
2nd Week

Synopsis.
• P, NP, co-NP
• NP-Complete Problems
• Kolmogorov Complexity
• Probabilistic Computation
• Counting Complexity Classes

NP-Completeness, Probabilistic and
Counting Complexity Classes

April 16, 2018. 23:59

Course Schedule: 16 Weeks

• Week 1: Basic Computation Models
• Week 2: NP-Completeness, Probabilistic and Counting Complexity Classes
• Week 3: Space Complexity and the Linear Space Hypothesis
• Week 4: Relativizations and Hierarchies
• Week 5: Structural Properties by Finite Automata
• Week 6: Stype-2 Computability, Multi-Valued Functions, and State Complexity
• Week 7: Cryptographic Concepts for Finite Automata
• Week 8: Constraint Satisfaction Problems
• Week 9: Combinatorial Optimization Problems
• Week 10: Average-Case Complexity
• Week 11: Basics of Quantum Information
• Week 12: BQP, NQP, Quantum NP, and Quantum Finite Automata
• Week 13: Quantum State Complexity and Advice
• Week 14: Quantum Cryptographic Systems
• Week 15: Quantum Interactive Proofs
• Week 16: Final Evaluation Day (no lecture)

Subject to Change

YouTube Videos

• This lecture series is based on numerous papers of T.
Yamakami. He gave conference talks (in English) and
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.

• Use the following keywords to find a playlist of those
videos.

• YouTube search keywords:
 Tomoyuki Yamakami conference invited talk playlist

Conference talk video

Main References by T. Yamakami

✎ T. Yamakami. Oracle pushdown automata, nondeterministic
reducibilities, and the hierarchy over the family of context-free
languages. In Proc. of SOFSEM 2014, Lecture Notes in
Computer Science, vol. 8327, pp. 514-525 (2014). A
complete version is available at arXiv:1303.1717.

✎ T. Yamakami. One-way bounded-error probabilistic
pushdown automata and Kolmogorov complexity (preliminary
report). In Proc. of DLT 2017, Lecture Notes in Computer
Science, vol. 10396, pp. 353-364 (2017). A complete and
corrected version will be posted at arXiv.org shortly.

1. Complexity Measures
2. Complexity Classes
3. Complexity Class P
4. Complexity Class NP
5. Another Formulation of NP
6. Complexity Class co-NP
7. Relationships among P, NP, and co-NP
8. The P=NP Problem

I. Basic Complexity Classes

Complexity Measures

• A notion of complexity measure is used to classify various
“problems” (i.e., languages and functions).

• Basic complexity measures of algorithms include the
running time and the usage of memory space.

• We say that problem A is of time complexity t(n) if there
exists an algorithm that solves A in time t(n) for all length-n
inputs.

• Similarly, problem A is of space complexity s(n) if there
exists an algorithm that solves A in space s(n) for all length-
n inputs.

• (*) Other complexity measures, including circuit complexity
and state complexity, will be discussed in Weeks 3 and 6.

Complexity Classes

• Assume that a specific complexity measure is given.

• Informally, we define a complexity class as a collection
of decision problems, solutions of which is measured by
a complexity measure of an algorithm.

• Namely, a complexity class is a set of problems, which
can be solved by algorithms of the given complexity
measure.

• In particular, a complexity class of decision problems is
also called a family of languages because decision
problems are identified with languages (see Week 1).

Complexity Class P

• The complexity class P is the set of decision problems
(or languages) that are polynomial-time solvable.

• More precisely, a decision problem (or a language) L is
in P if there exist a constant k≥1 and a multi-tape DTM
(deterministic Turing machine) M s.t., for any input x,
1. x∈L → M accepts x in O(nk) time, and
2. x∉L → M rejects x in O(nk) time.

• Many natural problems belong to this complexity class P.
• (Example) The problem PRIMES of determining whether

a given positive integer is a prime number belongs to P.
[Agrawal-Kayal-Saxena (2002)].

Who Introduced Class P?

• The class P was introduced in 1964 by Alan Cobham,
and independently, in 1965 by Jack Edmonds.
 Alan Cobham. The intrinsic computational difficulty of
functions. In Proceedings of the 1964 Congress for Logic,
Methodology, and the Philosophy of Science, pp. 24-30,
1964.
 Jack Edmonds. Paths, trees, and flowers. Canadian
Journal of Mathematics, Vol. 17, pp. 449-467, 1965.

A. Cobham J. Edmonds

Closure Properties of P

• The complexity class P is closed under Boolean
operations, concatenation, and Kleene star.

• (Claim) If L1,L2∈P, then
 L1∪L2∈P, L1∩L2∈P, L1

c∈P, L1L2∈P, and L1*∈P.

 L1∪L2 : union

 L1∩L2 : intersection
 L1

c : complement
 L1L2 : concatenation
 L1* : Kleene star (or Kleene closure)

Boolean operations

Acceptance vs Rejection for NTMs (revisited)

• On input x, an NTM M is said to accept x if M enters an
accepting state along a certain computation path.

