
5th Week

Synopsis.
• Deterministic/Randomized Advice
• Dissectability and Separation
• Immunity and Simplicity
• Swapping Lemmas

Structural Properties by Finite
Automata

May 7, 2018. 23:59

Course Schedule: 16 Weeks

• Week 1: Basic Computation Models
• Week 2: NP-Completeness, Probabilistic and Counting Complexity Classes
• Week 3: Space Complexity and the Linear Space Hypothesis
• Week 4: Relativizations and Hierarchies
• Week 5: Structural Properties by Finite Automata
• Week 6: Stype-2 Computability, Multi-Valued Functions, and State Complexity
• Week 7: Cryptographic Concepts for Finite Automata
• Week 8: Constraint Satisfaction Problems
• Week 9: Combinatorial Optimization Problems
• Week 10: Average-Case Complexity
• Week 11: Basics of Quantum Information
• Week 12: BQP, NQP, Quantum NP, and Quantum Finite Automata
• Week 13: Quantum State Complexity and Advice
• Week 14: Quantum Cryptographic Systems
• Week 15: Quantum Interactive Proofs
• Week 16: Final Evaluation Day (no lecture)

Subject to Change

YouTube Videos

• This lecture series is based on numerous papers of T.
Yamakami. He gave conference talks (in English) and
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.

• Use the following keywords to find a playlist of those
videos.

• YouTube search keywords:
 Tomoyuki Yamakami conference invited talk playlist

Conference talk video

Main References by T. Yamakami

✎ T. Yamakami and T. Suzuki. Resource bounded immunity
and simplicity. Theor. Comput. Sci. 347(1-2), 90-129 (2005)

✎ T. Yamakami. Swapping lemmas for regular and context-free
languages. Preprint, arXiv:0808.4122 (2008)

✎ K. Tadaki, T. Yamakami, and J. C. H. Lin. Theory of one-tape
linear-time Turing machines. Theor. Comput. Sci. 411(1): 22-
43 (2010)

✎ T. Yamakami. The roles of advice to one-tape linear-time
Turing machines and finite automata. Int. J. Found. Comput.
Sci. 21(6): 941-962 (2010)

✎ T. Yamakami. Immunity and pseudorandomness of context-
free languages. Theor. Comput. Sci. 412(45): 6432-6450
(2011)

✎ T. Yamakami and Y. Kato. The dissecting power of regular
languages. Inf. Process. Lett. 113(4): 116-122 (2013)

1. Motivational Discussions
2. Advice to Finite Automata
3. Deterministic Advice
4. Advised Language Families
5. Power of Advice
6. Swapping Lemmas
7. Another Characterization of REG/n
8. separation Results
9. Relationships among Advised Classes

I. Roles of Advice for Finite Automata

Motivational Discussion I

• Context-free languages are one of the most fundamental
types of languages in formal language theory.

• How can we describe a “complicated” nature of
languages?

• E.g., consider two similar languages:
Leq = { 0n1n | n ≥ 0 }
Equal = { w ∈ {0,1}* | #0(w)=#1(w) }

• Both languages are in CFL but not in REG.
L3eq = { 0n1n2n | n ∈ N }
3Equal = { w ∈ {0,1,2}* | #0(w)=#1(w)=#2(w) }

• Both languages are in CFL(2) but not in CFL.

#b(w) = the number
of b in w

CFL(2) = { B1∩B2 | B1,B2,∈CFL }

Motivational Discussion II

• Recall the languages from the previous slide.

 Leq = { 0n1n | n ≥ 0 }

 Equal = { w ∈ {0,1}* | #0(w)=#1(w) }

 L3eq = { 0n1n2n | n ∈ N }

 3Equal = { w ∈ {0,1,2}* | #0(w)=#1(w)=#2(w) }

• Question: How different are the above languages?

• Time-complexity is not suitable to use for automata.

• Thus, we need to look for structural differences of
languages.

Model of Finite Automata (revisited)
• Firstly, let us recall a model of one-way (one-head)

finite automata.

¢ $ σ

q Head direction: one-way

End-marker End-marker An infinite read-only tape

M = (Q,Σ,δ,q0,F)
Q = set of inner states
Σ = input alphabet
δ : transition function
q0 : initial state
F = set of final
(accepting) states

Inner state ∈ Q

… ….......

L(M) = set of strings
accepted by M

CPU

Model of 1-Tape Turing Machines (revisited)

• Secondly, let us recall a model of one-way (one-
head) nondeterministic Turing machine.

¢ $ σ

q

two-way and/or stationary

M = (Q,Σ,Γ,δ,q0,Qacc,Qrej)

… ….

Q,q0 are the same
Σ = input alphabet
Γ = tape alphabet
Qacc∪Qrej: halting states
δ : transition function

L(M) = set of strings
accepted by M

An infinite input/work tape

Inner state ∈ Q CPU

(¢ and $ are removable)

1-Tape Linear-Time Complexity Classes

• In Week 1, we have defined the following notations.

• Machine
 1DTM = 1-tape deterministic Turing machine

• Complexity Class
 1-DLIN = class of all languages that are recognized by

1DTMs in linear time
• Function Class
 1-FLIN = class of all functions that are computed in

linear time by 1DTMs with no extra output tape

Advice of Karp and Lipton

• Advice is an external source of information.
• Advice is a way to enhance a computational power of an

underlying machine.
• We use advice of the style of Karp and Lipton (1990).

machine

input

advice

Advice depends only
on each input size.

