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YouTube Videos 

• This lecture series is based on numerous papers of T. 
Yamakami. He gave conference talks (in English) and 
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.  

• Use the following keywords to find a playlist of those 
videos.  

• YouTube search keywords: 
    Tomoyuki Yamakami  conference  invited talk playlist 
 

Conference talk video 
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I. Multi-Valued Partial Functions 



Multi-Valued Partial Functions 

• A (standard) function is designed to produce only one 
output value per each input.  

• We can allow a function to output more than one value 
simultaneously, or even allow it to output no value at all. 

• A total function is a standard function f such that, for any 
input x, its output f(x) always exists. 

• By contrast, a partial function means that, the outputs of the 
function are not guaranteed to exist for all inputs. 

• A multi-valued function is called single valued if, for any 
input x, the number of different output values in f(x) is ≤ 1.    

• When a function produces no output value on a certain 
input x, we treat f(x) to be undefined.    

• Generally, we call such a function a multi-valued partial 
function (where “partial” is meant for undefined values).  



Early Studies 

• Firstly, we consider how to compute such a function 
using 1npda. Those functions are called CFL functions. 

• CFL functions were first studied by Evey (1963) and 
Fisher (1963). 
 



Write-Only Output Tapes 
To compute a function, we need to equip a 1npda (also called 
a transducer) with an extra write-only output tape, along which 
its tape head moves rightward whenever it writes a non-blank 
symbol. 
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How to Produce Multi-Values 

• We explain how a 1npda produces outcomes of a multi-
valued partial function f. 

•  We say that a 1npda M computes a multi-valued partial 
function f: Σ1*→℘(Σ2*)  if M satisfies the following: 
1. for any x∈dom(f), M produces exactly all values in 

f(x) along accepting computation paths, and  
2. for any string x∈Σ1*-dom(f), M rejects the input x (in 

which all computation paths are rejecting).  

• Namely, a 1npda M with a write-only output tape can 
compute a multi-valued partial function  f : Σ1*→℘(Σ2*)  
defined by   

                         f(x) = { y | M(x) outputs y }. 



Valid (or Legitimate) Outputs 

• A 1npda produces valid outcomes only along accepting 
computation paths.  

input  x 

y1 y2 y3 y4 y5 

rejected accepted 

outputs 

input  x 

y1 y2 y3 y4 y5 

all rejected 

valid 
outputs 

npda M 

computation 
paths 

computation 
paths 

M(x) outputs { y4, y5 } M(x) outputs ∅ 



Formal Definition 

A 1npda M = (Q,Σ,{¢,$},Θ,Γ,δ,q0,Z0,Qacc,Qrej) with a write-only 
output tape is a standard 1npda plus a write-only output tape 
and a special transition function δ of the form: 

 
 
 

• Termination condition of M: 
• All computation paths (both accepting and rejecting) 

should terminate (reaching halting states)  within O(n) 
time. 

• ACCM(x) = set of accepting computation paths of M on x 

*: ( ) ( { }) ( ( { }))haltQ Q P Qδ λ λ− × Σ∪ ×Θ→ ×Γ × Γ∪


This is because all context-free languages 
are recognized by O(n)-time npda’s.  

Σ =


Σ ∪ { ₵, $ } Qhalt = QaccU Qrej 



Multi-Valued Partial CFL Functions 

♠  Function Classes 
• CFLMV = class of all multi-valued 

partial functions computed by 1npda’s  
• CFLSV = class of all single-valued 

partial functions in CFLMV 
• CFLSVt = class of all total functions in 

CFLSV 
• CFLMV(2) = class of all functions g 

defined as g(x)=f1(x) ∩ f2(x) for f1,f2 ∈ 
CFLMV 
 

• CFLMV, CFLSV, and CFLSVt are 
analogues of NPMV, NPSV, and NPSVt, 
respectively. 
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CFLSVt 

CFLSV 
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proper 

proper 

proper 
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Examples: PAL 

• Here, we take a look at two 
simple examples. 

• PAL(w) = { x | ∃u,v [ w = uxv ] ∧ 
x = xR }  for all w∈{ 0,1 }*.  

