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YouTube Videos 

• This lecture series is based on numerous papers of T. 
Yamakami. He gave conference talks (in English) and 
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.  

• Use the following keywords to find a playlist of those 
videos.  

• YouTube search keywords: 
    Tomoyuki Yamakami  conference  invited talk playlist 
 

Conference talk video 
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Motivational Discussion I 

• Context-free languages are one of the most fundamental 
types of languages in formal language theory. 

• How can we describe a “complicated” nature of 
languages? 

• E.g., consider two similar languages: 
Leq = { 0n1n | n ≥ 0 } 
Equal = { w ∈ {0,1}* | #0(w)=#1(w) } 

• Both languages are in CFL but not in REG. 
L3eq = { 0n1n2n | n ∈ N } 
3Equal = { w ∈ {0,1,2}* | #0(w)=#1(w)=#2(w) } 

• Both languages are in CFL(2) but not in CFL. 

#b(w) = the number 
of b in w 

CFL(2) = { B1∩B2 |  B1,B2,∈CFL } 



Motivational Discussion II 

• Recall the languages from the previous slide.  

 Leq = { 0n1n | n ≥ 0 } 

 Equal = { w ∈ {0,1}* | #0(w)=#1(w) } 

 L3eq = { 0n1n2n | n ∈ N } 

 3Equal = { w ∈ {0,1,2}* | #0(w)=#1(w)=#2(w) } 

• Question: How different are the above languages? 

• Time-complexity is not suitable to use for automata. 

• Thus, we need to look for structural differences of 
languages. 



Model of Finite Automata (revisited) 
• Firstly, let us recall a model of one-way (one-head) 

finite automata. 

¢ $ σ 

q Head direction: one-way 

End-marker End-marker An infinite read-only tape 

M = (Q,Σ,δ,q0,F) 
Q = set of inner states 
Σ = input alphabet 
δ : transition function 
q0 : initial state 
F = set of final 
(accepting) states 

Inner state ∈ Q 

… …....... 

L(M) = set of strings    
accepted by M 

CPU 



Model of 1-Tape Turing Machines (revisited) 

• Secondly, let us recall a model of one-way (one-
head) nondeterministic Turing machine. 

¢ $ σ 

q 

two-way and/or stationary 

M = (Q,Σ,Γ,δ,q0,Qacc,Qrej) 

… …. 

Q,q0 are the same 
Σ = input alphabet 
Γ = tape alphabet 
Qacc∪Qrej: halting states 
δ : transition function 

L(M) = set of strings    
accepted by M 

An infinite input/work tape 

Inner state ∈ Q CPU 

(¢ and $ are removable) 



1-Tape Linear-Time Complexity Classes  

• In Week 1, we have defined the following notations. 
 

• Machine 
 1DTM = 1-tape deterministic Turing machine 

• Complexity Class 
 1-DLIN = class of all languages that are recognized by 

1DTMs in linear time 
• Function Class 
 1-FLIN = class of all functions that are computed in 

linear time by 1DTMs with no extra output tape 
 



Advice of Karp and Lipton 

• Advice is an external source of information. 
• Advice is a way to enhance a computational power of an 

underlying machine.  
• We use advice of the style of Karp and Lipton (1990). 

machine 

input 

advice 

Advice depends only 
on each input size. 



Advice to Finite Automata 

• In Week 3, we have already discussed the advice notion 
of Karp and Lipton (1990) for Turing machines. 
 

• Damm and Holzer (1995) considered a similar advice 
notion, which is applied to finite automata.  

• They provided advice strings next to standard input 
strings.  
 

• Tadaki, Yamakami, and Lin (2004) took a slightly 
different way to provide advice to finite automata. 

• Here, advice strings are given in parallel to input strings. 
 



Track Notation for Advice  I 

• We use a track notation of  [Tadaki-Yamakami-Lin (2004)].  
• In these slides, we also write a track notation as [x y]T. 

xi 

wi 

Each of them 
is treated as a  
new symbol. 

xi 

wi 

¢ $ 
….. 
….. 

….. 
….. 

Upper track 

Lower track 

1 2

1 2

i n

i n

x xx xx
w ww ww
       

=        
         

 

1 2

1 2

i n

i n

x x x x x
w w w w w
=
=

 

 

new symbol 

if 

When written on an input tape: 



Track Notation for Advice  II 

• When |x|<|w|, the 
notation [x w]T 
means:   

 
 
 

• When |x|>|w|, the 
notation [x w]T 
means:   
 

x 
¢ $ 

1 2

11 2

# #i

i i n

xx xx
w w ww ww +

         
=          

           
 

w 

#  ⋅⋅⋅  # 

x 
¢ $ 

1 2 1

1 2 # #
i i n

i

xx xx x x
ww ww

+         
=          

          
 

w #  ⋅⋅⋅  # 

• When |x|≠|w|, we pad extra #’s automatically. 