• An input that is not accepted is said to be rejected.

input x

accepted not accepted

input x
NTM M

non-
deterministic
computation

M accepts x M rejects x
or

not accepted

computation
paths

Complexity Class NP

• A decision problem (or a language) L is in NP if there is
an NTM (nondeterministic Turing machine) M such that,
for any input x,
1. x∈L ↔ there exists an accepting computation path

of M on x (or x is accepted by M), and
2. M halts in polynomial time.

• (Claim) P ⊆ NP NP

P
 Proof: This is because every

deterministic computation is a
special case of a
nondeterministic computation.

Many believe in this way

Natural NP Problems I

• There are many natural decision problems that fall into
the complexity class NP. For example:

• Boolean Formula Satisfiability Problem (SAT)
 instance: a Boolean formula φ
 question: Is there any satisfying assignment for φ?

• Traveling Salesperson Problem (TSP)
 instance: a set of cities, a table of traveling cost

between two cities, and a budget k
 question: Is there any tour (i.e., visiting each city

exactly once and finishing at the starting city) with
cost at most k?

This problem will be
explained later.

Natural NP Problems II

• Here are more examples of NP problems.

• 0-1 Knapsack Problem (KNAPSACK)
 instance: a finite set U of items, size s(u)∈N+, value

v(u)∈N+ for each u∈U, bounds B∈N+, and k∈N+
 question: Is there a subset A⊆U s.t. Σu∈As(u)≤B and
Σu∈Av(u)≥k?

• Graph 3-Colorability Problem (3-COLOR)
 instance: a graph G=(V,E)
 question: Is G 3-colorable?

“3-colorable” means that there exist a function
f : V → {1,2,3} s.t. f(u)≠f(v) whenever {u,v}∈E?

Another Formulation of NP

• Here is a quite different formulation of NP.

• A language L belongs to NP iff there exists a two-input
polynomial-time algorithm A and constant c≥1 such that

 L = { x∈{0,1}* | ∃ y s.t. |y|=O(|x|c) and A(x,y) = 1 }.

• In this case, “y” is called a certificate.
• Moreover, this algorithm A is said to verify the language

L in polynomial time.

• In other words, the complexity class NP is the class of
languages that can be verified by a polynomial-time
algorithm.

Who Introduced Class NP?

• The class NP was introduced in 1965 by Jack Edmonds,
who also conjectured that P≠NP.

 Jack Edmonds. Paths, trees, and flowers. Canadian
Journal of Mathematics, Vol.17, pp.449—467, 1965.

Complexity Class co-NP

• For any language L, the complement Lc of L is the
difference Σ* - L.

• That is, Lc is the problem obtained from L by exchanging
its outcomes of 0 and 1; namely,

• (Claim) If L∈P then Lc∈P. In other words, P = co-P.

• We define the complexity class co-NP as the set of
decision problems (or languages) L such that Lc∈NP.

• In other words, L ∈ NP ⇔ Lc ∈ co-NP.
• (Claim) CFL ∪ co-CFL ⊆ P ⊆ NP ∩ co-NP ⊆ NP.

{ }* |cL x x L= ∈Σ ∉

Relationships among P, NP, and co-NP

Four possible scenarios

The P = NP Problem

• The P=NP Problem is one of the most famous open
problems in our time.

• This problem asks if all NP problems are solvable in
polynomial time. That is,

 Does L∈NP imply L∈P?

• Clay Mathematics Institute would award anyone who
solves the P=NP problem with $1,000,000 prize.

 (See the next slide.)

Open Problems

• Associated with P, NP, and co-NP, there are many
questions that we do not know their answers at present.

• Here are some of the important open questions.

1. Does L∈NP imply L∈co-NP? (Equivalently, is NP = co-

NP?)
2. Does L∈NP∩co-NP imply L∈P? (Equivalently, is P =

NP∩co-NP?)

1. Polynomial-Time Many-One Reductions
2. Closure Properties of P and NP under ≤p

m

3. NP-Complete Problems
4. Formula Satisfiability
5. Satisfiability Problem SAT
6. SAT and 3SAT are NP-Complete
7. How to Prove the NP-Completeness

II. NP-Complete Problems

Polynomial-Time Many-One Reductions

• Recall from Week 1 the function class FP of polynomial-
time computable functions.

• We say that problem A is polynomial-time (many-one)
reducible to problem B if there exists a function f∈FP
such that, for every x,

 x ∈ A ↔ f(x) ∈ B.

• In this case, we write:
p
mA B≤

1 2 via p
mL L f≤

(See the next slide.)

Σ* Σ*

1 2 via p
mL L f≤ 1 2[()]x x L f x L∀ ∈ ↔ ∈

Σ* Σ*

Closure Properties of P and NP under ≤p
m

• Consider closure properties under ≤p
m

 .

• (Claim) If L1≤p
m

 L2 and L2∈P, then L1∈P.

