means that there exist a function 
f : V → {1,2,3} s.t. f(u)≠f(v) whenever {u,v}∈E? 



Another Formulation of NP 

• Here is a quite different formulation of NP. 

• A language L belongs to NP iff there exists a two-input 
polynomial-time algorithm A and constant c≥1 such that 

             L = { x∈{0,1}* | ∃ y s.t. |y|=O(|x|c) and  A(x,y) = 1 }. 

• In this case, “y” is called a certificate.  
• Moreover, this algorithm A is said to verify the language 

L in polynomial time. 
 

• In other words, the complexity class NP is the class of 
languages that can be verified by a polynomial-time 
algorithm. 
 



Who Introduced Class NP? 

• The class NP was introduced in 1965 by Jack Edmonds, 
who also conjectured that P≠NP.  
 
 Jack Edmonds. Paths, trees, and flowers. Canadian 
Journal of Mathematics, Vol.17, pp.449—467, 1965. 

 
 



Complexity Class co-NP 

• For any language L, the complement Lc of L is the 
difference Σ* - L. 

• That is, Lc is the problem obtained from L by exchanging 
its outcomes of 0 and 1; namely, 

          
  
• (Claim)  If L∈P then Lc∈P. In other words, P = co-P. 

• We define the complexity class co-NP as the set of 
decision problems (or languages) L such that Lc∈NP. 

• In other words,  L ∈ NP  ⇔  Lc ∈ co-NP.  
• (Claim)  CFL ∪ co-CFL ⊆ P ⊆ NP ∩ co-NP ⊆ NP. 

{ }* |cL x x L= ∈Σ ∉



Relationships among P, NP, and co-NP 

 
 

Four possible scenarios   



The P = NP Problem 

• The P=NP Problem is one of the most famous open 
problems in our time. 

• This problem asks if all NP problems are solvable in 
polynomial time. That is,  

                    Does L∈NP imply L∈P?  
 

• Clay Mathematics Institute would award anyone who 
solves the P=NP problem with $1,000,000 prize. 

    (See the next slide.) 





Open Problems 

• Associated with P, NP, and co-NP, there are many 
questions that we do not know their answers at present.  

• Here are some of the important open questions. 
 
1. Does L∈NP imply L∈co-NP?   (Equivalently, is NP = co-

NP?) 
2. Does L∈NP∩co-NP imply L∈P?  (Equivalently, is P = 

NP∩co-NP?) 



1. Polynomial-Time Many-One Reductions 
2. Closure Properties of P and NP under ≤p

m 

3. NP-Complete Problems 
4. Formula Satisfiability 
5. Satisfiability Problem SAT 
6. SAT and 3SAT are NP-Complete 
7. How to Prove the NP-Completeness 

 

II. NP-Complete Problems 



Polynomial-Time Many-One Reductions 

• Recall from Week 1 the function class FP of polynomial-
time computable functions. 

• We say that problem A is polynomial-time (many-one) 
reducible to problem B if there exists a function f∈FP  
such that, for every x, 

               x ∈ A ↔ f(x) ∈ B.   

• In this case, we write:  
p
mA B≤

1 2    via    p
mL L f≤

(See the next slide.) 

Σ* Σ* 



1 2    via    p
mL L f≤ 1 2[ ( ) ]x x L f x L∀ ∈ ↔ ∈

Σ* Σ* 



Closure Properties of P and NP under ≤p
m 

• Consider closure properties under ≤p
m

 . 
 

• (Claim)  If L1≤p
m

 L2  and L2∈P, then L1∈P.  

• (Claim)  If L1≤p
m

 L2  and L2∈NP, then L1∈NP.  
 

• In other words, P and NP are closed under ≤p
m-

reductions. 
• These closure properties are critical for the introduction 

of  a completeness notion.  
 
 



NP-Complete Problems I 

• Polynomial-time reductions provide a formal means for 
showing that one problem is at least as hard as another, 
to within a polynomial-time factor. 

• That is, if L1 ≤p
m L2, then L1 is not more than a polynomial 

factor harder than L2.  
 