Advice to Finite Automata

• In Week 3, we have already discussed the advice notion
of Karp and Lipton (1990) for Turing machines.

• Damm and Holzer (1995) considered a similar advice
notion, which is applied to finite automata.

• They provided advice strings next to standard input
strings.

• Tadaki, Yamakami, and Lin (2004) took a slightly
different way to provide advice to finite automata.

• Here, advice strings are given in parallel to input strings.

Track Notation for Advice I

• We use a track notation of [Tadaki-Yamakami-Lin (2004)].
• In these slides, we also write a track notation as [x y]T.

xi

wi

Each of them
is treated as a
new symbol.

xi

wi

¢ $
…..
…..

…..
…..

Upper track

Lower track

1 2

1 2

i n

i n

x xx xx
w ww ww

=

1 2

1 2

i n

i n

x x x x x
w w w w w
=
=

new symbol

if

When written on an input tape:

Track Notation for Advice II

• When |x|<|w|, the
notation [x w]T
means:

• When |x|>|w|, the
notation [x w]T
means:

x
¢ $

1 2

11 2

#i

i i n

xx xx
w w ww ww +

=

w

⋅⋅⋅ #

x
¢ $

1 2 1

1 2 # #
i i n

i

xx xx x x
ww ww

+
=

w # ⋅⋅⋅ #

• When |x|≠|w|, we pad extra #’s automatically.

Standard (Deterministic) Advice

• Input string x∈Σn over an input alphabet ∑

• Advice alphabet Γ
• Advice function h: N→Γ*

• NOTE: This scheme of providing advice strings is
computationally equivalent to Karp-Lipton’s original one
for, say, polynomial time-bounded computation.

x
¢ $

h(n)

⋅⋅⋅ #

Advice string h(n) is given in the lower
track of the tape when |x|<|h(n)|.

Examples of Advice

• We present a few examples of how to provide advice
strings in parallel to input strings.

¢ $
Upper track

Lower track

0 1 0 0 1 0 0 0 1
a b b a b a a b b

¢ $
Upper track

Lower track

c b a a c c a a c

a b b a b a a # #

Σ = { 0, 1 } (input alphabet) Γ = { a, b } (advice alphabet)

Σ = { a, b, c } (input alphabet) Γ = { a, b } (advice alphabet)

Advised Language Families

• Deterministic computation with standard advice
• Let L be any language over an alphabet Σ.

• L∈1-DLIN/lin
 ⇔ ∃M:linear-time 1DTM ∃Γ:advice alphabet ∃h:N→Γ*

1. ∀n∈N [|h(n)| = O(n)].
2. ∀x∈Σn [x∈L ↔ M accepts [x h(|x|)]T].

• L∈REG/n
 ⇔ ∃M:1dfa ∃Γ:advice alphabet ∃h:N→Γ*

1. ∀n∈N [|h(n)| = n].
2. ∀x∈Σn [x∈L ↔ M accepts [x h(|x|)]T].

• 1-C=LIN/lin, 1-PLIN/lin, and CFL/n are similarly defined
from 1-C=LIN, 1-PLIN, and CFL, respectively.

Power of Advice

• Let our advice function h be

2

0 10 if 2 1
()

if 2

m m

m

n m
h n

n m
 = +

=
=

x

h(n)
Input string
Advice string

u

0m

• Let our 1dfa be s.t.
accepts x iff [1 1]T exists.

• Consider the context-free language:
 Center = { u1v | |u|=|v|, u,v∈{0,1}*}.
• Fact: Center∉REG.
• However, we can claim that Center∈REG/n.

Γ = { 0, 1, # }
u v

#m #m

0m

x v 1

1 h(n)

x
h(n)

Non-Advice Case vs. Advice Case

• For instance, we want to show:
 Dup = { xx | x∈{0,1}* } ∉ REG/n.

 Proof: Assume that Dup∈REG/n. That is, ∃ M:1dfa
∃h:N→Γ* s.t. Dup = { z | M accepts [z h(|z|)]T }.

• Let us apply the pumping lemma for REGs. Choose a
long string w = [xx h(|xx|)]T and consider its
decomposition w = uyv s.t. ∀i [M accepts uyiv].

• However, this uyiv may be no longer of the form [z
h(|z|)]T. So, we cannot get any contradiction!

• Therefore, we need another type of useful lemma for
regular languages!

• That is the so-called swapping lemma for REGs.

Swapping Lemma for Regular Languages

• One of the useful properties of regular languages is a so-
called swapping lemma, shown by Yamakami
(2008,2010).

Swapping Lemma for REGs [Yamakami (2008,2010)]

If L is regular, then ∃m>0 s.t. ∀n∈N ∀S⊆L∩∑n (|S|≥m)
∀i∈[n] ∃xy,uv∈S (|x|=|u|=i) [xy≠uv & uy,xv∈L].

x y

u v

u y

x v

xy, uv ∈ S uy, xv ∈ L

swapping

(*) T. Yamakami. arXiv:0808.4122 (2008) & IJFCS 21 (2010)

i

How to Use the Swapping Lemma for REG?

• How can we use the swapping lemma?

• (Claim) Dup ∉ REG/n.