• (Claim) If L1≤p
m

 L2 and L2∈NP, then L1∈NP.

• In other words, P and NP are closed under ≤p
m-

reductions.
• These closure properties are critical for the introduction

of a completeness notion.

NP-Complete Problems I

• Polynomial-time reductions provide a formal means for
showing that one problem is at least as hard as another,
to within a polynomial-time factor.

• That is, if L1 ≤p
m L2, then L1 is not more than a polynomial

factor harder than L2.

• A language L ⊆ {0,1}* is called NP-hard (or many-one
hard for NP) if

 for every language A ∈ NP, A ≤p
m L.

• A language L is called NP-complete (polynomial-time
many-one complete for NP, or ≤p

m
 -complete for NP) if

1. L ∈ NP and
2. L is NP-hard.

NP-Complete Problems II

• In other words, a language L is called NP-complete if
1. L ∈ NP and
2. for every language A ∈ NP, A ≤p

m L.

• All NP-complete problems are the hardest problems in
NP to solve in polynomial time.

• We sometimes write NPC to denote the class of all NP-
complete languages (or NP-complete problems).

• There are hundreds of NP-complete problems
discovered so far. (See, e.g., [Garey-Johnson (1979)].)

NP

P

NPC

NPI

The set of all
NP complete
problems

The set of all
P problems

The set of all
problems
having
intermediate
difficulty

Inside of NP

Efficiently solvable
problems

Formula Satisfiability

• Here, we formulate the (formula) satisfiability problem
(SAT) in the form of language.

• An instance of SAT is a Boolean formula ϕ composed of
1. n Boolean variables: x1, x2, ..., xn;
2. m Boolean connectives: ∧ (AND), ∨ (OR), ¬ (NOT);

and
3. parentheses (“(“ and “)”).

• It is possible to encode any Boolean formula ϕ into a
certain binary string of length that is polynomial in n+m.

• Hereafter, we always assume such an encoding.

Satisfiability Problem SAT

• A truth assignment for a Boolean formula ϕ is a set of
values assigned to all variables of ϕ.

• A satisfying assignment for a Boolean formula ϕ is a
truth assignment that causes ϕ to evaluate to 1.

• A formula with a satisfying assignment is a satisfiable
formula. (See the next slide.)

• The satisfiability problem (SAT) is a decision problem:
 instance: a Boolean formula ϕ;
question: is ϕ satisfiable?

Example: Satisfying Assignments

• Here is an example of a satisfiable formula.

• satisfying assignment

1 2 1 3 2 4() (())x x x x x xϕ ≡ ¬ ¬ ∨ ∧¬ ¬ ∧ ∨ ∧

(1,0,0,1) (1 0) ((1 0) 0) 1
 (0 0) ((0 0) 0)
 0 (0 0)
 1 1
 1

ϕ ≡ ¬ ¬ ∨ ∧¬ ¬ ∧ ∨ ∧
= ¬ ∨ ∧¬ ∧ ∨
= ¬ ∧¬ ∨
= ∧
=

() ()1 2 3 4, , , 1,0,0,1x x x x =

SAT and 3SAT are NP-Complete

• SAT is the first problem to be shown as an NP-complete
problem.

• We restrict formulas to have 3-conjunctive normal form
(3CNF), which has at most 3 literals in each clause.

• 3-Satisfiability Problem (3SAT)
 instance: a 3CNF formula ϕ
 question: is ϕ satisfiable?

• E.g., 3CNF: ϕ ≡ (x1∨x2∨¬x3)∧(x1∨¬x3)∧(¬x2∨x3)

• (Claim) SAT and 3SAT are NP-complete. [Cook (1971)]

A literal is either a
variable or the negation
of a variable.

How to Prove the NP-Completeness

• Once we find some NP-complete problems, it is rather easy
to prove that other NP problems are also NP-complete.

• Her is a way to prove the NP-completeness of other
problems.

• (Claim) Assume that A is a known NP-complete problem.
If B is an NP problem and A ≤p

m B, then B is NP-complete.
 Proof Sketch:
• Let C be any NP problem. Since A is NP-complete, it

follows that C ≤p
m A.

• If B satisfies A ≤p
m B, then the transitivity property of ≤p

m
implies that C ≤p

m B.
• Hence, B is also NP-complete by definition. QED

1. Universal Turing Machines
2. Kolmogorov Complexity
3. Basic Properties
4. Compressibility and Incompressibility

III. Kolmogorov Complexity

Universal Turing Machines

• Let us consider a universal Turing machine, which can
simulates, on any input, any 1DTM equipped with an output
tape and produces the same outputs whenever the original
1DTM halts.

• More precisely, a universal Turing machine is a DTM with
an output tape that takes inputs of the form 〈e(M),x〉 and
simulates M on input x, where e(M) denotes an appropriate
binary encoding of a 1DTM M.