• I.e., PAL(w) outputs all possible 
palindrome blocks in w. 

• The right-hand side illustration 
shows how to compute PAL. 

• Thus, PAL is in CFLMVt.  (total 
function) 
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Examples: IP2 

• Let ⊙ be the binary inner 
product. 

• IP2(x) = { z | |x|=|z|, x⊙z ≡ 1 
(mod 2) }  for all x∈{ 0,1 }*.  

• This is different from the 
language IP2(x) = { xz | |x|=|z|, 
xR⊙z ≡ 1 (mod 2) }.  

• The right-hand side illustration 
shows how to compute IP2. 

• Thus, IP2 is in CFLMV  
(actually, in NFAMV). 

• See a later slide for NFAMV. 
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CFL∩co-CFL  vs. CFLSV 

• CFLSV is closely related to the language family 
CFL∩co-CFL. 
 

• Recall that  χA is the characteristic function of a language 
A. 
 

• Lemma:  [Yamakami (2016)] 
    Let A be any language.  
    A∈CFL∩co-CFL  ⇔  χA∈CFLSV 

• We can replace CFLSV by CFLSVt and CFLMV. 



Functional Pumping Lemma for CFLMV 

• Pumping Lemma for CFLMV:  [Yamakami (2014)] 
Let Σ and Γ be any alphabets and let f:Σ*→℘(Γ*) be any 
function in CFLMV. There exist 3 numbers m ∈ N+ and 
c,d ∈ N s.t. any w ∈Σ* with |w| ≥ m and any s ∈ f(w) are 
decomposed into w = uvxyz and s = abpqr s.t.  

(1) |uxy| ≤ m 
(2) |vybq| ≥ 1 
(3) |bq| ≤ cm+d and  
(4) abipqir ∈ f(uvixyiz). 

If f is further length-preserving, then 
(5) |v| = |b| and |y| = |q|. 

Moreover, (1)-(2) can be replaced by  
(1’) |bq| ≥ 1. 



Function Class NFAMV 

• Similarly to CFLMV, we define the function class NFAMV 
as follows. 
 

• Let f be any multi-valued partial function. 

• f is in NFAMV  ⇔  there is a 1nfa M equipped with a 
write-only output tape such that 
1. for every x∈dom(f), M produces all elements in f(x) 

along accepting computation paths, and 
2. for every x∉dom(f), M rejects the input x. 

 
• (Claim)  1-FLIN ⊆ NFAMV ⊆ CFLMV. 



Conjunction/Disjunction of Functions 
• We define conjunction/disjunction of function classes. 

 Conjunction of F and G 
• f1 ∈ F∧G 

           ⇔    ∃g1 ∈ F ∃g2 ∈ G  s.t. ∀x [ f1(x) = g1(x)∩g2(x) ] 
 Disjunction of F and G 

• f2 ∈ F∨G 
           ⇔    ∃g1 ∈ F ∃g2 ∈ G  s.t. ∀x [ f2(x) = g1(x)Ug2(x) ] 

 

x 

y1 y2 y3 w1 w2 

x 

z1 z2 z3 w1 w2 g1(x)= =g2(x) 

g1 g2 f1(x) 

f1 = g1 ∧ g2 

f1 = g1 ∨ g2 



Simple Examples of  f∨g and f∧g 

• Here, we present two simple examples. 

• Consider the following f and g. 
 f(x) = { anbn | n=|x| } 
 g(x) = {anb2n | n=|x| } 
 (f ∨ g)(x) = { anbn, anb2n | n=|x| } 

 
• Consider the following f and g. 
 f(x) = { anbncm | n=|x|, m≥0 } 
 g(x) = {ambncn | n=|x|, m≥0 } 
 (f ∧ g)(x) = { anbncn | n=|x| } 



Function Classes CFLMV(k) 

• We extend CFLMV using “conjunction” operator. 
1. CFLMV(1) = CFLMV 
2. CFLMV(k+1) = CFLMV(k) ∧ CFLMV 
3. CFLSV(k) = { f ∈ CFLMV(k) | f is single-valued }  
 

• Lemma:  [Yamakami (2014)]   
1) CFLMV(max{k,m}) ⊆ CFLMV(k)∨CFLMV(m) ⊆ 

CFLMV(km). 
2) CFLMV(max{k,m}) ⊆ CFLMV(k)∧CFLMV(m) ⊆ 

CFLMV(k+m). 
3) CFLSV(k) ≠ CFLSV(k+1)  for any k≥1. 