• A language L ⊆ {0,1}* is called NP-hard (or many-one 
hard for NP) if  

     for every language A ∈ NP,  A ≤p
m L.  

• A language L is called NP-complete (polynomial-time 
many-one complete for NP, or ≤p

m
 -complete for NP) if  

1. L ∈ NP  and 
2. L is NP-hard. 



NP-Complete Problems II 

• In other words, a language L is called NP-complete if  
1. L ∈ NP  and  
2. for every language A ∈ NP,   A ≤p

m L.  
 

• All NP-complete problems are the hardest problems in 
NP to solve in polynomial time. 

• We sometimes write NPC to denote the class of all NP-
complete languages (or NP-complete problems). 

• There are hundreds of NP-complete problems 
discovered so far. (See, e.g., [Garey-Johnson (1979)].) 



NP 

P 

NPC 

NPI 

The set of all 
NP complete 
problems 

The set of all 
P problems 

The set of all 
problems 
having 
intermediate 
difficulty 

Inside of NP 

Efficiently solvable 
problems 



Formula Satisfiability 

• Here, we formulate the (formula) satisfiability problem  
(SAT) in the form of language. 

• An instance of SAT is a Boolean formula ϕ composed of  
1. n Boolean variables: x1, x2, ..., xn; 
2. m Boolean connectives: ∧ (AND), ∨ (OR), ¬ (NOT); 

and 
3. parentheses (  “(“ and “)”  ). 

• It is possible to encode any Boolean formula ϕ into a 
certain binary string of length that is polynomial in n+m. 

• Hereafter, we always assume such an encoding. 



Satisfiability Problem SAT 

• A truth assignment for a Boolean formula ϕ is a set of 
values assigned to all variables of ϕ. 

• A satisfying assignment for a Boolean formula ϕ is a 
truth assignment that causes ϕ to evaluate to 1.  

• A formula with a satisfying assignment is a satisfiable 
formula. (See the next slide.) 
 

• The satisfiability problem (SAT) is a decision problem: 
 instance: a Boolean formula ϕ; 
question: is ϕ satisfiable? 



Example: Satisfying Assignments 

• Here is an example of a satisfiable formula. 
 
 
 

• satisfying assignment  
 

1 2 1 3 2 4( ) (( ) )x x x x x xϕ ≡ ¬ ¬ ∨ ∧¬ ¬ ∧ ∨ ∧

(1,0,0,1) ( 1 0) (( 1 0) 0) 1
                (0 0) ((0 0) 0)
                0 (0 0)
                1 1
                1

ϕ ≡ ¬ ¬ ∨ ∧¬ ¬ ∧ ∨ ∧
= ¬ ∨ ∧¬ ∧ ∨
= ¬ ∧¬ ∨
= ∧
=

( ) ( )1 2 3 4, , , 1,0,0,1x x x x =



SAT and 3SAT are NP-Complete 

• SAT is the first problem to be shown as an NP-complete 
problem.  
 

• We restrict formulas to have 3-conjunctive normal form 
(3CNF), which has at most 3 literals in each clause.  
 

• 3-Satisfiability Problem (3SAT) 
 instance: a 3CNF formula ϕ 
 question: is ϕ satisfiable? 
 

• E.g., 3CNF: ϕ ≡ (x1∨x2∨¬x3)∧(x1∨¬x3)∧(¬x2∨x3) 
 

• (Claim)  SAT and 3SAT are NP-complete. [Cook (1971)] 

A literal is either a 
variable or the negation 
of a variable. 



How to Prove the NP-Completeness 

• Once we find some NP-complete problems, it is rather easy 
to prove that other NP problems are also NP-complete. 

• Her is a way to prove the NP-completeness of other 
problems. 

•  (Claim)  Assume that A is a known NP-complete problem. 
If B is an NP problem and A ≤p

m B, then B is NP-complete. 
 Proof Sketch:  
• Let C be any NP problem. Since A is NP-complete, it 

follows that C ≤p
m A.  