• We write U for a fixed universal Turing machine.
• Clearly, it follows that U(〈e(M),x〉) = M(x) for any 1DTM M

and any input x whenever M(x) halts.
• Note that U takes a standard input x and any binary input p,

which is considered to be a program (that is e(M)).

Kolmogorov Complexity

• Roughly, the Kolmogorov complexity of string x is the
minimal size |y| of any binary string y such that U(y) = x.

• In other words, the Kolmogorov complexity of x means
the size of the smallest program that produces x.

• bin(n) = binary representation of n∈N
• x=x1x2...xn ∈{0,1}n.
• self-delimiting code of x : xsdc = 1|bin(|x|)|0bin(|x|)x.

• Conditional Kolmogorov complexity of x conditioned to y:
 C(x|y) = min{ |p| : U(psdcy) = x, p ∈{0,1}* }
• Kolmogorov complexity of x:
 C(x) = C(x|λ)

Basic Properties

• Here are known properties of Kolmogorov complexity.
a. C(x|y) ≤ C(x) ≤ |x| + O(1)
b. C(f(x)|y) ≤ C(x|y) + O(1) for any recursive function f
c. C(x) ≤ C(x|y) + C(y) + O(min{ log|x|, log|y| })

• Examples:
 Let x = 1n.
 C(1n) = O(log(n)), compared to |1n|=n.
 To see this, consider the following program:
o on input λ, retrieve “n” (in binary) from CPU memory

(O(log(n) bits), and repeatedly output 1 for n times.

Compressibility and Incompressibility

• Let x be any binary string and let n∈N.

• x is compressible ⇔ C(x)<|x|.
 Otherwise, x is incompressible.
• n is compressible ⇔ C(bin(n))<log(n).
 Otherwise, n is incompressible.

• (Claim) For any (sufficiently) large n, there exists an
incompressible string of length n.

• An incompressible string is sometimes called
algorithmically random, which is different from “statistical
randomness.”

• (*) Kolmogorov complexity will be used shortly.

1. 2-Way Probabilistic Finite (State) Automata
2. Probabilistic Computation
3. Cut-Point Criteria and Bounded-Error Criteria
4. 1-Way Probabilistic Pushdown Automata
5. Probabilistic 1-Tape Turing Machines
6. Complexity Class PP
7. Complexity Class BPP
8. Complexity Class ZPP

IV. Probabilistic Complexity Classes

2-Way Probabilistic Finite Automata
Let us review a model of 2-way probabilistic finite
automaton (or simply, 2pfa) with endmarkers.

¢ $ σ

q

Head direction: 2-way

End-marker End-marker Infinite read-only input tape

M = (Q,Σ,{ȼ,$},δ,q0, Qacc,Qrej)
Σ = input alphabet

Inner state q ∈ Q

… ….......

Qacc∪ Qrej ⊆ Q

δ : a probabilistic
transition function

This is
quite
different

Formal Definition of 2pfa’s

A 2pfa M = (Q,Σ,{ȼ,$},δ,q0,Qacc,Qrej) has a read-only input tape
and a probabilistic transition function δ of the form:

• Stochastic Requirement:
• Endmarker condition:
 No tape head should move out of the region marked

between ȼ and $.

• Similarly, we can define 1pfa’s.
 (See the next slide.)

: [0,1]Q Q Dδ ×Σ× × →

All probabilities sum up to 1.

Σ =

Σ ∪ { ₵, $ } D = { -1, 0, +1 }

(,)
(,) (, , ,) 1

p d
q q p dσ δ σ ∀ = ∑

Examples of 1pfa’s (one-way case)

• As an example of 1pfa, let us consider the following simple
1pfa and its transition function (expressed as matrices).

a,b/0.5

a/0.5

b/0.7

q0

q1

q2

qf

b/0.5

a/0.5

a,b/1.0

a/0.5
b/1.0

a/0.5

a/0.5

0.5 0.5 0 0
0.5 0.5 0 0.5
0 0 0 0
0 0 1.0 0.5 a

0 0.5 0 0
0.3 0 0 5
0.7 0 0 0
0 0.5 1.0 1.0 b

=1

b/0.3

x′ = Ax 0

1

2

f

q
q
q
q

x A

Probabilistic Computation
• A 2pfa produces accepting/non-accepting computation

paths (which may or may not halt).

input x

accepted not accepted

input x
2pfa M

probabilistic
computation

probabilistic
computation

M accepts x M does not accept x

or

accepted not accepted

Cut-Point Criteria
• Rabin (1963) introduced a notion of “cut point”.

• Let M be a 2pfa, let η∈[0,1], and let L⊆Σ*.

• pM,acc(x) = acceptance probability of M on input x

• A 2pfa recognizes language L with cut point η ⇔ for all
x∈Σ*, x∈L ↔ pM,acc(x) ≥ η

• A 2pfa M is said to have an isolated cut point η for
language L ⇔ there exists a constant ε∈[0,1/2) s.t., for
all x∈Σ*, (1) x∈L → pM,acc(x) ≥ η+ε and (2) x∉L →
pM,acc(x) ≤ η-ε

• A 2pfa M is said to have an exact cut point η for
language L ⇔ for all x∈Σ*, x∈L ↔ pM,acc(x) = η

Bounded-Error Criteria
• Let M be a 2pfa, let η∈[0,1], and let L⊆Σ*.