Difference/Complement of Functions 
• We define the difference/complement of function classes. 
 
 Difference between F and G 

• f ∈ F ⊖ G  ⇔   ∃g1 ∈ F ∃g2 ∈ G  s.t. ∀x [ f(x) = g1(x) − g2(x) ] 
 
 Complement of F 

• f ∈ co-F 
           ⇔  ∃g ∈ F ∃p: linear polynomial ∃n0: constant  s.t.  
                   ∀(x,y) with |x|≥n0 [ y∈f(x)  ↔  |y|≤p(|x|) ∧ y∈g(x) ] 

 
x 

y1 y2 y3 y4 y5 w1 g(x)= 

f(x) = Σ≤p(|x|)  - g(x)  

w2 w3 Σ≤p(|x|) 

set difference 



Boolean Operations 

• Using two operators ⊖ and co-, we define the following 
function classes. 
• co-CFLMV                    (complement) 

• CFLMV ⊖ CFLMV         (difference) 
• CFLMV ∧ co-CFLMV   (conjunction with complement) 

 
• Recall IP2(x) = { z | |x|=|z|, x⊙z ≡ 1 (mod 2) }  for all x∈{ 

0,1 }*.  
• Define IPc(x) = { z | |x|≥|z|, x⊙z0|x|-|z| ≡ 0 (mod 2) }  for 

any x. 
• It follows that IPc ∈ co-CFLMVt since IP2 ∈ CFLMVt and 

IPc(x) = Σ≤|x| − IP2(x) for any x. 



Basic Properties 

• The following basic properties hold.  
 
• Proposition:  [Yamakami (2014)] 

1. co-(co-CFLMV) = CFLMV 
2. co-CFLMV = NFAMV ⊖ CFLMV 
3. CFLMV ⊖ CFLMV = CFLMV ∧ co-CFLMV 
4. CFLMV ≠ co-CFLMV  
5. CFLMVt ≠ co-CFLMVt 
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Refinement of Functions 

• The notion of refinement is more useful than a standard 
set inclusion, because, e.g., CFLSVt ≠ CFLSV ≠ CFLMV 
holds.  

• Let f,g be any two functions from Σ* to ℘(Γ*).  

    g is a refinement of f  (notationally, f ⊑ref g ) 
       ⇔  ∀x∈Σ*  

1. f(x) ≠ ∅  ⇔  g(x) ≠ ∅ 
2. g(x) ⊆ f(x)   (as set inclusion). 

• For two function classes F and G,  
      F ⊑ref G  ⇔  ∀ f∈F ∃ g∈G [ f ⊑ref g ] 
• NOTE:  F ⊆ G  ⇒ F ⊑ref G. 

Refinement is 
also known as 
uniformization. 



Example: maxPAL 

• Let us see an example of refinement. 

• Recall  PAL(w) = { x | ∃u,v [ w = uxv ] ∧ x = xR }. 

• For each w∈{ 0,1 }*, we define  

          maxPAL(w) = maximum element in PAL(w), 

      where “maximum” is according to a dictionary order.  

• maxPAL is a single-valued total function. 

• (Claim)  PAL ⊑ref maxPAL   (PAL is refined by maxPAL) 

 Proof:  This is because  dom(PAL) = dom(maxPAL) and 
maxPAL(x) ⊆ PAL(x) for all x. 



Refinement Separation: CFLMV  I 

• Let us consider the refinement separation between CFLMV  
and CFLSV.  

• Actually, we can show a much stronger separation as 
explained below. 

• CFL2V is the collection of all partial functions f in CFLMV 
such that the number of f’s output values on each input 
must be at most 2 (called 2-valued functions). 