 Proof Sketch:
• Assume Dup∈REG/n. That is, ∃ M:1dfa ∃h:N→Γ* s.t.

Dup = { z | M accepts [z h(|z|)]T }. Let L = { [x h(|x|)]T | x
Dup }. Choose n’=2n and i=n.

• Let S = { [z h(|z|)]T | |z|=2n, M accepts [z h(|z|)]T } ⊆ L.
• By the swapping lemma, there are two different strings

xy = [aa h(2n)]T and uv = [bb h(2n)]T in S with |x|=|u|=n
s.t. M accepts xv and uy.

• We then obtain xv = [ab h(2n)]T and uy = [ba h(2n)]T.
• Since a≠b, this is impossible! Hence, Dup∉REG/n.

QED

Swapping Lemma for Context-Free Languages

Swapping Lemma for CFLs [Yamakami (2008,2016)]
If L is context-free, then ∃m>0 s.t.
∀n≥2 ∀S⊆L∩∑n ∀j0,k0 ∈[2,n-1]Z(k0≥2j0) ∀i∈[0,n]
∀j∈[j0,k0](i+j≤n)∀u∈∑j0 (|Si,u|<|S|/m(k0-j0+1)(n-j0+1))
∃x=x1x2x3,y=y1y2y3∈S (|x1|=|y1|=i)(|x2|=|y2|=j)(|x3|=|y3|)
[x2≠y2&x1y2x3,y1x2y3∈L].

x1 x3

x1x2x3, y1y2y3 ∈ S x1y2x3, y1x2y3 ∈ L

swapping

(*) T. Yamakami. arXiv:0808.4122 (2008) & TCS 613 (2016).

i

x2

j

y1 y3 y2

x1 x3 y2

y1 y3 x2

Equivalence Classes

• A (binary) relation R is a subset of a Cartesian product
of two sets A and B (i.e., R ⊆ A × B).

• For a set X, a relation on X is a subset of X × X.

• An equivalence relation ∼ on X is a (binary) relation
satisfying the following three conditions:
1. (reflexivity) x ∼ x for any x.
2. (symmetry) x ∼ y implies y ∼ x for any x,y.
3. (transitivity) x ∼ y and y ∼ z imply x ∼ z for any x,y,z.

• The equivalence class of x is [x] = { y | x ∼ y }.

• X/∼ is the set of all equivalence classes w.r.t. ∼ ;

 i.e., X/∼ = { [x] | x ∈ X }.

Another Characterization of REG/n

• The characteristic function of a language S is
 S(x) = 1 if x∈S, and S(x) =0 if x∉S.

• Theorem: [Yamakami (2010)]
For any language S over alphabet Σ, the following two
statements are equivalent. Let ∆={(x,n)|,x∈Σ*,n∈N,|x|≤n}.

1. S is in REG/n.
2. ∃ ≡: equivalence relation on ∆ s.t.

a) |∆/≡| is finite.
b) ∀n∈N ∀x,y∈Σ* (|x|=|y|≤n)
 (x,n)≡(y,n) ↔ ∀z∈Σ* [|xz|=n → S(xz) = S(yz)].

• NOTE: The swapping lemma follows from this theorem.

Separation Results I

• We will show two separation results.

• Proposition: [Yamakami (2010)]
 1-C=LIN ⊄ CFL/n.

 Proof Sketch:
• Let Σ6={a1,a2,…,a6,#} and consider the language

 Equal6 = { w∈Σ6*| #a(w)=#b(w) for ∀a,b∈Σ6 }.
• It is known that Equal6∉CFL/n by the swapping lemma

[Yamakami (2008)].
• It is easy to show that Equal6 ∈ 1-C=LIN.

 QED

Separation Results II

• Theorem: [Yamakami (2010)]
 CFL ⊄ 1-PLIN/lin.

 Proof Sketch:
• Let IP*={ xy | x,y∈{0,1}*,|x|=|y|,xR•y≡1 (mod 2) }, where x•y

is the (bitwise) binary inner product.
• It is known that IP*∈CFL.
• We exploit a certain special property of 1-PLIN/lin to show

that IP*∉1-PLIN/lin.

• We can prove the following as well.

• Theorem: [Yamakami (2010)]
 1-C=LIN/lin ≠ co-1-C=LIN/lin ≠ 1-PLIN/lin.

QED

Relationships among Advised Classes

1-DLIN/lin
= REG/n

1-BPLIN/Rlin
= REG/Rn

1-C=LIN/lin

1-PLIN/lin

1-C=LIN/Rlin = 1-PLIN/Rlin = ALL

co-1-C=LIN/lin

CFL/n

proper inclusion
no inclusion

CFL/Rn

• We summarize known class separations and
collapses among advised language families.

ALL = the family of all languages

1. What is Randomized Advice?
2. Notation for Random variables
3. Advised Language Families
4. Power of 1-C=LIN/Rlin and 1-PLIN/Rlin
5. Why 1-C=LIN/Rlin = ALL?
6. Power of REG/Rn
7. Limitation of REG/Rn

II. Randomized Advice

What is Randomized Advice?

• In randomized advice, all advice strings are chosen at
random according to a probability distribution.

• Let Γ be an advice alphabet.
• For each n, an advice probability distribution Dn over

Γt(n) generates advice strings y ∈Γt(n) with probability
Dn(y), where t(n) is a length function.