• pM,rej(x) = rejection probability of M on input x

• A 2pfa M is said to have a bounded-error probability for
language L ⇔ there exists a constant ε∈[0,1/2) s.t., for
all x∈Σ*, (1) x∈L → pM,acc(x) ≥ 1/2+ε and (2) x∉L →
pM,rej(x) ≥ 1/2+ε

• A 2pfa recognizes language L with unbounded-error
probability ⇔ for all x∈Σ*, (1’) x∈L → pM,acc(x) > 1/2 and
(2’) x∉L → pM,rej(x) ≥ 1/2

• “Bounded-error probability” is, in essence, equivalent to
“isolated cut point,” but “unbounded-error probability”
slightly deviates from “cut point.”

Probabilistic Language Families

• rat-1pfa = one-way rational probabilistic finite automaton
• SLrat = collection of all languages recognized by rat-1pfa’s

with cut point ½. Such languages are called stochastic
languages.

• SL=
rat = collection of all languages L recognized by rat-

1pfa’s s.t. ∀x [x∈L ↔ M accepts x with exact cut point ½]

• (Claim) REG ⊆ SL=
rat ⊆ SLrat

• (Claim) SLrat is also defined by rat-2pfa’s with cut point ½.
[Kaņeps (1989)]
 This means that there is no difference between 1pfa’s

and 2pfa’s in case of cut point ½.
• Later, we will connect them to 1-tape linear-time classes.

1-Way Probabilistic Pushdown Automata
Let us review a model of 1-way (one head) probabilistic
pushdown automaton (or 1ppda).

σ

q
Head direction: one-way

Infinite read-only input tape

M = (Q,Σ,{ȼ,$}, Γ,ΘΓ,δ,q0,Z0,F)

Inner state q ∈ Q

… ….......

Z0

τ

Bottom-
marker

Stack

......

Q,q0,F: standard notation
Σ = input alphabet
Γ = stack alphabet
ΘΓ = a finite subset of Γ*

δ : transition function
Z0 : stack’s bottom marker

L(M) = set of strings
accepted by M

¢ $

Probabilistic Transition Functions

• A 1ppda M uses a probabilistic transition function δ of the
form:

 where = Σ ∪ {ȼ,$}.

• The notation σ(q,σ,a|p,u) = γ means the following:
 γ is the transition probability that M is currently in

state q, scanning σ on an input tape and symbol a at
the top of a stack, and M makes a move of replacing a
by u with entering state p.

: ({ }) [0,1]Q Qδ λ Γ× Σ∪ ×Γ× ×Θ →

Σ

Formal Definition of 1ppda’s

A 1ppda M = (Q,Σ,Γ,ΘΓ,δ,q0,Qacc) has a read-only input tape, a
stack, and a probabilistic transition function δ of the form:

• Let

• Probability Requirement:

• This extends the deterministic requirement for 1dpda’s.

: ({ }) [0,1]Q Qδ λ Γ× Σ∪ ×Γ× ×Θ →

All probabilities sum up to 1.

Σ =

Σ ∪ { ₵, $ }

[](, ,) [, ,] [, ,] 1q a q a q aσ δ σ δ λ∀ + =

(, , | ,) [0,1]q a p uδ σ ∈

(,)

[, ,] (, , | ,)
p u Q

q a q a p uδ σ δ σ
Γ∈ ×Θ

= ∑

Probabilistic Language Families

• Similarly to CFL, we define PCFL and BPCFL.

• PCFL = collection of all languages recognized by
1ppda’s with unbounded-error probability

• BPCFL = collection of all languages L recognized by
1ppda’s with bounded-error probability

• Let ε∈[0,1/2) be any error bound.
• BPCFLε = class of languages recognized by 1ppda’s

with error probability at most ε
• In particular, BPCFL0 = DCFL
• BPCFL = ∪ε∈[0,1/2) BPCFLε

Basic Relationships

• Here are simple known relationships among DCFL,
BPCFL, and PCFL.

• (Claim) DCF ⊆ BPCFL ⊆ PCFL
• (Claim) BPCFL ⊄ CFL and CFL ⊄ BPCFL

 [Hromkovič-Schnitger (2010)]

DCFL

CFL
BPCFL

PCFL

CFL BPCFL

DCFL

Many believe in this way

Example Lkeq I
• We see a simple example of BPCFL-languages.
• Let Σk = { a1, a2, ..., ak } for a constant k ≥ 1.
• Lkeq = { a1

na2
n...ak

n | n ≥ 1 }. (bounded language)

(Claim) Lkeq ∉ CFL for any k ≥ 3 (by the pumping
lemma or the swapping lemma (see Week 5)).