• The machine 1npda M is called unambiguous if, for any 
input x and any output value y, M has exactly one 
accepting computation path producing y from x. 

• UCFL2V is the collection of all 2-valued partial functions 
computed by unambiguous 1npda’s. 

• (Claim)  UCFL2V ⊆ CFL2V ⊆ CFLMV. 



Refinement Separation: CFLMV  II 

• Here, we claim the desired separation result. 
• Theorem:  [Yamakami (2014)]  
    UCFL2V  ⋢ref  CFLSV. 

• The above theorem implies that  CFLMV  ⋢ref  CFLSV. 
 
 Proof Sketch: 
• It suffices to define an example function, say, h3 as in 

the next slide and prove the following 2 claims.  
1. h3 ∈ UCFL2V. 
2. h3 has no refinement in CFLSV. 
 



Refinement Separation: CFLMV  III 
• The desired function h3 is defined as follows. 

 
 
 
 
 
 

• For example, 
 h3(001#100#000) = { 0112 } 

 h3(001#100#001) = { 0112, 0213 } 

 h3(111#011#101) = ∅ 

{ }{ }*1 2 3 1 2 3# # | , , 0,1L x x x x x x= ∈

( ){ }3 , | , ,1 3I i j i j N i j+= ∈ ≤ < ≤

{ }3 1 2 3 1 2 3 3| , , [ # # ], ( , ) [ ]R
i jL w x x x w x x x L i j I x x= ∃ = ∈ ∃ ∈ =

( ) { }3 1 2 3
3

 01 | ( , ) ,   if  # # ,

                        if  .                                

i j R
i ji j I x x w x x x L

h w
w L

 ∈ = = ∈= 
∅ ∉

QED 

001R = 100 

001R = 100, 100R = 001 



1-FLIN(partial), 1-NLINMV, and 1-NLINSV  

• Recall 1-FLIN from Week 1. 
• Here, we relax the function condition of 1-FLIN to obtain 1-

FLIN(partial), which is composed of all partial functions 
computable by 1DTM in linear time with no extra output.  

• In other words, if we restrict all partial functions in 1-
FLIN(partial) to be total, we immediately obtain 1-FLIN. 

•  Next, we define 1-NLINMV and 1-NLINSV. 
• A multi-valued partial function f: Σ1*→℘(Σ2*) is in 1-NLINMV 

if there exists a 1NTM M such that 
1. for any string x∈dom(f), M produces exactly all values 

in f(x) along accepting computation paths, and  
2. for any string x∈Σ1*-dom(f), M rejects the input x.  
3. for any input x∈Σ1*, M halts within O(|x|) time in the 

strong sense.  



Refinements of 1-NLINMV  

• 1-NLINSV is the collection of all single-
valued partial functions in 1-NLINMV. 

• 1-NLINSVt consists of all total functions 
in 1-NLINSV. 

• A single-valued function f: Σ1*→Σ2* is 
length-preserving if, for any input x ∈ 
Σ1*, |f(x)| = |x| holds.  

• Theorem:  [Tadaki-Yamakami-Lin 
(2010)] 
Every length-preserving 1-NLINMV 
function has a 1-FLIN(partial) 
refinement. 

• (*) This will be used for one-way 
functions in Week 7. 

1-FLIN(partial) 

1-NLINSV 

1-NLINMV 

Containment 
  & separation 

proper 

proper 

1-FLIN 
proper 
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The CFLMV Hierarchy 

• Similarly to CFLA (relative to A), we can relativize CFLMV 
to oracle A and obtain CFLMVA by attaching query tapes to 
underlying 1npda’s with output tapes. 

• We then define the CFLMV hierarch as follows. 

 

• Similarly, we define the CFLSV hierarchy by setting: 

 

• Theorem:  [Yamakami (2014)]  (k≥1) 
1. ΣCFL

kSV ⊑ref ΣCFL
kMV. 