• Input string x∈Σn

x
¢ $

y

⋅⋅⋅ #

Advice string y is given in the lower
track of the tape in the case of |x|<t(n).

Dn generates y
with probability
Dn(y).

Notation for Random Variables

• Given a probability distribution Dn over Γt(n), we use the
following succinct notation.

• The notation [x Dn]T denotes a random variable of the
form [x y]T (where “T” indicates transpose) over all
strings y in Γt(n) according to Dn.

• In other words, we randomly pick y with prob. Dn(y) and
write it onto the input tape along with x to form [x y]T.

• NOTE: we should add extra #s as before when |y| ≠ |x|.

(): random variable over when | |t n

n

x
x n

D

Γ =

Advised Language Families I

• Let L be any language over an alphabet Σ.

• L∈REG/Rn
 ⇔ ∃M:1dfa ∃ε∈[0,½) ∃Γ ∃{Dn}n∈N :advice prob. dist.

1. ∀n∈N [Dn generates advice strings y∈Γn].
2. ∀x∈Σn [x∈L → M accepts [x Dn]T with probability ≥ 1-ε].
3. ∀x∈Σn [x∈L → M rejects [x Dn]T with probability ≥ 1-ε].

• CFL/Rn is defined similarly.

x
y1

x
yk

...... Dn generates
y1, ..., yk

x

M M

Advised Language Families II

• We also provide randomized advice to 1-tape linear-time
complexity classes.

• Let L be any language over an alphabet Σ.

• L∈1-BPLIN/Rlin
 ⇔ ∃M:linear-time 1PTM ∃ε∈[0,½) ∃Γ ∃{Dn}n∈N: dist.

1. ∀n∈N [Dn generates advice strings y∈ΓO(n)].
2. ∀x∈Σn [x∈L → M accepts [x Dn]T with prob. ≥ 1-ε].
3. ∀x∈Σn [x∈L → M rejects [x Dn]T with prob. ≥ 1-ε].

• 1-C=LIN/Rlin and 1-PLIN/Rlin are defined similarly by

supplementing randomized advice to underlying
machines associated with 1-C=LIN and 1-PLIN.

Example

• Consider a language: Dup = { xx | x∈{ 0,1 }* }.

• (Claim) Dup ∉ CFL.

• (Claim) Dup ∈ REG/Rn.

 Proof Sketch:

()
1 / 2 if 2 and
1 if 2 1 and #
0 otherwise.

m

n
n

n m w yy
D w n m w

 = =
= = + =

x z

y y

• Let our randomized advice
Dn be s.t.

• 1dfa works as:
1. Compute x•y and z•y.
2. Accept xz if x•y ≡2 z•y.

• We run this procedure twice independently to reduce the
error probability to ¼.

Dn

w

Power of 1-C=LIN/Rlin and 1-PLIN/Rlin

• We show another result that shows the power of
randomized advice when applied to 1-C=LIN and 1-PLIN.

• Proposition: [Yamakami (2010)]
 1-C=LIN/Rlin = 1-PLIN/Rlin = ALL.

• In other words, the advised language family 1-C=LIN/Rlin

(as well as 1-PLIN/Rlin) consists of all possible
languages.

• In the next slide, we will give a proof sketch.

Why 1-C=LIN/Rlin = ALL?

 Proof Sketch:
• Let L be any language over Σ. For simplicity, assume L∩Σn

≠ Σn. Let our randomized advice Dn be

• Let our 1PTM M work as:
 if x=y, then reject x; and
 if x≠y, then accept/reject with equal probability ½.
• It is easy to check that x∈L ↔ Prob[M([x Dn]T) = 1]=1/2.
• We conclude that L∈1-C=LIN/Rlin.

x

y
Input string

Dn generates

QED

1 if ,
()

 0 if .

n
n

n
n

y L
LD y

y L

 ∈Σ − Σ −=
 ∈ ∩Σ

This means that M accepts
[x Dn]T probabilistically.

Power of REG/Rn

• Yamakami (2010) showed the following class
separations with regard to REG/Rn.

• Lemma: 1-BPLIN/Rlin = REG/Rn.

• Proposition: DCFL∩REG/Rn ⊄ REG/n.

• Proposition: REG/Rn∩1-C=LIN/lin ⊄ CFL/n.

• Theorem: REG/Rn ⊄1C=LIN/lin∪co1-C=LIN/lin.

Limitation of REG/Rn

• REG/Rn seems quite large but there is also a clear
limitation in its recognition power.

• Theorem: [Yamakami (2010)]
 CFL⊄REG/Rn.

 Proof Idea:
• We use REG/n-pseudorandomness and average-case

complexity class Aver-REG/n.
• The proof relies on the fact that, for any language L in

REG/Rn, a distributional problem (A,µ) belongs to Aver-
REG/n for any probability distribution µ.

QED

Relationships among Advised Classes (again)

1-DLIN/lin
= REG/n

1-BPLIN/Rlin
= REG/Rn

1-C=LIN/lin

1-PLIN/lin

1-C=LIN/Rlin = 1-PLIN/Rlin = ALL

co-1-C=LIN/lin

CFL/n

proper inclusion
no inclusion

CFL/Rn

• We summarize known class separations and
collapses among advised language families.