Standard (Deterministic) Advice 

• Input string  x∈Σn over an input alphabet ∑ 

• Advice alphabet  Γ 
• Advice function  h: N→Γ* 

 
 
 
 
 

• NOTE: This scheme of providing advice strings is 
computationally equivalent to Karp-Lipton’s original one 
for, say, polynomial time-bounded computation. 

x 
¢ $ 

h(n) 

#  ⋅⋅⋅  # 

Advice string h(n) is given in the lower 
track of the tape when |x|<|h(n)|. 



Examples of Advice 

• We present a few examples of how to provide advice 
strings in parallel to input strings. 

¢ $ 
Upper track 

Lower track 

0 1 0 0 1 0 0 0 1 
a b b a b a a b b 

¢ $ 
Upper track 

Lower track 

c b a a c c a a c  

a b b a b a a # # 

Σ = { 0, 1 } (input alphabet)   Γ = { a, b } (advice alphabet) 

Σ = { a, b, c } (input alphabet)   Γ = { a, b } (advice alphabet) 



Advised Language Families 

• Deterministic computation with standard advice 
• Let L be any language over an alphabet Σ.  

• L∈1-DLIN/lin 
       ⇔ ∃M:linear-time 1DTM  ∃Γ:advice alphabet  ∃h:N→Γ*  

1. ∀n∈N [ |h(n)| = O(n) ]. 
2. ∀x∈Σn [ x∈L ↔ M accepts [x h(|x|)]T ]. 

• L∈REG/n 
       ⇔ ∃M:1dfa  ∃Γ:advice alphabet  ∃h:N→Γ*  

1. ∀n∈N [ |h(n)| = n ]. 
2. ∀x∈Σn [ x∈L ↔ M accepts [x h(|x|)]T ]. 

• 1-C=LIN/lin, 1-PLIN/lin, and CFL/n are similarly defined 
from 1-C=LIN, 1-PLIN, and CFL, respectively. 



Power of Advice 

• Let our advice function h be 

2

0 10     if  2 1
( )

#    if 2

m m

m

n m
h n

n m
 = +

= 
=

x 

h(n) 
Input string 
Advice string 

u 

0m  

• Let our 1dfa be s.t.  
accepts x iff [1 1]T exists. 

• Consider the context-free language:  
               Center = { u1v | |u|=|v|, u,v∈{0,1}*}. 
• Fact: Center∉REG. 
• However, we can claim that Center∈REG/n. 

Γ = { 0, 1, # } 
u     v 

#m   #m 

0m 

x v 1 

1 h(n) 

x 
h(n) 



Non-Advice Case vs. Advice Case 

• For instance, we want to show: 
             Dup = { xx | x∈{0,1}* } ∉ REG/n. 

 Proof:  Assume that Dup∈REG/n. That is, ∃ M:1dfa 
∃h:N→Γ* s.t. Dup = { z | M accepts [z h(|z|)]T }. 

• Let us apply the pumping lemma for REGs. Choose a 
long string w = [xx h(|xx|)]T and consider its 
decomposition w = uyv s.t.  ∀i [ M accepts uyiv ].  

• However, this uyiv may be no longer of the form [z 
h(|z|)]T. So, we cannot get any contradiction! 

• Therefore, we need another type of useful lemma for 
regular languages! 

• That is the so-called swapping lemma for REGs. 



Swapping Lemma for Regular Languages 

• One of the useful properties of regular languages is a so-
called swapping lemma, shown by Yamakami 
(2008,2010).  

Swapping Lemma for REGs  [Yamakami (2008,2010)] 

If L is regular, then ∃m>0 s.t. ∀n∈N ∀S⊆L∩∑n (|S|≥m) 
∀i∈[n] ∃xy,uv∈S (|x|=|u|=i) [ xy≠uv & uy,xv∈L ].  

 

x y 

u v 

u y 

x v 

xy, uv ∈ S uy, xv ∈ L 

swapping 

(*) T. Yamakami. arXiv:0808.4122 (2008) & IJFCS 21 (2010) 

i 



How to Use the Swapping Lemma for REG? 

• How can we use the swapping lemma? 

• (Claim)  Dup ∉ REG/n. 

 Proof Sketch:   
• Assume Dup∈REG/n. That is, ∃ M:1dfa ∃h:N→Γ* s.t. 

Dup = { z | M accepts [z h(|z|)]T }. Let L = { [x h(|x|)]T | x 
Dup }. Choose n’=2n and i=n.  

• Let S = { [z h(|z|)]T | |z|=2n, M accepts [z h(|z|)]T } ⊆ L.  
• By the swapping lemma, there are two different strings 

xy = [aa h(2n)]T and uv = [bb h(2n)]T in S with |x|=|u|=n 
s.t. M accepts xv and uy.  

• We then obtain xv = [ab h(2n)]T and uy = [ba h(2n)]T. 
• Since a≠b, this is impossible!  Hence, Dup∉REG/n. 