2. ΣCFL
kSV = ΣCFL

k+1SV ⇒  ΣCFL
k = ΣCFL

k+1 

3. ΣCFL
k = ΣCFL

k+1 ⇒  ΣCFL
k SV= ΣCFL

k+1SV 

1 1;   
CFL
kCFL A CFL

kMV CFLMV MV CFLMV Σ
+Σ = Σ =

{ |  is single-valued }CFL CFL
k kSV f MV fΣ = ∈Σ



Refinement Separations and Collapses 

• We have seen CFLMV ⋢ref  CFLSV. This is equivalent to 
ΣCFL

0MV ⋢ref ΣCFL
0SV. 

• (Open Problem)  Is ΣCFL
kMV ⋢ref ΣCFL

kSV for each k≥2? 

• Related to this question, we obtain the following. 

• Lemma:  [Yamakami (2014)]  (k≥1) 
 ΣCFL

kMV ⊑ref ΣCFL
k+1SV 

• Theorem:  [Yamakami (2014)]  (k≥2) 
 ΣCFL

k = ΣCFL
k+1  ⇒  ΣCFL

k+1MV ⊑ref ΣCFL
k+1SV. 

• Corollary:  [Yamakami (2014)]  (k≥2) 
 ΣCFL

kMV ⊑ref ΣCFL
kSV  ⇒   PH = Σp

k. 
 
 

 



The //-Advice Operator 

• Köbler and Thierauf (1994) introduced the //-advice 
operator, which is a natural extension of the /-advice 
operator (used to define P/poly). 

• We adapt this operator to apply to automata.  
 
• Let F be a class of multi-valued functions. 

• A language L is in REG//F  ⇔  there are a language B ∈ 
REG and a function h ∈ F such that, for any x, 
 
 
 

• Analogously, CFL//F is defined using CFL instead of 
REG.   
 

( )  s.t.  
x

x L y h x B
y
 

∈ ⇔ ∃ ∈ ∈ 
 



Basic Properties 

• We list basic properties of the //-advice operator. 
  
• Proposition:  [Yamakami (2014)] 

1. REG//NFASVt  ⊄ CFL and  CFL  ⊄ REG//NFAMV. 
2. REG//NFASVt  = co-(REG//NFASVt) 
3. REG//NFAMV ≠ co-(REG//NFAMV) 
4. CFL ∩ co-CFL ≠ REG//CFLSVt   

• (*) The last claim is compared to NP ∩ co-NP = P//NPSVt.  
[Köbler-Thierauf (1994)]  
 

• Proposition:  [Yamakami (2014)]  
 ΣCFL

k ∩ ΠCFL
k = REG//ΣCFL

k SVt. for any k≥3. 
 
 



Functional Composition 

• Let f,g be any multi-valued partial functions. 
• The functional composition f °g of f and g is defined as 

 
 

    for every x. 
• For two function classes F and G, a new function class 

F ° G  is defined as  
 
 

• Let  
 CFLSV(1) = CFLSV. 
 CFLSV(k+1) = CFLSV ° CFLSV(k)  for each k≥1. 
 
 

( ) ( )
( ) ( )

y g x
f g x f y

∈
=



{ }| ,F G f g f F g G= ∈ ∈ 



Separations 

• We show a simple separation result. 
 

• Proposition:  [Yamakami (2014)] 
1. CFLSVt 

 ≠ CFLSV(2)
t 

2. The same holds for CFLSV and CFLMV. 

 Proof Sketch: 
• Define fdup#(x) = { x#x }  for any x∈{0,1}*. 
• Clearly,  fdup#(x) ∈ CFLSV(2)

t. 
• However, if fdup#(x) ∈ CFLSVt, then the language DUP# 

= { x#x | x∈{0,1}* } must belong to CFL. 
• Since DUP#∉CFL, we conclude  fdup#(x) ∉ CFLSVt. 

 QED 



OptCFL 

• Krentel (1988) introduced a function class OptP, which 
consists of the optimal cost functions of NP optimization 
problems. 

• Similarly, Yamakami (2014) considered its pushdown-
automaton version, which is called OptCFL.  

• We assume the standard lexicographic order on Σ*.  