ALL = the family of all languages

1. Structural Properties
2. “Infinite” Notation
3. CFL(k), CFLk, and CFLBH

4. A New Notion of Dissectability
5. P-Dissectability
6. Constantly Growing Languages
7. Non-REG-Dissectable Languages
8. Bounded Languages

III. Dissectability

Structural Properties

• We are interested in “structural” properties of languages.
• In the past literature, several structural properties have

been discussed for regular and context-free languages.

• Examples:
i. Boolean closure properties [1960s]
ii. Semi-linearity [Parikh (1961)]
iii. Minimal cover [Domaratzki et al. (2002)]
iv. Pseudorandomness [Yamakami (2011)]
 (We will discuss pseudorandomness in Week 6.)

“Infinite” Notations
• Our target is “formal languages,” which are countable

sets.
• Here, we ignore “finite” portions of infinite sets.
• For this purpose, we want to simplify notations.

• A: countable set
 |A| < ∞ ⇔ A is a finite set
 |A| = ∞ ⇔ A is an infinite set

• A,B: infinite countable sets
 A ⊆ae B ⇔ |A − B| < ∞
 A =ae B ⇔ A ⊆ae B and B ⊆ae A
 ⇔ |(A − B)∪(B − A)| < ∞

finite

A

B

a.e. = almost
everywhere

CFL(k), CFLk, and CFLBH (revisited)

• We review several language families discussed in Week 4.
 REG = set of all regular languages
 CFL = set of all context-free languages
 co-CFL = set of all complements of sets in CFL
 CFL(k) = k-disjunctive closure, i.e.,

 CFL(k) = { L1∩L2∩…∩Lk | L1,L2,…,Lk ∈ CFL }
 CFLk is defined inductively as follows:

 CFL1 = CFL
 CFL2k = { A∩B | A ∈ CFL2k-1, B ∈ CFL }
 CFL2k+1 = { A∪B | A ∈ CFL2k, B ∈ CFL }

 CFLBH = ∪k≥1CFLk (Boolean hierarchy over CFL)
 (In Week 4, CFLBH is written as BHCFL.)

A New Notion of Dissectability

• Yamakami and Kato (2013) introduced a notion of
“dissectability.”

• “Dissecting” means that we can partition an infinite set
into two infinite disjoint subsets.

• A language C is said to dissect an infinite language S if

C S∩ = ∞

C S C S∩ = ∩ = ∞

C

C
C S∩ = ∞

*Σ

S Σ = alphabet

Quick Examples

• Recall that C dissects S if

• Let us see two simple examples.
1. Consider a non-regular language
 S1 = { anbn | n ≥ 0 }.
 The set C1 = { x ∈ { a,b }* | |x| ≡ 0

(mod 4) } dissects S1.

2. Consider a non-context-free
language

 S2 = { ww | w ∈ { 0,1 }* }.
 The set C2 = { 0x | x ∈ { 0,1 }* }

dissects S2.

C S C S∩ = ∩ = ∞

0 1 2 3

C1 S1

0x’s 1x’s

C2

S2

Dissectability for Language Families

• Let F be an arbitrary family of languages.
• We define “F-dissectability” as follows.

• An infinite language S is called F-dissectable if there
exists a language C in F that dissects S.

• A language family C is F-dissectable if there exists an F-
dissectable language in C.

• The choice of F is quite important.
• Here, we are particularly interested in the case of F =

REG (regular languages).
• In the following slide, we will explain why F = REG is a

better choice, rather than, say, F = P.

P-Dissectability I

• Complexity class P may not be the best choice for F.
• The following claim explains this statement.

• Theorem: [Yamakami-Kato (2013)]
 Every infinite recursive language is P-dissectable.

 Proof Sketch:
• Let L be any infinite language recognized in polynomial

time by a DTM M.
• For simplicity, assume that Σ = { 0,1 }.
• If L =ae Σ*, the language C = { 0x | x ∈ Σ* } dissects L.
• Next, assume that L ≠ae Σ*.
• Let z0,z1,z2,... be a standard lexicographic enumeration

of all strings in Σ* = { λ, 0, 1, 00, 01, ... }.

P-Dissectability II

• For each string x, we determine whether x ∈ C (or its
Boolean value C(x)) by running the following procedure.

1. Initially, we set A = R = ∅ and i = 0.
2. At round i, we first recover the value C(zi) by running

this entire procedure on the input zi.
3. Next, simulate M on the input zi within |x| steps.
4. If M(zi) = 1, then

a) update A to A ∪ { i } if C(zi) = 1, and
b) update R to R ∪ { i } if C(zi) = 0.

5. If not, then do nothing.
6. After round |x|, if |A| > |R|, then define the value C(x) =

0; otherwise, define C(x) = 1. Finish the procedure.
7. Increment i by 1 and go to Step 2.

P-Dissectability III

• The previous procedure takes only polynomial time in
the length |x| of the input string x.

• By a simple diagonalization argument, we can show that

• This implies that C dissects L.
• Since C ∈ P, L is P-dissectable.

• Therefore, “P-dissectability” is not quite exciting to study.
• We then focus our attention on REG-dissectability.

C L C L∩ = ∩ = ∞

QED

Constantly Growing Languages I

• Let us consider languages composed of certain strings
whose lengths are not quite far apart.