QED 



Swapping Lemma for Context-Free Languages 

Swapping Lemma for CFLs   [Yamakami (2008,2016)]  
If L is context-free, then ∃m>0 s.t.  
∀n≥2 ∀S⊆L∩∑n ∀j0,k0 ∈[2,n-1]Z(k0≥2j0) ∀i∈[0,n] 
∀j∈[j0,k0](i+j≤n)∀u∈∑j0  ( |Si,u|<|S|/m(k0-j0+1)(n-j0+1) ) 
∃x=x1x2x3,y=y1y2y3∈S ( |x1|=|y1|=i )( |x2|=|y2|=j )( |x3|=|y3| ) 
[ x2≠y2&x1y2x3,y1x2y3∈L ].  
 

x1 x3 

x1x2x3, y1y2y3 ∈ S x1y2x3, y1x2y3 ∈ L 

swapping 

(*) T. Yamakami. arXiv:0808.4122 (2008) & TCS 613 (2016). 

i 

x2 

j 

y1 y3 y2 

x1 x3 y2 

y1 y3 x2 



Equivalence Classes 

• A (binary) relation R is a subset of a Cartesian product 
of two sets A and B (i.e., R ⊆ A × B). 

• For a set X, a relation on X is a subset of  X × X.  

• An equivalence relation ∼ on X is a (binary) relation 
satisfying the following three conditions: 
1. (reflexivity)  x ∼ x for any x. 
2. (symmetry)  x ∼ y implies y ∼ x for any x,y. 
3. (transitivity)  x ∼ y and y ∼ z imply x ∼ z for any x,y,z. 

• The equivalence class of x is [x] = { y | x ∼ y }. 

• X/∼  is the set of all equivalence classes w.r.t. ∼ ;  

     i.e., X/∼ = { [x] | x ∈ X }. 



Another Characterization of REG/n 

• The characteristic function of a language S is  
            S(x) = 1 if  x∈S,   and   S(x) =0  if  x∉S. 

• Theorem:  [Yamakami (2010)] 
For any language S over alphabet Σ, the following two 
statements are equivalent. Let ∆={(x,n)|,x∈Σ*,n∈N,|x|≤n}.  

1. S is in REG/n. 
2. ∃ ≡: equivalence relation on ∆ s.t. 

a) |∆/≡| is finite. 
b) ∀n∈N ∀x,y∈Σ* (|x|=|y|≤n)  
        (x,n)≡(y,n) ↔ ∀z∈Σ* [|xz|=n → S(xz) = S(yz)]. 

• NOTE: The swapping lemma follows from this theorem. 



Separation Results  I 

• We will show two separation results. 
 

• Proposition: [Yamakami (2010)] 
    1-C=LIN ⊄ CFL/n. 

 
 Proof Sketch:  
• Let Σ6={a1,a2,…,a6,#} and consider the language 

       Equal6 = { w∈Σ6*| #a(w)=#b(w) for ∀a,b∈Σ6 }.  
• It is known that Equal6∉CFL/n by the swapping lemma 

[Yamakami (2008)].  
• It is easy to show that Equal6 ∈ 1-C=LIN.  

 QED 



Separation Results  II 

• Theorem:  [Yamakami (2010)] 
    CFL ⊄ 1-PLIN/lin. 

 Proof Sketch: 
• Let IP*={ xy | x,y∈{0,1}*,|x|=|y|,xR•y≡1 (mod 2) }, where x•y 

is the (bitwise) binary inner product.  
• It is known that IP*∈CFL.  
• We exploit a certain special property of 1-PLIN/lin to show 

that IP*∉1-PLIN/lin. 

• We can prove the following as well. 

• Theorem:  [Yamakami (2010)] 
    1-C=LIN/lin ≠ co-1-C=LIN/lin ≠ 1-PLIN/lin. 

QED 



Relationships among Advised Classes 

1-DLIN/lin 
= REG/n 

1-BPLIN/Rlin 
= REG/Rn 

1-C=LIN/lin 

1-PLIN/lin 

1-C=LIN/Rlin = 1-PLIN/Rlin = ALL  

co-1-C=LIN/lin 

CFL/n 

proper inclusion 
no inclusion 

CFL/Rn 

• We summarize known class separations and 
collapses among advised language families.  

ALL = the family of all languages 
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What is Randomized Advice? 

• In randomized advice, all advice strings are chosen at 
random according to a probability distribution. 

• Let  Γ be an advice alphabet.  
• For each n,  an advice probability distribution  Dn over 

Γt(n) generates advice strings y ∈Γt(n) with probability 
Dn(y), where t(n) is a length function. 
 

• Input string  x∈Σn 
 

x 
¢ $ 

y 

#  ⋅⋅⋅  # 

Advice string y is given in the lower 
track of the tape in the case of |x|<t(n). 

Dn generates y 
with probability 
Dn(y). 



Notation for Random Variables 

• Given a probability distribution Dn over Γt(n), we use the 
following succinct notation.  

• The notation [x  Dn]T denotes a random variable of the 
form [x y]T (where “T” indicates transpose) over all 
strings y in Γt(n)  according to Dn.  
 
 
 

• In other words, we randomly pick y with prob. Dn(y) and 
write it onto the input tape along with x to form [x y]T. 