• If B satisfies A ≤p
m B, then the transitivity property of ≤p

m 
implies that C ≤p

m B.  
• Hence, B is also NP-complete by definition. QED 



1. Universal Turing Machines 
2. Kolmogorov Complexity 
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4. Compressibility and Incompressibility 

 

III. Kolmogorov Complexity 



Universal Turing Machines 

• Let us consider a universal Turing machine, which can 
simulates, on any input, any 1DTM equipped with an output 
tape and produces the same outputs whenever the original 
1DTM halts. 

• More precisely, a universal Turing machine is a DTM with 
an output tape that takes inputs of the form 〈e(M),x〉 and 
simulates M on input x, where e(M) denotes an appropriate 
binary encoding of a 1DTM M. 

• We write U for a fixed universal Turing machine. 
• Clearly, it follows that U(〈e(M),x〉) = M(x) for any 1DTM M 

and any input x whenever M(x) halts. 
• Note that U takes a standard input x and any binary input p, 

which is considered to be a program (that is e(M)). 



Kolmogorov Complexity 

• Roughly, the Kolmogorov complexity of string x is the 
minimal size |y| of any binary string y such that U(y) = x.  

• In other words, the Kolmogorov complexity of x means 
the size of the smallest program that produces x. 

• bin(n) = binary representation of n∈N 
• x=x1x2...xn ∈{0,1}n. 
• self-delimiting code of x : xsdc = 1|bin(|x|)|0bin(|x|)x. 

• Conditional Kolmogorov complexity of x conditioned to y: 
           C(x|y) = min{ |p| : U(psdcy) = x, p ∈{0,1}* } 
• Kolmogorov complexity of x: 
           C(x) = C(x|λ) 

 
 
 



Basic Properties 

• Here are known properties of Kolmogorov complexity. 
a. C(x|y) ≤ C(x) ≤ |x| + O(1) 
b. C(f(x)|y) ≤ C(x|y) + O(1) for any recursive function f 
c. C(x) ≤ C(x|y) + C(y) + O(min{ log|x|, log|y| }) 

• Examples: 
 Let x = 1n. 
 C(1n) = O(log(n)), compared to |1n|=n. 
 To see this, consider the following program: 
o on input λ, retrieve “n” (in binary) from CPU memory 

(O(log(n) bits), and repeatedly output 1 for n times. 



Compressibility and Incompressibility 

• Let x be any binary string and let n∈N. 

• x is compressible ⇔ C(x)<|x|.  
    Otherwise, x is incompressible. 
• n is compressible ⇔ C(bin(n))<log(n).  
    Otherwise, n is incompressible.  

• (Claim) For any (sufficiently) large n, there exists an 
incompressible string of length n.  

• An incompressible string is sometimes called 
algorithmically random, which is different from “statistical 
randomness.” 

• (*) Kolmogorov complexity will be used shortly. 
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IV. Probabilistic Complexity Classes 



2-Way Probabilistic Finite Automata 
Let us review a model of 2-way probabilistic finite 
automaton (or simply, 2pfa) with endmarkers. 

¢ $ σ 

q 

Head direction: 2-way 

End-marker End-marker Infinite read-only input tape 

M = (Q,Σ,{ȼ,$},δ,q0, Qacc,Qrej) 
Σ = input alphabet 

Inner state q ∈ Q 

… …....... 

Qacc∪ Qrej ⊆ Q 

δ : a probabilistic 
transition function  

This is 
quite 
different 



Formal Definition of 2pfa’s 

A 2pfa M = (Q,Σ,{ȼ,$},δ,q0,Qacc,Qrej) has a read-only input tape 
and a probabilistic transition function δ of the form: 

 
 
 
 

• Stochastic Requirement:   
• Endmarker condition: 
 No tape head should move out of the region marked 

between ȼ and $.  
 

• Similarly, we can define 1pfa’s. 
    (See the next slide.) 

: [0,1]Q Q Dδ ×Σ× × →


All probabilities sum up to 1. 