• A nonempty language L is constantly growing if there are
a constant p > 0 and a finite subset K ⊆ N+ that satisfies
the following length condition:
 for every string x ∈ L with |x| > p, there exist a string y

∈ L and a constant c ∈ K for which |x| = |y| + c.

L

y

x
|x| = |y| + c

Σ*

Constantly Growing Languages II

• Proposition: [Yamakami-Kato (2013)]
Every infinite constantly-growing language is REG-
dissectable.

 Proof Sketch:
• Let L be any infinite constantly-growing language with a

constant p and a finite set K.
• Assume that K = { c1,c2,...,cm } ⊆ N+ (increasing order).
• Define Li = { x ∈ L | |x| ≡ i (mod (cm+1)) } for i = 1,2,...,cm.
• It is not difficult to prove that there are at least two

distinct indices i1,i2 ∈ [cm] such that |Li1|=|Li2|=∞.
• Consider the language C = { x | |x| ≡ i1 (mod (cm+1)) }.
• This set C is regular and it clearly dissects L. QED

Context-Free Languages

• A typical example of REG-dissectable language is
context-free language.

• Theorem: [Yamakami-Kato (2013)]
 CFL is REG-dissectable.

 Proof Sketch:
• It is not difficult to show that every context-free language

is constantly growing.
• Since any infinite constantly-growing language is REG-

dissectable, the theorem immediately follows.

QED

Some Languages in co-CFL

• Let us consider languages in co-CFL.
• Take Fisher’s language (over alphabet Σ = { a,b })
 L = { (anb)n | n ≥ 0 },
 which belongs to co-CFL.

• Define a regular language
 C = { x ∈Σ* | #b(x) = even }.
• Since
 L = { (anb)n | n is even } ∪ { (anb)n | n is odd },
 it follows that

• (Open Problem) Is co-CFL REG-dissectable?

C L

C L C L∩ = ∩ = ∞

Non-REG-Dissectable Languages

• Recall the space complexity class L from Week 3.
• In fact, there are non-REG-dissectable languages in L.

• Theorem: [Yamakami-Kato (2013)]
 The complexity class L is not REG-dissectable.

 Proof Sketch:
• Consider the language S = { 0n! | n ≥ 0 } over the unary

alphabet { 0 }.
• It suffices to show the following two statements.

1. S is in L.
2. S cannot be dissected by any regular language.

QED

Bounded Languages

• Next, we consider special languages, called bounded
languages. [Ginsburg-Spanier (1966)]

• A language L is called bounded if there is a finite set of
strings t1,t2,...,tk such that L ⊆ t1*t2*...tk*.

• Examples:
 { aibicj | i,j ≥ 1 } ⇐ t1 = a1, t2 = b, t3 = c
 { (ab)i(ca)2i(acb)3i+1 | i ≥ 1 } ⇐ t1 = ab, t2 = ca, t3 = acb

x = t1t1...t1 t2t2...t2 tktk...tk

i1 times i2 times ik times

t3t3...t3

i3 times

Examples: BCFL(k)

• Recall that CFL(k) is the k-disjunctive closure of CFL.
• Here, we further consider bounded languages.

• BCFL(k) = set of all bounded languages in CFL(k)

• Theorem: [Yamakami-Kato (2013)]
 For any index k ≥ 1, BCFL(k) is REG-dissectable.

 Proof Idea:
• Use Ginsburg’s (1966) characterization of bounded

context-free languages in terms of semi-linear sets.
• Since semi-linear sets are constantly-growing, we apply

an argument on constantly-growing languages.
QED

Semi-linear languages
are defined by finite sets
of linear equations.

Examples: BCFLk

• Recall that CFLk is the k-th level of the Boolean
hierarchy over CFL.

• Moreover, we have defined CFLBH = ∪k≥1CFLk.

• Here, we further consider bounded languages.

• BCFLk = set of all bounded languages in CFLk

• BCFLBH = ∪k≥1BCFLk (Boolean hierarchy over BCFL)

• Theorem: [Yamakami-Kato (2013)]
 BCFLBH is REG-dissectable.

Open Problems

• Concerning the notion of REG-dissectability, there are
numerous open problems.

• The following is a short list of important open problems.

1. Is co-CFL REG-dissectable?
2. Is CFL(k) REG-dissectable?
3. Is CFLk REG-dissectable?
4. Prove or disprove the REG-dissectability of Σk

CFL.

1. Separation with Infinite Margins
2. Dissectability Implies i-Seperation
3. BCFLk and i-Separation

IV. Separation with Infinite Margins

Separation with Infinite Margins I

• Let us take a quick look at an
easy application of the REG-
dissectability to other structural
properties.

• Let A,B be any infinite
languages.

• A covers B with an infinite
margin (A is an i-cover of B, or A
i-covers B) if B ⊆ A and A ≠ae B.

• The notation (B,A) means that A
i-covers B.

AB

(B,A)
*Σ

an infinite
margin

A i-covers B

Separation with Infinite Margins II

• Let A,B,C be any infinite
languages.

• C separates (B,A) with infinite
margins (or C i-separates (B,A)) if
B ⊆ C ⊆ A, A ≠aeC, and B ≠aeC.

• Let C,D be any language families.
• Let (D,C) = { (B,A) | B∈D, A∈C }.

• E i-separates (D,C) if, for every
pair (B,A) ∈ (D,C), there is a set
E ∈ E that i-separates (B,A).