• NOTE: we should add extra #s as before when |y| ≠ |x|. 

( ):  random variable over  when | |t n

n

x
x n

D
 

Γ = 
 



Advised Language Families  I 

• Let L be any language over an alphabet Σ.  

• L∈REG/Rn 
       ⇔ ∃M:1dfa  ∃ε∈[0,½) ∃Γ ∃{Dn}n∈N :advice prob. dist.  

1. ∀n∈N [ Dn generates advice strings y∈Γn ]. 
2. ∀x∈Σn [ x∈L → M accepts [x Dn]T with probability ≥ 1-ε ].  
3. ∀x∈Σn [ x∈L → M rejects [x Dn]T with probability ≥ 1-ε ]. 

• CFL/Rn  is defined similarly.  

x 
y1 

x 
yk 

...... Dn generates 
y1, ..., yk 

x 

M M 



Advised Language Families  II 

• We also provide randomized advice to 1-tape linear-time 
complexity classes.  

• Let L be any language over an alphabet Σ.  

• L∈1-BPLIN/Rlin 
       ⇔ ∃M:linear-time 1PTM ∃ε∈[0,½) ∃Γ ∃{Dn}n∈N: dist.  

1. ∀n∈N [ Dn generates advice strings y∈ΓO(n) ]. 
2. ∀x∈Σn [ x∈L → M accepts [x Dn]T with prob. ≥ 1-ε ]. 
3. ∀x∈Σn [ x∈L → M rejects [x Dn]T with prob. ≥ 1-ε ]. 

 
• 1-C=LIN/Rlin  and 1-PLIN/Rlin are defined similarly by 

supplementing randomized advice to underlying 
machines associated with 1-C=LIN and 1-PLIN.  



Example 

• Consider a language:  Dup = { xx | x∈{ 0,1 }* }. 

• (Claim)  Dup ∉ CFL. 

• (Claim)  Dup ∈ REG/Rn. 

 Proof Sketch: 
 
 

( )
1 / 2   if  2  and           
1         if  2 1 and #       
0        otherwise.                             

m

n
n

n m w yy
D w n m w

 = =
= = + =



x z 

y y 

• Let our randomized advice 
Dn be s.t. 

• 1dfa works as: 
1. Compute x•y and z•y. 
2. Accept xz if x•y ≡2 z•y. 

• We run this procedure twice independently to reduce the 
error probability to ¼. 

Dn 

w 



Power of 1-C=LIN/Rlin and 1-PLIN/Rlin 

• We show another result that shows the power of 
randomized advice when applied to 1-C=LIN and 1-PLIN. 
 

• Proposition:  [Yamakami (2010)]  
    1-C=LIN/Rlin = 1-PLIN/Rlin = ALL. 

 
• In other words, the advised language family 1-C=LIN/Rlin 

(as well as 1-PLIN/Rlin) consists of all possible 
languages.  
 

• In the next slide, we will give a proof sketch. 
 



Why 1-C=LIN/Rlin = ALL? 

 Proof Sketch:  
• Let L be any language over Σ. For simplicity, assume L∩Σn 

≠ Σn. Let our randomized advice Dn be  
                 
 
     
• Let our 1PTM M work as:     
           if x=y, then reject x; and 
           if x≠y, then accept/reject with equal probability ½.  
• It is easy to check that  x∈L ↔ Prob[ M([x Dn]T) = 1 ]=1/2. 
• We conclude that L∈1-C=LIN/Rlin.      

x 

y 
Input string 

Dn generates 

QED 

1   if  ,
( )

 0            if  .

n
n

n
n

y L
LD y

y L

 ∈Σ − Σ −= 
 ∈ ∩Σ

This means that M accepts 
[x Dn]T probabilistically. 



Power of REG/Rn 

• Yamakami (2010) showed the following class 
separations with regard to REG/Rn. 
 

• Lemma: 1-BPLIN/Rlin = REG/Rn. 
 

• Proposition: DCFL∩REG/Rn ⊄ REG/n. 
 

• Proposition: REG/Rn∩1-C=LIN/lin ⊄ CFL/n. 
 

• Theorem: REG/Rn ⊄1C=LIN/lin∪co1-C=LIN/lin. 
 



Limitation of REG/Rn 

• REG/Rn seems quite large but there is also a clear 
limitation in its recognition power. 
 

• Theorem:  [Yamakami (2010)] 
    CFL⊄REG/Rn. 

 Proof Idea:  
• We use REG/n-pseudorandomness and average-case 

complexity class Aver-REG/n.  
• The proof relies on the fact that, for any language L in 

REG/Rn, a distributional problem (A,µ) belongs to Aver-
REG/n for any probability distribution µ. 

QED 



Relationships among Advised Classes (again) 

1-DLIN/lin 
= REG/n 

1-BPLIN/Rlin 
= REG/Rn 

1-C=LIN/lin 

1-PLIN/lin 

1-C=LIN/Rlin = 1-PLIN/Rlin = ALL  

co-1-C=LIN/lin 

CFL/n 

proper inclusion 
no inclusion 

CFL/Rn 

• We summarize known class separations and 
collapses among advised language families.  