Σ =


Σ ∪ { ₵, $ } D = { -1, 0, +1 } 

( , )
( , ) ( , , , ) 1

p d
q q p dσ δ σ ∀ = ∑



Examples of 1pfa’s (one-way case) 

• As an example of 1pfa, let us consider the following simple 
1pfa and its transition function (expressed as matrices). 

a,b/0.5 

a/0.5 

b/0.7 

q0 

q1 

q2 

qf 

b/0.5 

a/0.5 

a,b/1.0 

a/0.5 
b/1.0 

a/0.5 

a/0.5 

0.5 0.5 0 0
0.5 0.5 0 0.5
0 0 0 0
0 0 1.0 0.5 a

 
 
 
 
 
 

0 0.5 0 0
0.3 0 0 5
0.7 0 0 0
0 0.5 1.0 1.0 b

 
 
 
 
 
 

=1 

b/0.3 

x′ = Ax 0

1

2

f

q
q
q
q

x A 



Probabilistic Computation 
• A 2pfa produces accepting/non-accepting computation 

paths (which may or may not halt).  

input  x 

accepted not accepted 

input  x 
2pfa M 

probabilistic 
computation 

probabilistic 
computation 

M accepts x M  does not accept x 

or 

accepted not accepted 



Cut-Point Criteria 
• Rabin (1963) introduced a notion of “cut point”. 

• Let M be a 2pfa, let η∈[0,1], and let L⊆Σ*. 

• pM,acc(x) = acceptance probability of M on input x 

• A 2pfa recognizes language L with cut point η  ⇔  for all 
x∈Σ*, x∈L ↔ pM,acc(x) ≥ η 

• A 2pfa M is said to have an isolated cut point η for 
language L  ⇔  there exists a constant ε∈[0,1/2) s.t., for 
all x∈Σ*, (1) x∈L → pM,acc(x) ≥ η+ε and (2) x∉L → 
pM,acc(x) ≤ η-ε  

• A 2pfa M is said to have an exact cut point η for 
language L  ⇔  for all x∈Σ*, x∈L ↔ pM,acc(x) = η  



Bounded-Error Criteria 
• Let M be a 2pfa, let η∈[0,1], and let L⊆Σ*. 

• pM,rej(x) = rejection probability of M on input x 

• A 2pfa M is said to have a bounded-error probability for 
language L  ⇔  there exists a constant ε∈[0,1/2) s.t., for 
all x∈Σ*, (1) x∈L → pM,acc(x) ≥ 1/2+ε and (2) x∉L → 
pM,rej(x) ≥ 1/2+ε  

• A 2pfa recognizes language L with unbounded-error 
probability  ⇔  for all x∈Σ*, (1’) x∈L → pM,acc(x) > 1/2 and 
(2’) x∉L → pM,rej(x) ≥ 1/2  

• “Bounded-error probability” is, in essence, equivalent to 
“isolated cut point,” but “unbounded-error probability” 
slightly deviates from “cut point.”  



Probabilistic Language Families 

• rat-1pfa = one-way rational probabilistic finite automaton 
• SLrat = collection of all languages recognized by rat-1pfa’s 

with cut point  ½. Such languages are called stochastic 
languages.  

• SL=
rat = collection of all languages L recognized by rat-

1pfa’s s.t. ∀x [ x∈L ↔ M accepts x with exact cut point ½ ] 

• (Claim)  REG ⊆ SL=
rat  ⊆ SLrat 

• (Claim)  SLrat is also defined by rat-2pfa’s with cut point ½. 
[Kaņeps (1989)]  
 This means that there is no difference between 1pfa’s 

and 2pfa’s in case of cut point ½.  
• Later, we will connect them to 1-tape linear-time classes. 



1-Way Probabilistic Pushdown Automata 
Let us review a model of 1-way (one head) probabilistic 
pushdown automaton (or 1ppda). 

σ 

q 
Head direction: one-way 

Infinite read-only input tape 

M = (Q,Σ,{ȼ,$}, Γ,ΘΓ,δ,q0,Z0,F) 

Inner state q ∈ Q 

… …....... 

Z0 

τ 

Bottom-
marker 

Stack 

...... 

Q,q0,F: standard notation 
Σ = input alphabet 
Γ = stack alphabet 
ΘΓ = a finite subset of Γ* 

δ : transition function 
Z0 : stack’s bottom marker 

L(M) = set of strings 
accepted by M 

¢ $ 



Probabilistic Transition Functions 

• A 1ppda M uses a probabilistic transition function δ of the 
form: 
 
 

    where       = Σ ∪ {ȼ,$}.   