• A function f: Σ* → Σ* is in OptCFL  ⇔  there exists a 
1npda M with a write-only output tape s.t. 

                 f(x)  = opt { y ∈Σ* | M(x) produces y }, 
    where opt ∈ { max, min }. 



Open Problems 

 
1. Prove that ΣCFL

k+1MV ≠ ΣCFL
k+2MV for all k≥1. 

• Note that proving that ΣCFL
k+1MV = ΣCFL

k+2MV is much 
more difficult because this implies ΣP

k = ΣP
k+1, as 

discussed in Week 4 

2. Prove that ΣCFL
kSV ⋢ref ΣCFL

kMV for all k≥2. 

3. Prove that OptCFL ⊈ ΣCFL
2SVt or OptCFL ⊈ ΣCFL

3SVt. 
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State Complexity of Automata Families 

• Let M = (Q,Σ,δ,q0,Qacc,Qrej) be any finite automaton. 
• The state complexity of M is st(M) = |Q| (the number of 

inner states). 
 

• We consider a family {Mn}n∈N of finite automata, each Mn 
of which is of the form (Qn,Σn,δn,q0n,Qacc,n,Qrej,n) .  

• We often take the same input alphabet Σn = Σ for all n. 
 

• Note that the state complexity of this family {Mn}n∈N  
becomes a function st(n) = |Qn| in length n. 



L-Uniform Families of Finite Automata 

• We consider a family of finite automata, each of which 
can be constructed by a single production algorithm. 

• Let {Mn}n∈N be any family of finite automata, each Mn of 
which is of the form (Qn,Σn,δn,q0n,Qacc,n,Qrej,n). 

• This family {Mn}n∈N is called L-uniform if there exists a 
log-space DTM A with a write-only output tape such that, 
for any length n∈N,  A takes input of the form 1n and 
produces an encoding of Mn on the output tape. 

 
• (*) In comparison, we will discuss uniform families of 

Boolean circuits in Week 8.  
 



Equivalent Finite Automata 

• We define the notion of equivalence between two finite 
automata.  

• Let M and N be two finite automata (of possibly different 
types). 

• We say that M is equivalent to N if L(M) = L(N). 

• That is, M agrees with N on all inputs; i.e., for every input 
string x, 

                    M accepts x ↔  N accepts x. 

• Two families {Mn}n∈N  and {Nn}n∈N  of finite automata are 
said to be equivalent if, for any n∈N, Mn and Nn are 
equivalent. 



State Complexity of Transformation 

• Consider two different types of finite automata:  type 1 
and type 2. 
 

• We say that the state complexity of transforming type-1 
automata to type-2 automata is t(n) if, for any n-state 
type-1 automaton M, there exists another type-2 
automaton N such that (i) N has at most t(n) states and 
(ii) N is equivalent to M.  



Example of Transformation 

• Consider the following 
example. 
 

• Fig.1 is a 1nfa with 3 
states, and Fig.2 is its 
equivalent 1dfa with 4 
states. 
 

Fig.1 

Fig.2 



Characterization of NL⊆L/poly 

• Recall the non-uniform class  L/poly  from Week 3. 
• Note that we do not know whether or not NL⊆L/poly.  
• Kapoutsis (2014) and Kapoutsis and Pighizzini (2015) gave 

a new characterization of NL⊆L/poly in terms of state-
complexity of transforming 2nfa’s to 2dfa’s. 

• (Claim) The following statements are logically equivalent. 
1. NL⊆L/poly.  
2. There exists a polynomial p such that, for any n-state 

2nfa N, there is another 2dfa M of at most p(n) states 
such that M agrees with N on all inputs of length ≤ n. 

• Note that a straightforward textbook algorithm transforms 
an n-state 2nfa into an equivalent 2dfa of 2O(n) states. 



The Linear Space Hypothesis (LSH)  (revisited) 

• Recall the linear space hypothesis (LSH) from Week 3. 

• LSH (or LSH for 2SAT3) states: 
There is no deterministic algorithm that solves 2SAT3 in 
time p(|x|) using at most mvbl(x)εl(|x|) space on instance 
x for a certain polynomial p, a certain polylog function l, 
and a certain constant ε∈[0,1). 
 