C

C i-separates (B,A)

AB

*Σ

an infinite
margin

Dissectability Implies i-separation

• Let C,D be any language families.

• Theorem: [Yamakami-Kato (2013)]
Assume that C – D is REG-dissectable. Define E = {
B∪(A∩C) | A ∈ C, B ∈ D, C ∈ REG }. Then, E i-separates
(D,C).

 Proof Sketch:
• Let A ∈ C, B ∈ D, and D = A – B. Assume that D is

infinite.
• Take a language C∈REG that dissects D.
• Define E = B∪(A∩C), which belongs to E.
• Since C dissects D, we have |(A∩C)–B|=|(A–C)–B|=∞.
• Hence, B ⊆ E ⊆ A and |A – E| = |E – B| = ∞ hold.
• Therefore, E i-separates (B,A). QED

BCFLk and i-Separation

• As a consequence, we are able to prove the following
theorem concerning bounded languages.

• Theorem: [Yamakami-Kato (2013)]
 BCFLk i-separates (BCFLk,BCFLk) for every k≥1.

 Proof Sketch:
• It suffices to prove that BCFLk – BCFLk is REG-

dissectable, because this helps us conclude that BCFLk
i-separates (BCFLk,BCFLk) as seen before.

• The REG-dissectability of BCFLk – BCFLk can be proven
by induction on k.

QED

Open Problems

• We have just discussed the notion of i-separation.

• The following is a list of important open problems.
 Does CFL i-separate (CFL,CFL)?
 Does CFLk i-separate (CFLk,CFLk) for every k≥1?

1. C-Immunity
2. Historical Background
3. Examples of REG- & CFL-Immune Languages
4. C-Simplicity
5. Examples of C-Simple Languages
6. REG-Bi-Immune Languages
7. Examples of REG-Bi-Immune Languages
8. Σp

k-Immunity and Σp
k-Simplicity

V. Immunity and Simplicity

C-Immunity

• Flajolet and Steyaert (1974) first adapted the recursion-
theoretic notion of “immunity” into complexity theory.

• Let C be any nonempty language family.

• A language L is C-immune ⇔
1. L is infinite, and
2. no infinite subset A of L exists in C.

• A language family D is C-immune ⇔
 D contains a C-immune language.

• (Claim) C cannot be C-immune by the definition.
• (Open Question) Is NP P-immune?

A∈C

L: infinite

A: finite

Historical Background

• Flajolet and Steyaert (1974) showed:

 Leq = { 0n1n | n ∈ N } is REG-immune.

 L3eq = { 0n1n2n | n ∈ N } is CFL-immune.

• The notion of immunity structurally differentiates the above
two languages.

• In the next slide, we will give the proof of the above claim.

• But, similar languages below are not even REG-immune.

Equal = { w ∈ {0,1}* | #0(w)=#1(w) }

 3Equal = { w ∈ {0,1,2}* | #0(w)=#1(w)=#2(w) }

 Because {(01)n | n ∈ N } ⊆ Equal {(012)n | n ∈ N } ⊆
3Equal.

Proof Idea for “Leq: REG-Immune”
• (Claim) [Flajolet-Steyaert (1974)]
 Leq = { 0n1n | n ≥ 0 } is REG-immune.

 Proof Sketch:
• We prove this claim by contradiction.
• Assume that there is an infinite subset A of L in REG.
• Take a pumping constant m > 0 (of the pumping lemma).
• Choose a string 0n1n in A with n ≥ m (because A is infinite).
• Let xyz = 0n1n be a decomposition with |y| > 0.
• By the pumping lemma for REG, xykz is in A for any k ≥ 0.
• However, clearly xykz does not belong to Leq.
• This is a contradiction. QED

Examples of REG-Immune Languages

• Proposition: [Yamakami (2013)]
 DCFL ∩ REG/n is REG-immune

 Proof Idea: Because Leq is in both DCFL ∩ REG/n.

• Proposition: [Yamakami (2010)]
 DCFL – REG/n is REG-immune

 Proof Idea: Because
Pal# = { w#wR | w ∈ {0,1}* } is REG-immune, and
Pal# is in DCFL – REG/n.

• In comparison, Pal = { wwR | w ∈ {0,1}* } is not REG-
immune because L = { 0n0n | n ≥ 0 } ⊆ Pal and L ∈ REG.

Examples of Immune Languages II

• Proposition: [Yamakami (2011)]
 CFL(2) ∩ REG/n is CFL-immune

 Proof Idea: Because L3eq is in CFL(2) ∩ REG/n.

• Proposition: [Yamakami (2011)]
 L – CFL/n is CFL-immune

 Proof Idea: Because
3Dup# = { w#w#w | w ∈ {0,1}* } is CFL-immune, and
3Dup# is in L – CFL/n.

• The last result was improved by Suzuki (2016) to:
• CFL(2) – CFL/n is CFL-immune.

(*) T. Suzuki. IAENG Int. J. Appl. Math. 46, 2016.

C-Simplicity

• There is another important notion related to immunity.
• Let C be any language family.

• A language L is C-simple ⇔

1) L is infinite,
2) L is in C, and
3) Lc is C-immune.

• (Claim) If a C-simple language exists, then C ≠ co-C.

• (Open Question) Is there any NP-simple language?