• The notation  σ(q,σ,a|p,u) = γ  means the following:  
 γ  is the transition probability that M is currently in 

state q, scanning σ on an input tape and symbol a at 
the top of a stack, and M makes a move of replacing a 
by u with entering state p.  

 

: ( { }) [0,1]Q Qδ λ Γ× Σ∪ ×Γ× ×Θ →


Σ




Formal Definition of 1ppda’s 

A 1ppda M = (Q,Σ,Γ,ΘΓ,δ,q0,Qacc) has a read-only input tape, a 
stack, and a probabilistic transition function δ of the form: 

 
 
 

• Let 

 
• Probability Requirement:  

 
• This extends the deterministic requirement for 1dpda’s.  

: ( { }) [0,1]Q Qδ λ Γ× Σ∪ ×Γ× ×Θ →


All probabilities sum up to 1. 

Σ =


Σ ∪ { ₵, $ } 

[ ]( , , ) [ , , ] [ , , ] 1q a q a q aσ δ σ δ λ∀ + =

( , , | , ) [0,1]q a p uδ σ ∈

( , )

[ , , ] ( , , | , )
p u Q

q a q a p uδ σ δ σ
Γ∈ ×Θ

= ∑



Probabilistic Language Families 

• Similarly to CFL, we define PCFL and BPCFL. 

• PCFL = collection of all languages recognized by 
1ppda’s with unbounded-error probability 

• BPCFL = collection of all languages L recognized by 
1ppda’s with bounded-error probability 

• Let ε∈[0,1/2) be any error bound. 
• BPCFLε = class of languages recognized by 1ppda’s 

with error probability at most ε 
• In particular, BPCFL0 = DCFL 
• BPCFL = ∪ε∈[0,1/2) BPCFLε  

 



Basic Relationships 

• Here are simple known relationships among DCFL, 
BPCFL, and PCFL. 

• (Claim)  DCF ⊆ BPCFL  ⊆ PCFL 
• (Claim)  BPCFL ⊄ CFL and CFL ⊄ BPCFL  

             [Hromkovič-Schnitger (2010)] 

DCFL 

CFL 
BPCFL 

PCFL 

CFL BPCFL 

DCFL 

Many believe in this way 



Example Lkeq   I 
• We see a simple example of BPCFL-languages. 
• Let Σk = { a1, a2, ..., ak } for a constant k ≥ 1. 
• Lkeq = { a1

na2
n...ak

n | n ≥ 1 }. (bounded language) 
 
 

(Claim)  Lkeq ∉ CFL for any k ≥ 3 (by the pumping  
lemma or the swapping lemma (see Week 5)).  

• (Claim)  Lkeq is in BPCFL for k ≥ 1. [Hromkovič-Schnitger 
(2010)] 

 Proof Sketch:  
• Case k=1,2: Trivial because L1eq ∈ REG and L2eq ∈ DCFL. 

a1a1......a1 a2a2......a2 akak......ak ..... input 



Example Lkeq   II 

• Case k=3: The following algorithm places L3eq into 
BPCFL. The case of k≥4 is similar. 
1. Fix a sufficiently large constant t ≥ 1.  
2. Let w be any nonempty input (i.e., w ≠ λ).  
3. Check if w = a1

ia2
ja3

k for certain i,j,k ≥ 1. If not, reject 
w. Otherwise, proceed with  i,j,k ≥ 1. 

4. Pick s ∈ {1,2,...,t } uniformly at random. 
4. While reading one a1, push s+1 0’s. 
5. While reading one a2, pop s 0s. 
6. While reading one a3, pop one 0. 
7. If w is completely read and the stack is empty, then 

accept; otherwise, reject. 