ALL = the family of all languages 
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Structural Properties 

• We are interested in “structural” properties of languages. 
• In the past literature, several structural properties have 

been discussed for regular and context-free languages. 
 

• Examples: 
i. Boolean closure properties [1960s] 
ii. Semi-linearity [Parikh (1961)] 
iii. Minimal cover [Domaratzki et al. (2002)] 
iv. Pseudorandomness [Yamakami (2011)] 
   (We will discuss pseudorandomness in Week 6.) 



“Infinite” Notations 
• Our target is “formal languages,” which are countable 

sets. 
• Here, we ignore “finite” portions of infinite sets.  
• For this purpose, we want to simplify notations. 

• A: countable set 
 |A| < ∞ ⇔ A is a finite set 
 |A| = ∞ ⇔ A is an infinite set 

• A,B: infinite countable sets 
 A ⊆ae B ⇔ |A − B| < ∞ 
 A =ae B ⇔ A ⊆ae B and B ⊆ae A  
                 ⇔ |(A − B)∪(B − A)| < ∞  

finite 

A 

B 

a.e. = almost 
everywhere 



CFL(k), CFLk, and CFLBH  (revisited) 

• We review several language families discussed in Week 4. 
 REG = set of all regular languages 
 CFL = set of all context-free languages 
 co-CFL = set of all complements of sets in CFL 
 CFL(k) = k-disjunctive closure, i.e.,   

 CFL(k) = { L1∩L2∩…∩Lk | L1,L2,…,Lk ∈ CFL } 
 CFLk is defined inductively as follows: 

 CFL1 = CFL 
 CFL2k = { A∩B | A ∈ CFL2k-1, B ∈ CFL }   
 CFL2k+1 = { A∪B | A ∈ CFL2k, B ∈ CFL }   

 CFLBH = ∪k≥1CFLk   (Boolean hierarchy over CFL) 
     (In Week 4, CFLBH is written as BHCFL.) 



A New Notion of Dissectability 

• Yamakami and Kato (2013) introduced a notion of 
“dissectability.” 

• “Dissecting” means that we can partition an infinite set 
into two infinite disjoint subsets. 

• A language C is said to dissect an infinite language S if  

C S∩ = ∞

C S C S∩ = ∩ = ∞

C

C
C S∩ = ∞

*Σ

S Σ = alphabet 



Quick Examples 

• Recall that C dissects S if  

• Let us see two simple examples. 
1. Consider a non-regular language  
            S1 = { anbn | n ≥ 0 }. 
     The set C1 = { x ∈ { a,b }* | |x| ≡ 0 

(mod 4) } dissects S1. 

2. Consider a non-context-free 
language 

           S2 = { ww | w ∈ { 0,1 }* }.  
     The set  C2 = { 0x | x ∈ { 0,1 }* } 

dissects S2.  

C S C S∩ = ∩ = ∞

0 1 2 3 

C1 S1 

0x’s 1x’s 

C2 

S2 



Dissectability for Language Families 

• Let F be an arbitrary family of languages. 
• We define “F-dissectability” as follows. 

• An infinite language S is called F-dissectable if there 
exists a language C in F that dissects S.  

• A language family C is F-dissectable if there exists an F-
dissectable language in C. 

• The choice of F is quite important. 
• Here, we are particularly interested in the case of F = 

REG (regular languages). 
• In the following slide, we will explain why F = REG is a 

better choice, rather than, say, F = P. 



P-Dissectability I 

• Complexity class P may not be the best choice for F. 
• The following claim explains this statement.  

• Theorem:  [Yamakami-Kato (2013)] 
    Every infinite recursive language is P-dissectable. 

 Proof Sketch:  
• Let L be any infinite language recognized in polynomial 

time by a DTM M. 
• For simplicity, assume that Σ = { 0,1 }. 
• If L =ae Σ*, the language C = { 0x | x ∈ Σ* } dissects L. 
• Next, assume that L ≠ae Σ*. 
• Let z0,z1,z2,... be a standard lexicographic enumeration 

of all strings in Σ* = { λ, 0, 1, 00, 01, ... }. 



P-Dissectability II 

• For each string x, we determine whether x ∈ C (or its 
Boolean value C(x)) by running the following procedure.  

1. Initially, we set A = R = ∅ and i = 0. 
2. At round i, we first recover the value C(zi) by running 

this entire procedure on the input zi. 
3. Next, simulate M on the input zi within |x| steps. 
4. If M(zi) = 1, then 

a) update A to A ∪ { i } if C(zi) = 1, and  
b) update R to R ∪ { i } if C(zi) = 0.   

5. If not, then do nothing. 
6. After round |x|, if |A| > |R|, then define the value C(x) = 

0; otherwise, define C(x) = 1. Finish the procedure. 
7. Increment i by 1 and go to Step 2. 



P-Dissectability III 

• The previous procedure takes only polynomial time in 
the length |x| of the input string x.  