• (Claim) Lkeq is in BPCFL for k ≥ 1. [Hromkovič-Schnitger
(2010)]

 Proof Sketch:
• Case k=1,2: Trivial because L1eq ∈ REG and L2eq ∈ DCFL.

a1a1......a1 a2a2......a2 akak......ak input

Example Lkeq II

• Case k=3: The following algorithm places L3eq into
BPCFL. The case of k≥4 is similar.
1. Fix a sufficiently large constant t ≥ 1.
2. Let w be any nonempty input (i.e., w ≠ λ).
3. Check if w = a1

ia2
ja3

k for certain i,j,k ≥ 1. If not, reject
w. Otherwise, proceed with i,j,k ≥ 1.

4. Pick s ∈ {1,2,...,t } uniformly at random.
4. While reading one a1, push s+1 0’s.
5. While reading one a2, pop s 0s.
6. While reading one a3, pop one 0.
7. If w is completely read and the stack is empty, then

accept; otherwise, reject.

Example Lkeq III

• Analysis:
1. If i=j=k≥1, then M accepts for all s∈[t].
2. Assume that i≠j or i≠k. If, for example, M accepts w

for a pair s1,s2 (s1≠ s2), then we obtain (sa+1)i-saj-k =0
for a=1,2; that is,

3. If i=j, then we obtain i=k, a contradiction. Thus, i≠j.
4. Since i≠j, (*) then leads to s1=s2, a contradiction.
5. Hence, there is no such pair s1,s2 (s1≠ s2).
6. This implies that M accepts w with prob. ≤ 1/t.

1

2

() () 0
() () 0

s i j i k
s i j i k

− + − =
 − + − =

QED

(*)

Known Results

• Freivalds
 Σk = { a1, a2, ..., ak, b1, b2, ..., bk } for each k ≥ 1
 #a(w) = # of occurrences of a in w
 kEqual = { w∈Σ* | ∀i∈[k] #ai(w) = #bi(w) }
 kEqual ∈ BPCFL for all k ≥ 3.

• Kaņeps, Geidmanis, Freivalds (1997)
 TALLY ∩ BPCFL ⊆ REG

• Yamakami (2014)
 BPCFL ⊄ CFL/n (with advice)
 ∃ A: oracle s.t. BPCFLA ⊄ ΣCFL,A

2 (see next slide)

2nd level of the
CFL hierarchy
(see Week 4)

TALLY = class of languages over single-letter alphabets

REG

 co-CFL = ΠCFL
1

ΣCFL
2

ΣCFL
1 = CFL

CFL2

ΣCFL
3

ΠCFL
2

ΠCFL
3

DSPACE(O(n))

CSL

inclusion

proper inclusion

CFLH

CFL(2)

CFL(3)

AC0(CFL)
= LOGCFL

= SAC1

CFLm
CFL(1)

 = CFLm[1]
CFL

CFLm
CFL(ω)

REG/n

CFL/n
L

no inclusion

NL
CFL(ω)

BHCFL

CFL3

NC2

CFLm
CFL(2)

 = CFLm[2]
CFL

PCFL

BPCFL

TC1

AC0(REG)
= NC1

Inclusion Relations among Language Families

Complexity of Palindromes

• Theorem: [Yamakami (2017)]
 Pal = { w ∈{0,1}* | w = wR } is not in BPCFL.

 Proof Idea:
• The proof of the theorem uses Kolmogorov complexity.
• Li and Vitányi (1995) first proposed Kolmogorov

complexity versions of the pumping lemmas for 1dfa’s
and 1dpda’s.

• Glier (2003) gave a (corrected form of) Kolmogorov
complexity version of the pumping lemma for 1dpda’s.

• We extend Glier’s result to handle 1ppda’s and obtain a
new pumping lemma for 1ppda’s.

QED

Open Problems

• There are a number of problems left unsolved.

• Here is an open problem given by Hromkovič and
Schnitger (2010).
 Question: DISJ = { x#y | x ∩ y = ∅ }∉BPCFL?
 Here, x and y are seen as sets of indices of “1”. For

example, y=0100101 means {2,5,7}.

• We can ask the following question.
 Let Center = { u1w | u,w ∈{0,1}*, |u|=|w| }.
 Question: Is it true that Center ∉ BPCFL?

Probabilistic 1-Tape Turing Machines

• 1PTM = 1-tape probabilistic Turing machine using the strong
definition for its running time

• 1-BPLIN = collection of all languages recognized by linear-
time 1PTMs with bounded error (i.e., error < ½ -ε)

• 1-PLIN = collection of all languages recognized by linear-time
1PTMs with unbounded error (i.e., error < ½)

• 1-C=LIN = collection of all languages L that are recognized by
linear-time 1PTMs such that

∀x [x∈L ↔ M accepts x with probability exactly ½].

• (Claim)
1. 1-BPLIN ∪ 1-C=LIN ⊆ 1-PLIN.
2. 1-DLIN ⊆ 1-BPLIN ∩ 1-C=LIN.