Example Lkeq   III 

• Analysis: 
1. If i=j=k≥1, then M accepts for all s∈[t]. 
2. Assume that i≠j or i≠k. If, for example, M accepts w 

for a pair s1,s2 (s1≠ s2), then we obtain (sa+1)i-saj-k =0 
for a=1,2; that is, 
 
 

3. If i=j, then we obtain i=k, a contradiction. Thus, i≠j. 
4. Since i≠j, (*) then leads to s1=s2, a contradiction.  
5. Hence, there is no such pair s1,s2 (s1≠ s2).  
6. This implies that M accepts w with prob. ≤ 1/t. 

1

2

( ) ( ) 0
( ) ( ) 0

s i j i k
s i j i k

− + − =
 − + − =

QED 

(*) 



Known Results 

• Freivalds 
 Σk = { a1, a2, ..., ak, b1, b2, ..., bk } for each k ≥ 1 
 #a(w) = # of occurrences of a in w 
 kEqual = { w∈Σ* | ∀i∈[k] #ai(w) = #bi(w) } 
 kEqual ∈ BPCFL for all k ≥ 3. 

• Kaņeps, Geidmanis, Freivalds (1997) 
 TALLY ∩ BPCFL ⊆ REG 

• Yamakami (2014) 
 BPCFL ⊄ CFL/n (with advice) 
 ∃ A: oracle s.t. BPCFLA ⊄ ΣCFL,A

2    (see next slide) 

2nd level of the 
CFL hierarchy 
(see Week 4) 

TALLY = class of languages over single-letter alphabets 



REG 

 co-CFL = ΠCFL
1 

ΣCFL
2 

ΣCFL
1 = CFL 

CFL2 

ΣCFL
3 

ΠCFL
2 

ΠCFL
3 

DSPACE(O(n)) 

CSL  

inclusion 

proper inclusion 

CFLH 

CFL(2) 

CFL(3) 

AC0(CFL) 
= LOGCFL 

= SAC1 

CFLm
CFL(1)  

  = CFLm[1]
CFL 

CFLm
CFL(ω) 

REG/n 

CFL/n 
L 

no inclusion 

NL 
CFL(ω) 

BHCFL 

CFL3 

NC2  

CFLm
CFL(2)  

  = CFLm[2]
CFL 

PCFL 

BPCFL  

TC1  

AC0(REG) 
= NC1  

Inclusion Relations among Language Families 



Complexity of Palindromes 

• Theorem:  [Yamakami (2017)] 
    Pal = { w ∈{0,1}* | w = wR } is not in BPCFL. 

 Proof Idea: 
• The proof of the theorem uses Kolmogorov complexity. 
• Li and Vitányi (1995) first proposed Kolmogorov 

complexity versions of the pumping lemmas for 1dfa’s 
and 1dpda’s. 

• Glier (2003) gave a (corrected form of) Kolmogorov 
complexity version of the pumping lemma for 1dpda’s.  

• We extend Glier’s result to handle 1ppda’s and obtain a 
new pumping lemma for 1ppda’s. 

 
QED 



Open Problems 

• There are a number of problems left unsolved. 
 

• Here is an open problem given by Hromkovič and 
Schnitger (2010).   
 Question: DISJ = { x#y | x ∩ y = ∅ }∉BPCFL?  
 Here, x and y are seen as sets of indices of “1”. For 

example, y=0100101 means {2,5,7}. 
 

• We can ask the following question.   
 Let Center = { u1w | u,w ∈{0,1}*, |u|=|w| }. 
 Question: Is it true that Center ∉ BPCFL? 

 



Probabilistic 1-Tape Turing Machines 

 
 

• 1PTM =  1-tape probabilistic Turing machine using the strong 
definition for its running time 

• 1-BPLIN = collection of all languages recognized by linear-
time 1PTMs with bounded error (i.e., error < ½ -ε) 

• 1-PLIN = collection of all languages recognized by linear-time 
1PTMs with unbounded error (i.e., error < ½ ) 

• 1-C=LIN = collection of all languages L that are recognized by 
linear-time 1PTMs such that 

∀x [ x∈L ↔ M accepts x with probability exactly ½ ].  

• (Claim) 
1. 1-BPLIN ∪ 1-C=LIN ⊆ 1-PLIN.  
2. 1-DLIN ⊆ 1-BPLIN ∩ 1-C=LIN.  