• By a simple diagonalization argument, we can show that 

 
• This implies that C dissects L. 
• Since C ∈ P, L is P-dissectable. 

 
 

• Therefore, “P-dissectability” is not quite exciting to study. 
• We then focus our attention on REG-dissectability. 

 

C L C L∩ = ∩ = ∞

QED 



Constantly Growing Languages I 

• Let us consider languages composed of certain strings 
whose lengths are not quite far apart.  

• A nonempty language L is constantly growing if there are 
a constant p > 0 and a finite subset K ⊆ N+ that satisfies 
the following length condition: 
 for every string x ∈ L with |x| > p, there exist a string y 

∈ L and a constant c ∈ K for which |x| = |y| + c. 

L 

y 

x 
|x| = |y| + c 

Σ* 



Constantly Growing Languages II 

• Proposition:  [Yamakami-Kato (2013)] 
Every infinite constantly-growing language is REG-
dissectable. 

 Proof Sketch: 
• Let L be any infinite constantly-growing language with a 

constant p and a finite set K.  
• Assume that K = { c1,c2,...,cm } ⊆ N+ (increasing order). 
• Define Li = { x ∈ L | |x| ≡ i (mod (cm+1)) } for i = 1,2,...,cm. 
• It is not difficult to prove that there are at least two 

distinct indices i1,i2 ∈ [cm] such that |Li1|=|Li2|=∞.  
• Consider the language C = { x | |x| ≡ i1 (mod (cm+1)) }. 
• This set C is regular and it clearly dissects L. QED 



Context-Free Languages 

• A typical example of REG-dissectable language is 
context-free language. 
 

• Theorem:  [Yamakami-Kato (2013)] 
     CFL is REG-dissectable. 

 Proof Sketch:  
• It is not difficult to show that every context-free language 

is constantly growing.  
• Since any infinite constantly-growing language is REG-

dissectable, the theorem immediately follows.  

QED 



Some Languages in co-CFL 

• Let us consider languages in co-CFL. 
• Take Fisher’s language  (over alphabet Σ = { a,b }) 
             L = { (anb)n | n ≥ 0 }, 
    which belongs to co-CFL. 

 
• Define a regular language  
       C = { x ∈Σ* | #b(x) = even }. 
• Since  
            L = { (anb)n | n is even } ∪ { (anb)n | n is odd }, 
    it follows that  

• (Open Problem)  Is co-CFL REG-dissectable? 

C L 

C L C L∩ = ∩ = ∞



Non-REG-Dissectable Languages 

• Recall the space complexity class L from Week 3. 
• In fact, there are non-REG-dissectable languages in L. 

• Theorem:  [Yamakami-Kato (2013)] 
    The complexity class L is not REG-dissectable. 

 Proof Sketch:  
• Consider the language S = { 0n! | n ≥ 0 } over the unary 

alphabet { 0 }. 
• It suffices to show the following two statements. 

1. S is in L. 
2. S cannot be dissected by any regular language. 

QED 



Bounded Languages 

• Next, we consider special languages, called bounded 
languages. [Ginsburg-Spanier (1966)] 

• A language L is called bounded if there is a finite set of 
strings t1,t2,...,tk such that L ⊆ t1*t2*...tk*.   

 

 

 

• Examples: 
 { aibicj | i,j ≥ 1 }     ⇐   t1 = a1, t2 = b, t3 = c 
 { (ab)i(ca)2i(acb)3i+1 | i ≥ 1 }  ⇐  t1 = ab, t2 = ca, t3 = acb 

 

x = t1t1...t1 t2t2...t2 tktk...tk 

i1 times i2 times ik times 

t3t3...t3 

i3 times 



Examples: BCFL(k) 

• Recall that CFL(k) is the k-disjunctive closure of CFL. 
• Here, we further consider bounded languages. 

• BCFL(k) = set of all bounded languages in CFL(k) 
 

• Theorem:   [Yamakami-Kato (2013)]  
     For any index k ≥ 1, BCFL(k) is REG-dissectable.   

 Proof Idea:  
• Use Ginsburg’s (1966) characterization of bounded 

context-free languages in terms of semi-linear sets. 
• Since semi-linear sets are constantly-growing, we apply 

an argument on constantly-growing languages. 
QED 

Semi-linear languages 
are defined by finite sets 
of linear equations. 



Examples: BCFLk 

• Recall that CFLk is the k-th level of the Boolean 
hierarchy over CFL. 

• Moreover, we have defined CFLBH = ∪k≥1CFLk. 
 

• Here, we further consider bounded languages. 

• BCFLk = set of all bounded languages in CFLk 

• BCFLBH = ∪k≥1BCFLk (Boolean hierarchy over BCFL) 
 

• Theorem: [Yamakami-Kato (2013)] 
     BCFLBH is REG-dissectable. 

 



Open Problems 

• Concerning the notion of REG-dissectability, there are 
numerous open problems. 
 

• The following is a short list of important open problems. 