L∈C

Σ*

C-immune

Lc

infinite

Examples of CFL-Simple Languages

• Consider the following languages (k ≥ 3).
 Lkeq = { a1

na2
n...ak

n | n ∈ N } (extensions of Leq)
 (Lkeq)c is CFL-simple.
 Lkeq is in CFL(2) ∩ REG/n.
 NOTE: Unfortunately, (Lkeq)c is not REG-immune.

• Theorem: [Yamakami (2011)]
There exists a CFL-simple language L.
Moreover, some Lc is in CFL(2) ∩ REG/n.

• (Open Question) Is there any REG-immune CFL-simple
language?

C-Bi-Immunity

• A language L is C-bi-immune ⇔
 L and Lc are both C-immune.

• A language family D is C-bi-immune ⇔
 D contains a C-bi-immune language.

• (Claim) EXP is P-bi-immune. [Schöning (1983)]

 Proof Idea:
• The desired language was constructed by

diagonalization.

L

Σ*

C-immune

Lc

C-immune

• C-bi-immunity is another
extension of C-immunity.

Examples of REG-Bi-Immune Languages

• Theorem: [Yamakami (2011)]
 L ∩ REG/n is REG-bi-immune.

 Proof Sketch:
• Consider the following two languages.
 Leven = {w∈{0,1}*|∃k[2k<loglog|w| ≤2k+1]} ∪{λ}∪{0,1}2

 Lodd = {w∈{0,1}*|∃k[2k+1<loglog|w| ≤2k+2]} ∪ {0,1}

• We can show that (1) Leven ∪ Lodd = {0,1}*, (2) Leven ∩
Lodd = ∅, and (3) Leven and Lodd are both REG-immune.

• Moreover, Leven and Lodd are in L ∩ REG/n.
QED

Σp
k-Immunity and Σp

k-Simplicity

• Without detailed explanation, we describe some of the
results obtained by Yamakami and Suzuki (2005).

1. Let k≥1. No Σp
k-simple set is h-∆p

k-d-complete for Σp
k.

2. A strongly NPG-simple set exists relative to a Cohen-
Feferman generic oracle G.

3. Let k≥1. All Σp
k-generic sets are honestly Σp

k-
hyperimmune.

4. Let k≥1. No Σp
k-hypersimple set is P-T-complete for Σp

k.
5. Let k≥1. No Σp

k-simple set is ∆p
k-1tt-complete for Σp

k if
U(Σp

k ∩ Πp
k) ⊄ SUB∆EXP

k.
6. If the k-immune hypothesis is true, then there exists an

NP-simple set.

Open Problems

• We have just discussed the notion of i-separation.

• The following is a list of important open problems.

• Open Problems:
 Is CFL REG-bi-immune?
 Is CFL−REG/n REG-bi-immune?
 Is there any REG-immune CFL-simple set?
 Does an NP-simple language exist?

Q & A
I’m happy to take your question!

 END

	5th Week
	Course Schedule: 16 Weeks
	YouTube Videos
	Main References by T. Yamakami
	I. Roles of Advice for Finite Automata
	Motivational Discussion I
	Motivational Discussion II
	Model of Finite Automata (revisited)
	Model of 1-Tape Turing Machines (revisited)
	1-Tape Linear-Time Complexity Classes
	Advice of Karp and Lipton
	Advice to Finite Automata
	Track Notation for Advice I
	Track Notation for Advice II
	Standard (Deterministic) Advice
	Examples of Advice
	Advised Language Families
	Power of Advice
	Non-Advice Case vs. Advice Case
	Swapping Lemma for Regular Languages
	How to Use the Swapping Lemma for REG?
	Swapping Lemma for Context-Free Languages
	Equivalence Classes
	Another Characterization of REG/n
	Separation Results I
	Separation Results II
	Relationships among Advised Classes
	II. Randomized Advice
	What is Randomized Advice?
	Notation for Random Variables
	Advised Language Families I
	Advised Language Families II
	Example
	Power of 1-C=LIN/Rlin and 1-PLIN/Rlin
	Why 1-C=LIN/Rlin = ALL?
	Power of REG/Rn
	Limitation of REG/Rn
	Relationships among Advised Classes (again)
	III. Dissectability
	Structural Properties
	“Infinite” Notations
	CFL(k), CFLk, and CFLBH (revisited)
	A New Notion of Dissectability
	Quick Examples
	Dissectability for Language Families
	P-Dissectability I
	P-Dissectability II
	P-Dissectability III
	Constantly Growing Languages I
	Constantly Growing Languages II
	Context-Free Languages
	Some Languages in co-CFL
	Non-REG-Dissectable Languages
	Bounded Languages
	Examples: BCFL(k)
	Examples: BCFLk
	Open Problems
	IV. Separation with Infinite Margins
	Separation with Infinite Margins I
	Separation with Infinite Margins II
	Dissectability Implies i-separation
	BCFLk and i-Separation
	Open Problems
	V. Immunity and Simplicity
	C-Immunity
	Historical Background
	Proof Idea for “Leq: REG-Immune”
	Examples of REG-Immune Languages
	Examples of Immune Languages II
	C-Simplicity
	Examples of CFL-Simple Languages
	C-Bi-Immunity
	Examples of REG-Bi-Immune Languages
	pk-Immunity and pk-Simplicity
	Open Problems
	Slide Number 76
	Slide Number 77
	Slide Number 78