Typical Examples 

• The complexity classes 1-PLIN, 1-BPLIN, and 1-C=LIN 
contain the following problems.   
 

• Problems in 1-PLIN 
Let Diff< = { anbm | 1 ≤ n < m }. 
 (Claim)  Diff< ∈ CFL – REG. 

• Problems in 1-C=LIN 
Let Equal = { anbn | n ≥ 1 }. 
 (Claim)  Equal ∈ DCFL – REG. 

 
• We can use the pumping lemma for regular languages to 

show that Diff< and Equal are not in REG.  



Relationships among Complexity Classes 

• Here is a short list of known results regarding the 
aforementioned complexity classes. 
 

• Collapse results 
 1-DLIN = 1-NLIN = 1-BPLIN = REG 

[Hennie65,Kobayashi85,Tadaki-Yamakami-Lin04] 
 1-C=LIN = SL=

rat  [Tadaki-Yamakami-Lin (2004)] 
 1-PLIN = SLrat  [Tadaki-Yamakami-Lin (2004)] 

 
• Separation results 
 1-C=LIN ≠ 1-PLIN  [Turakainen (1969)] 
 1-C=LIN ≠ co-1-C=LIN  [Dieu (1971)]  



Complexity Class PP 

• We introduce a complexity class defined by probabilistic 
Turing machines (or PTMs). 

• A decision problem (or a language) L is in PP if there is a 
probabilistic Turing machine M such that, for any input x, 
1. x∈L → M accepts x with probability > 1/2,  
2. x∉L → M rejects x with probability ≥ 1/2, and 
3. M halts in polynomial time. 

 
• When M satisfies Conditions 1-2, we say that M makes 

unbounded-error probability. 



Natural Problems in PP 

• Complexity class PP contains the following problems. 
 

• Majority Satisfiability Problem (Majority-SAT) 
 instance: a Boolean formula ϕ 
 question: YES if more than half of all assignments 

make ϕ true; NO otherwise.  

• E.g., ϕ ≡ (x1∨x2)∧(x1∨x3∨¬x4)∧(x2∨¬x3∨¬x4) 

         question:  

• (Claim)  PP is closed under union, intersection, and 
complementation.  [Beigel-Reinold-Spielman (1991)] 

{ } 4
1 2 3 4 1 2 3 4( , , , ) | ( , , , ) 1 2 2 ?α α α α ϕ α α α α ≡ >



Complexity Class BPP 

• A decision problem (or a language) L is in BPP if there 
are a PTM M and a constant (an error bound) ε∈[0,1/2) 
such that, for any input x, 
1. x∈L → M accepts x with probability ≥ 1–ε,  
2. x∉L → M rejects x with probability ≥ 1–ε, and 
3. M halts in polynomial time. 

• When M satisfies Conditions 1-2, we say that M makes 
bounded-error probability. 
 

• (Claim)  P ⊆ BPP ⊆ PP.  
• (Claim)  P ⊆ NP ⊆ PP.  

PP 

NP 
BPP 

P 

Many believe in this way 



Zero-Error Probabilistic Computation 

• Here, we consider a slightly different probabilistic model.  
• We allow PTMs to reach three distinguished outcomes along 

each computation path: “accept,” “reject,” and “don’t know.” 
• The “don’t know” state is treated as a halting state but neither 

accepting states nor rejecting states.  
 

input  x 

accepted don’t know 

input  x 
PTM M 

probabilistic 
computation 

probabilistic 
computation 

or 

don’t know rejected 



Complexity Class ZPP 

• A decision problem L is in ZPP if there are a PTM M and 
a constant ε∈[0,1/2) such that, for any input x, 
1. x∈L → M outputs either “accept” or “don’t know,”  
2. x∉L → M outputs either “reject” or “don’t know,” 
3. The probability of producing “don’t know” on each 

input is at most 1/2, and 
4. M terminates in polynomial time. 

• When M satisfies Conditions 1-3, we say that M makes 
zero-error probability. 

• (Claim)  P ⊆ ZPP ⊆ BPP.  
• (Claim)  ZPP ⊆ NP ∩ co-NP.  