1. Is co-CFL REG-dissectable? 
2. Is CFL(k) REG-dissectable? 
3. Is CFLk REG-dissectable? 
4. Prove or disprove the REG-dissectability of Σk

CFL. 



1. Separation with Infinite Margins 
2. Dissectability Implies i-Seperation 
3. BCFLk and i-Separation 

IV. Separation with Infinite Margins 



Separation with Infinite Margins I 

• Let us take a quick look at an 
easy application of the REG-
dissectability to other structural 
properties.  
 

• Let A,B be any infinite 
languages.    

• A covers B with an infinite 
margin (A is an i-cover of B, or A 
i-covers B) if B ⊆ A and A ≠ae B. 

• The notation (B,A) means that A 
i-covers B.  

AB

(B,A) 
*Σ

an infinite 
margin 

A i-covers B 



Separation with Infinite Margins II 

• Let A,B,C be any infinite 
languages.    

• C separates (B,A) with infinite 
margins (or C i-separates (B,A)) if 
B ⊆ C ⊆ A, A ≠aeC, and B ≠aeC. 

• Let C,D be any language families. 
• Let (D,C) = { (B,A) | B∈D, A∈C }. 

• E i-separates (D,C) if, for every 
pair (B,A) ∈ (D,C), there is a set 
E ∈ E that i-separates (B,A).  

C

C i-separates (B,A) 

AB

*Σ

an infinite 
margin 



Dissectability Implies i-separation 

• Let C,D be any language families. 

• Theorem:  [Yamakami-Kato (2013)] 
Assume that C – D is REG-dissectable.  Define E = { 
B∪(A∩C) | A ∈ C, B ∈ D, C ∈ REG }. Then, E i-separates 
(D,C). 

 Proof Sketch:  
• Let A ∈ C, B ∈ D, and D = A – B. Assume that D is 

infinite. 
• Take a language C∈REG that dissects D. 
• Define E = B∪(A∩C), which belongs to E. 
• Since C dissects D, we have |(A∩C)–B|=|(A–C)–B|=∞. 
• Hence, B ⊆ E ⊆ A and |A – E| = |E – B| = ∞ hold. 
• Therefore, E i-separates (B,A). QED 



BCFLk and i-Separation 

• As a consequence, we are able to prove the following 
theorem concerning bounded languages.  
 

• Theorem:  [Yamakami-Kato (2013)] 
     BCFLk i-separates (BCFLk,BCFLk) for every k≥1. 

 Proof Sketch: 
• It suffices to prove that BCFLk – BCFLk is REG-

dissectable, because this helps us conclude that BCFLk 
i-separates (BCFLk,BCFLk) as seen before. 

• The REG-dissectability of BCFLk – BCFLk can be proven 
by induction on k. 

QED 



Open Problems 

• We have just discussed the notion of i-separation.  
 

• The following is a list of important open problems. 
 Does CFL i-separate (CFL,CFL)? 
 Does CFLk i-separate (CFLk,CFLk) for every k≥1? 
 



1. C-Immunity 
2. Historical Background 
3. Examples of REG- & CFL-Immune Languages 
4. C-Simplicity 
5. Examples of C-Simple Languages 
6. REG-Bi-Immune Languages 
7. Examples of REG-Bi-Immune Languages 
8. Σp

k-Immunity and Σp
k-Simplicity 

V. Immunity and Simplicity 



C-Immunity 

• Flajolet and Steyaert (1974) first adapted the recursion-
theoretic notion of “immunity” into complexity theory. 

• Let C be any nonempty language family. 

• A language L is C-immune  ⇔ 
1. L is infinite, and  
2. no infinite subset A of L exists in C.    

• A language family D is C-immune  ⇔ 
 D contains a C-immune language. 

 
• (Claim)  C cannot be C-immune by the definition. 
• (Open Question)  Is NP P-immune?  

A∈C 

L: infinite 

A: finite 



Historical Background 

• Flajolet and Steyaert (1974) showed: 

 Leq = { 0n1n | n ∈ N } is REG-immune. 

 L3eq = { 0n1n2n | n ∈ N } is CFL-immune. 

• The notion of immunity structurally differentiates the above 
two  languages.  

• In the next slide, we will give the proof of the above claim. 

• But, similar languages below are not even REG-immune. 

Equal = { w ∈ {0,1}* | #0(w)=#1(w) }  

 3Equal = { w ∈ {0,1,2}* | #0(w)=#1(w)=#2(w) } 

 Because   {(01)n | n ∈ N } ⊆ Equal   {(012)n | n ∈ N } ⊆  
3Equal. 



Proof Idea for “Leq: REG-Immune” 
• (Claim)   [Flajolet-Steyaert (1974)]  
    Leq = { 0n1n | n ≥ 0 }  is REG-immune. 
 