Typical Examples

• The complexity classes 1-PLIN, 1-BPLIN, and 1-C=LIN
contain the following problems.

• Problems in 1-PLIN
Let Diff< = { anbm | 1 ≤ n < m }.
 (Claim) Diff< ∈ CFL – REG.

• Problems in 1-C=LIN
Let Equal = { anbn | n ≥ 1 }.
 (Claim) Equal ∈ DCFL – REG.

• We can use the pumping lemma for regular languages to

show that Diff< and Equal are not in REG.

Relationships among Complexity Classes

• Here is a short list of known results regarding the
aforementioned complexity classes.

• Collapse results
 1-DLIN = 1-NLIN = 1-BPLIN = REG

[Hennie65,Kobayashi85,Tadaki-Yamakami-Lin04]
 1-C=LIN = SL=

rat [Tadaki-Yamakami-Lin (2004)]
 1-PLIN = SLrat [Tadaki-Yamakami-Lin (2004)]

• Separation results
 1-C=LIN ≠ 1-PLIN [Turakainen (1969)]
 1-C=LIN ≠ co-1-C=LIN [Dieu (1971)]

Complexity Class PP

• We introduce a complexity class defined by probabilistic
Turing machines (or PTMs).

• A decision problem (or a language) L is in PP if there is a
probabilistic Turing machine M such that, for any input x,
1. x∈L → M accepts x with probability > 1/2,
2. x∉L → M rejects x with probability ≥ 1/2, and
3. M halts in polynomial time.

• When M satisfies Conditions 1-2, we say that M makes

unbounded-error probability.

Natural Problems in PP

• Complexity class PP contains the following problems.

• Majority Satisfiability Problem (Majority-SAT)
 instance: a Boolean formula ϕ
 question: YES if more than half of all assignments

make ϕ true; NO otherwise.

• E.g., ϕ ≡ (x1∨x2)∧(x1∨x3∨¬x4)∧(x2∨¬x3∨¬x4)

 question:

• (Claim) PP is closed under union, intersection, and
complementation. [Beigel-Reinold-Spielman (1991)]

{ } 4
1 2 3 4 1 2 3 4(, , ,) | (, , ,) 1 2 2 ?α α α α ϕ α α α α ≡ >

Complexity Class BPP

• A decision problem (or a language) L is in BPP if there
are a PTM M and a constant (an error bound) ε∈[0,1/2)
such that, for any input x,
1. x∈L → M accepts x with probability ≥ 1–ε,
2. x∉L → M rejects x with probability ≥ 1–ε, and
3. M halts in polynomial time.

• When M satisfies Conditions 1-2, we say that M makes
bounded-error probability.

• (Claim) P ⊆ BPP ⊆ PP.
• (Claim) P ⊆ NP ⊆ PP.

PP

NP
BPP

P

Many believe in this way

Zero-Error Probabilistic Computation

• Here, we consider a slightly different probabilistic model.
• We allow PTMs to reach three distinguished outcomes along

each computation path: “accept,” “reject,” and “don’t know.”
• The “don’t know” state is treated as a halting state but neither

accepting states nor rejecting states.

input x

accepted don’t know

input x
PTM M

probabilistic
computation

probabilistic
computation

or

don’t know rejected

Complexity Class ZPP

• A decision problem L is in ZPP if there are a PTM M and
a constant ε∈[0,1/2) such that, for any input x,
1. x∈L → M outputs either “accept” or “don’t know,”
2. x∉L → M outputs either “reject” or “don’t know,”
3. The probability of producing “don’t know” on each

input is at most 1/2, and
4. M terminates in polynomial time.

• When M satisfies Conditions 1-3, we say that M makes
zero-error probability.

• (Claim) P ⊆ ZPP ⊆ BPP.
• (Claim) ZPP ⊆ NP ∩ co-NP.

Other Well-Known Complexity Classes

• There are a number of complexity classes that are well-
known in use. Here is two of them.

• RP = one-sided version of PP
• co-RP = complement class of RP
• Note that ZPP = RP ∩ co-RP.

• For more complexity classes, see Complexity Zoo:
 https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Known Results

• There are numerous results known for probabilistic
complexity classes.

• (Claims)
1. If NP ⊆ BPP, then RP = NP. [Ko (1982)]
2. If NP ⊆ BPP, then PH ⊆ BPP. [Zachos (1988)]
3. BPP ⊆ Σ2

p ∩ Π2
p. [Sipser-Gacs (1983)]

4. BPPBPP = BPP. [Ko (1982), Zachos (1982)]
5. PPPH ⊆ BPPC=P ⊆ PPP. [Toda (1991)]

• (*) Relativizations and the polynomial hierarchy will be
discussed in Week 4.

Open Problems

• There are a number of problems that have not been
solved in the past literature.

• We list some of them below.

 Is P = BPP?
 Is NP ⊆ BPP?
 Is P = PP?
 Is BPP = PP?