• We can replace (2SAT3,mvbl) by (3DSTCON,mver), 
where mver(〈G,s,t〉) = the number of vertices in G. 
 

• Here, we want to give a state complexity 
characterization of LSH. 



Circular Tapes and Sweeping Moves 

• When both ends of a tape are glued together, we call 
this tape a circular tape.  

• A tape head is said to sweep a tape if the tape head 
moves to the right from ₵ to $. In this case, the tape 
head is called sweeping.  
 

circular tape 

sweeping 

₵ $ ₵ 

$ 
x x 



Constant Branching 

• Let c ∈ N+.  
• A 2nfa is c-branching if it makes only at most c 

nondeterministic choices at every step. 
• In particular, every 2dfa is 1-branching. 
• A family {Mn}n∈N of 2nfa’s is called constant-branching if 

there exists a constant c ∈ N+ such that every Mn is c-
branching.   

3-branching 2-branching 



Constant-Branching Simple 2nfa’s 

• We place certain restrictions on 2nfa’s. 
• We consider only 2nfa’s whose input tapes are circular. 

 
• We say that a 2nfa is simple if   

1. its input tape is circular,  
2. its tape head sweeps the tape, and  
3. it makes nondeterministic choices only at the right 

endmarker ($).   
 

• In what follows, we will consider only a family of 
constant-branching simple 2nfa’s. 
 



Alternating Finite Automata (revisited) 
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∀ 
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• Recall the definition of 2afa’s from Week 1. 



Narrow 2afa’s 

• Instead of using computation 
trees, we use computation 
graphs.  

• Here, we further consider 
additional restrictions on 2afa’s. 

• Let f:N→N be a function. 

• A family {Mn}n∈N of 2afa’s is 
called f(n)-narrow if, for any 
n∈N and any input x of length n, 
a {∀,∃}-leveled computation 
graph of Mn on input x has 
width at most f(n) at every ∀-
level.   
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t(n)-Time Space Constructibility 

• We need a restricted notion of space constructibility. 

• Let  t,f: N → N be functions. 

• A function f is called t(n)-time space constructible   ⇔    
there exists a DTM M with a write-only output tape that, 
on each input 1n, M produces 1f(n) on the output tape and 
halts within O(t(n)) steps. 
 
 input 

tape 

output 
tape 

1n 1n 

1f(x) 

≤ ct(n) steps 



Characterizing PsubLIN by Narrow 2afa’s 

• Theorem:  [Yamakami (2018)] 
Let t,ℓ : N → N+ be s.t. t is log-space computable and ℓ is  
O(t(n))-time space constructible. Let L and m be a 
language over alphabet Σ and a log-space size parameter.   
1. (L,m)∈TIME,SPACE(t(|x|),ℓ(m(x))), then there are two 

constants c1,c2>0 and an L-uniform family {Mn,ℓ}n,ℓ∈N  of 
c2ℓ(m(x))-narrow 2afa’s such that each Mn,|x|  has at most 
c1t(|x|)ℓ(m(x)) states and computes L(x) on all inputs 
satisfying m(x)=n. 

2. If there are constants c1,c2>0 and an L-uniform family 
{Mn,ℓ}n,ℓ∈N  of c2ℓ(m(x))-narrow 2afa’s such that  each Mn,|x|  
has at most c1t(|x|)ℓ(m(x)) states and computes L(x) on 
all inputs satisfying m(x)=n, then (L,m) belongs to  
TIME,SPACE(t(|x|)ℓ(m(x)),ℓ(m(x))+log(t(|x|))+log|x|). 



State Complexity Bounds 

• The following assertion is an easy adaptation of Barnes 
et al.’s (1998) algorithm for DSTCON on top of the 
previous theorem. 

• Proposition:  [Yamakami (2018)] 
Every L-uniform family of constant-branching O(nlog(n))-
state simple 2nfa’s can be converted into another L-
uniform family of equivalent O(n1-c/√log(n))-narrow 2afa’s 
with nO(1)-states for a certain constant c>0. 