 Proof Sketch:  
• We prove this claim by contradiction. 
• Assume that there is an infinite subset A of L in REG. 
• Take a pumping constant m > 0 (of the pumping lemma). 
• Choose a string 0n1n in A with n ≥ m (because A is infinite). 
• Let xyz = 0n1n be a decomposition with |y| > 0. 
• By the pumping lemma for REG, xykz is in A for any k ≥ 0. 
• However, clearly xykz does not belong to Leq. 
• This is a contradiction.  QED 



Examples of REG-Immune Languages 

• Proposition:  [Yamakami (2013)] 
    DCFL ∩ REG/n is REG-immune  

 Proof Idea:  Because Leq is in both DCFL ∩ REG/n. 
 

• Proposition:  [Yamakami (2010)]  
    DCFL – REG/n is REG-immune  

 Proof Idea: Because  
Pal# = { w#wR | w ∈ {0,1}* } is REG-immune, and  
Pal# is in DCFL – REG/n.  

• In comparison,  Pal = { wwR | w ∈ {0,1}* } is not REG-
immune because L = { 0n0n | n ≥ 0 } ⊆ Pal and L ∈ REG. 



Examples of Immune Languages  II 

• Proposition:  [Yamakami (2011)] 
    CFL(2) ∩ REG/n is CFL-immune  

 Proof Idea:   Because L3eq is in CFL(2) ∩ REG/n.  

• Proposition:  [Yamakami (2011)] 
    L – CFL/n is CFL-immune 

 Proof Idea:  Because 
3Dup# = { w#w#w |  w ∈ {0,1}* } is CFL-immune, and  
3Dup# is in L – CFL/n. 

• The last result was improved by Suzuki (2016) to:  
• CFL(2) – CFL/n  is CFL-immune. 

(*) T. Suzuki. IAENG Int. J. Appl. Math. 46, 2016. 



C-Simplicity 

• There is another important notion related to immunity. 
• Let C be any language family. 

 
• A language L is C-simple  ⇔ 

1) L is infinite,   
2) L is in C, and  
3) Lc is C-immune.    
 

• (Claim) If a C-simple language exists, then C ≠ co-C. 

• (Open Question)  Is there any NP-simple language? 
 

L∈C 

Σ* 

C-immune 

Lc 

infinite 



Examples of CFL-Simple Languages 

• Consider the following languages (k ≥ 3). 
 Lkeq = { a1

na2
n...ak

n | n ∈ N }  (extensions of Leq) 
 (Lkeq)c is CFL-simple. 
 Lkeq is in CFL(2) ∩ REG/n. 
 NOTE: Unfortunately, (Lkeq)c is not REG-immune. 

• Theorem:   [Yamakami (2011)] 
There exists a CFL-simple language L. 
Moreover, some Lc is in CFL(2) ∩ REG/n. 

• (Open Question)  Is there any REG-immune CFL-simple 
language? 



C-Bi-Immunity 

• A language L is C-bi-immune  ⇔ 
 L and Lc are both C-immune. 

• A language family D is C-bi-immune  ⇔ 
 D contains a C-bi-immune language. 

• (Claim)  EXP is P-bi-immune. [Schöning (1983)] 

 Proof Idea: 
• The desired language was constructed by 

diagonalization. 

L 

Σ* 

C-immune 

Lc 

C-immune 

• C-bi-immunity is another 
extension of C-immunity. 



Examples of REG-Bi-Immune Languages 

• Theorem:  [Yamakami (2011)] 
    L ∩ REG/n is REG-bi-immune. 

 
 Proof Sketch: 
• Consider the following two languages. 
 Leven = {w∈{0,1}*|∃k[2k<loglog|w| ≤2k+1]} ∪{λ}∪{0,1}2 

 Lodd = {w∈{0,1}*|∃k[2k+1<loglog|w| ≤2k+2]} ∪ {0,1} 

• We can show that  (1) Leven ∪ Lodd = {0,1}*, (2) Leven ∩ 
Lodd = ∅, and (3) Leven and Lodd are both REG-immune. 

• Moreover, Leven and Lodd are in L ∩ REG/n. 
QED 



Σp
k-Immunity and Σp

k-Simplicity 

• Without detailed explanation, we describe some of the 
results obtained by Yamakami and Suzuki (2005). 

1. Let k≥1. No Σp
k-simple set is h-∆p

k-d-complete for Σp
k. 

2. A strongly NPG-simple set exists relative to a Cohen-
Feferman generic oracle G. 

3. Let k≥1. All Σp
k-generic sets are honestly Σp

k-
hyperimmune. 

4. Let k≥1. No Σp
k-hypersimple set is P-T-complete for Σp

k. 
5. Let k≥1. No Σp

k-simple set is ∆p
k-1tt-complete for Σp

k if 
U(Σp

k ∩ Πp
k) ⊄ SUB∆EXP

k. 
6. If the k-immune hypothesis is true, then there exists an 

NP-simple set.  



Open Problems 

• We have just discussed the notion of i-separation.  
 

• The following is a list of important open problems. 
 

• Open Problems: 
 Is CFL REG-bi-immune? 
 Is CFL−REG/n REG-bi-immune? 
 Is there any REG-immune CFL-simple set? 
 Does an NP-simple language exist? 
 





Q & A 
I’m happy to take your question! 



 
 

                                 END 
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