• A certain number of researchers nowadays believe that

P = BPP, that is, the use of probabilistic computation
does not help.

PP

NP
BPP

P

Many believe in this way.

1. Complexity Class C=P
2. PP as a Counting Complexity Class
3. Simple Inclusion Relationships

V. Counting Complexity Classes

Complexity Class C=P

• A decision problem (or a language) L is in C=P if there
are an NTM M and a function f : Σ* → N in FP such that,
for any input x,
1. x∈L ↔ the number of accepting computation paths

of M on x is f(x), and
2. M halts in polynomial time.

• In other words, L = { x | #M(x) = f(x) }, where #M(x)
denotes the number of accepting computation paths of M
on input x.

• Surprisingly, it is possible to fix f as
 f(x) = #M(x)/2.

C=P co-C=P

P

Natural Problems in C=P

• Complexity class C=P was first defined by Wagner
(1986).

• This complexity class contains the following problems.

• Equality Satisfiability Problem (Equal-SAT)
 instance: a Boolean formula ϕ
 question: YES if exactly half of all assignments make

ϕ true; NO otherwise.

• E.g., ϕ ≡ ((x1∧x2)∨((¬x1∨x3)∨¬x4))∧(x2∨¬x3∨¬x4)
 question: { } 4

1 2 3 4 1 2 3 4(, , ,) | (, , ,) 1 2 2 ?α α α α ϕ α α α α ≡ =

PP as a Counting Complexity Class

• We have already seen the complexity class PP.
• This complexity class PP is also considered as a

counting complexity class.

• (Claim) P ⊆ C=P∩co-C=P.
• (Claim) C=P∪co-C=P ⊆ PP.
 [Simon (1975)] PP

C=P co-C=P

P

Many believe in this way.

Simple Inclusion Relationships

P

BPP C=P co-NP

PP

co-C=P NP

inclusion

• Here are class inclusions among the
aforementioned complexity classes.

Open Problems

• The following questions are not
yet answered.

 Is P = C=P or P = co-C=P?
 Is C=P∪co-C=P = PP?
 Is C=P = co-C=P?
 Is NP = C=P?
 Is P = BPP?
 Is NP ⊆ BPP?

PP

C=P co-C=P

P

PP

NP BPP

Many believe in this way.

Other Well-Known Complexity Classes

• There are a number of complexity classes that are well-
known for use and analysis.

• US, FewP, SPP, ⊕P
• IP, MIP, P-sel, AM, MA
• OptP

• For more complexity classes, see Complexity Zoo:
 https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Q & A
I’m happy to take your question!

 END

	2nd Week
	Course Schedule: 16 Weeks
	YouTube Videos
	Main References by T. Yamakami
	I. Basic Complexity Classes
	Complexity Measures
	Complexity Classes
	Complexity Class P
	Who Introduced Class P?
	Closure Properties of P
	Acceptance vs Rejection for NTMs (revisited)
	Complexity Class NP
	Natural NP Problems I
	Natural NP Problems II
	Another Formulation of NP
	Who Introduced Class NP?
	Complexity Class co-NP
	Relationships among P, NP, and co-NP
	The P = NP Problem
	Slide Number 20
	Open Problems
	II. NP-Complete Problems
	Polynomial-Time Many-One Reductions
	Slide Number 24
	Closure Properties of P and NP under pm
	NP-Complete Problems I
	NP-Complete Problems II
	Slide Number 28
	Formula Satisfiability
	Satisfiability Problem SAT
	Example: Satisfying Assignments
	SAT and 3SAT are NP-Complete
	How to Prove the NP-Completeness
	III. Kolmogorov Complexity
	Universal Turing Machines
	Kolmogorov Complexity
	Basic Properties
	Compressibility and Incompressibility
	IV. Probabilistic Complexity Classes
	2-Way Probabilistic Finite Automata
	Formal Definition of 2pfa’s
	Examples of 1pfa’s (one-way case)
	Probabilistic Computation
	Cut-Point Criteria
	Bounded-Error Criteria
	Probabilistic Language Families
	1-Way Probabilistic Pushdown Automata
	Probabilistic Transition Functions
	Formal Definition of 1ppda’s
	Probabilistic Language Families
	Basic Relationships
	Example Lkeq I
	Example Lkeq II
	Example Lkeq III
	Known Results
	Slide Number 56
	Complexity of Palindromes
	Open Problems
	Probabilistic 1-Tape Turing Machines
	Typical Examples
	Relationships among Complexity Classes
	Complexity Class PP
	Natural Problems in PP
	Complexity Class BPP
	Zero-Error Probabilistic Computation
	Complexity Class ZPP
	Other Well-Known Complexity Classes
	Known Results
	Open Problems
	V. Counting Complexity Classes
	Complexity Class C=P
	Natural Problems in C=P
	PP as a Counting Complexity Class
	Simple Inclusion Relationships
	Open Problems
	Other Well-Known Complexity Classes
	Slide Number 77
	Slide Number 78
	Slide Number 79