Other Well-Known Complexity Classes 

• There are a number of complexity classes that are well-
known in use. Here is two of them. 
 
• RP = one-sided version of PP 
• co-RP = complement class of RP 
• Note that ZPP = RP ∩ co-RP.  
 

• For more complexity classes, see Complexity Zoo: 
      https://complexityzoo.uwaterloo.ca/Complexity_Zoo 



Known Results 

• There are numerous results known for probabilistic 
complexity classes. 
 

• (Claims)   
1. If NP ⊆ BPP, then RP = NP. [Ko (1982)]  
2. If NP ⊆ BPP, then PH ⊆  BPP. [Zachos (1988)]  
3. BPP ⊆ Σ2

p ∩ Π2
p. [Sipser-Gacs (1983)]  

4. BPPBPP = BPP. [Ko (1982), Zachos (1982)] 
5. PPPH ⊆ BPPC=P ⊆  PPP. [Toda (1991)]  

• (*) Relativizations and the polynomial hierarchy will be 
discussed in Week 4.  



Open Problems 

• There are a number of problems that have not been  
solved in the past literature. 

• We list some of them below. 
 
 Is P = BPP? 
 Is NP ⊆ BPP? 
 Is P = PP? 
 Is BPP = PP? 

 
• A certain number of researchers nowadays believe that 

P = BPP, that is, the use of probabilistic computation 
does not help.  

 

PP 

NP 
BPP 

P 

Many believe in this way. 



1. Complexity Class C=P 
2. PP as a Counting Complexity Class 
3. Simple Inclusion Relationships  

 

V. Counting Complexity Classes 



Complexity Class C=P 

• A decision problem (or a language) L is in C=P if there 
are an NTM M and a function f : Σ* → N in FP such that, 
for any input x, 
1. x∈L ↔ the number of accepting computation paths 

of M on x is f(x), and 
2. M halts in polynomial time. 

• In other words, L = { x | #M(x) = f(x) }, where #M(x) 
denotes the number of accepting computation paths of M 
on input x. 

• Surprisingly, it is possible to fix f as  
    f(x) = #M(x)/2. 

C=P co-C=P 

P 



Natural Problems in C=P 

• Complexity class C=P was first defined by Wagner 
(1986). 

• This complexity class contains the following problems. 
 

• Equality Satisfiability Problem (Equal-SAT) 
 instance: a Boolean formula ϕ 
 question: YES if exactly half of all assignments make 

ϕ true; NO otherwise. 
 

• E.g., ϕ ≡ ((x1∧x2)∨((¬x1∨x3)∨¬x4))∧(x2∨¬x3∨¬x4) 
            question:  { } 4

1 2 3 4 1 2 3 4( , , , ) | ( , , , ) 1 2 2 ?α α α α ϕ α α α α ≡ =



PP as a Counting Complexity Class 

• We have already seen the complexity class PP.  
• This complexity class PP is also considered as a 

counting complexity class. 
 

• (Claim) P ⊆ C=P∩co-C=P. 
• (Claim) C=P∪co-C=P ⊆ PP.  
                 [Simon (1975)] PP 

C=P co-C=P 

P 

Many believe in this way. 



Simple Inclusion Relationships 

P 

BPP C=P co-NP 

PP 

co-C=P NP 

inclusion 

• Here are class inclusions among the 
aforementioned complexity classes.  



Open Problems 

• The following questions are not 
yet answered. 
 
 Is P = C=P or P = co-C=P? 
 Is C=P∪co-C=P = PP? 
 Is C=P = co-C=P? 
 Is NP = C=P? 
 Is P = BPP? 
 Is NP ⊆ BPP? 
 

PP 

C=P co-C=P 

P 

PP 

NP BPP 

Many believe in this way. 



Other Well-Known Complexity Classes 

• There are a number of complexity classes that are well-
known for use and analysis. 
 
• US, FewP, SPP, ⊕P 
• IP, MIP, P-sel, AM, MA 
• OptP 
 

• For more complexity classes, see Complexity Zoo: 
      https://complexityzoo.uwaterloo.ca/Complexity_Zoo 





Q & A 
I’m happy to take your question! 



 
 

                                 END 
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