• (Open Problem)    
Is it possible to reduce the factor n1-c/√log(n) to nε for a 
certain constant ε with 0 ≤ ε < 1? 
 



Characterization of LSH: Uniform Case 

• Theorem: [Yamakami (2018)] 
    The following statements are logically equivalent. 

1. LSH fails. 
2. For any two constants c>0 and k≥1, there exists a 

constant ε∈[0,1) such that every L-uniform family of 
constant-branching simple 2nfa’s of state at most 
cnlogk(n) can be converted into another L-uniform 
family of equivalent O(nε)-narrow 2afa’s with nO(1) states.   

3. For any constant c>0, there exists a constant ε∈[0,1) 
and a function f∈FL such that, on inputs of an encoding 
of c-branching simple n-state 2nfa, f produces another 
encoding of equivalent O(nε)-narrow 2afa of nO(1) states.  



Direct Implications 

• The previous theorem implies the following. 
• If we need to prove the validity of LSH, it suffices to 

show that the state complexity of transforming an L-
uniform family of constant-branching simple 2afa’s of 
O(n⋅polylog(n)) states to an L-uniform family of 
equivalent O(nε)-narrow 2afa’s is super-polynomial in n 
for any ε∈[0,1).   



Non-Uniform Linear Space Hypothesis 

• Next, we give a state-complexity characterization of a 
non-uniform version of the linear space hypothesis. 

• In 2018, Yamakami introduced the non-uniform version 
of LSH. 

• Similarly to P/poly and L/poly, we can define a non-
uniform version of PsubLIN (denoted by PsubLIN/poly) 
by supplementing polynomial-size advice to underlying 
DTMs with a read-only advice tape. 
 

• The non-uniform LSH states that (2SAT3,mvbl) does not 
belong to PsubLIN/poly. 
 
 



Characterization of LSH: Non-Uniform Case 

• We also obtain a non-uniform version of the previous 
characterization of LSH. 
 

• Theorem: [Yamakami (2018)] 
    The following statements are logically equivalent. 

1. The non-uniform LSH fails. 
2. For any constant c>0, there exists a constant ε∈[0,1) 

such that every c-branching simple n-state 2nfa can 
be converted into an equivalent O(nε)-narrow 2afa of 
nO(1) states.  



Open Problems 

• The following is a list of important open problems. 
 

1. Is it possible to reduce the factor n1-c/√log(n) to nε for a 
certain constant ε with 0 ≤ ε < 1? 

2. Prove or disprove that LSH is true. 
3. Find a different characterization of LSH. 
4. Find natural applications of the characterization of LSH 

in terms of state complexity.  
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Historical Account 

• Constable (1973) and Mehlhorn (1973,1976) initiated a 
functional approach to the study on the polynomial-time 
computability. 

• Townsend (1982,1990) reformulated the polynomial-time 
computability of type-2 functionals.  

• Buss (1986) also considered polynomial-time 
computability of type-2 functionals.  

• In a slightly different way,  Ko (1985) considered 
complexity-bounded class of operators.  

• Yamakami (1995) further developed a theory of type-2 
functionals and also introduced a type-2 analogue of the 
polynomial-time hierarchy, extending Townsend’s 
framework.   



Functionals and Relations 

• ω ≡ N (the set of all non-negative integers) 
• ωω = the set of all total functions from ω to ω 

• k,lω = ωk × (ωω)l      E.g.,  3,2ω = ω × ω × ω × ωω × ωω   

• (m,α) ∈ k,lω   ⇔   m ∈ ωk  and  α ∈ (ωω)l  
• A partial functional F of rank (k,l) satisfies that  
              Dom(F) ⊆ k,lω  and Im(F) ⊆ ω.  

• A total functional F of rank (k,l) satisfies that 
              Dom(F) = k,lω  and Im(F) ⊆ ω.  

 
• A relation R of rank (k,l) is a subset of  k,lω.  (namely, R ⊆  

k,lω.) 



Function-Oracle Turing Machines 
• Here, we use a function f as an oracle, which returns 

values (not limited to YES or NO) of f  when a query is 
invoked, directly to a designated tape, called a query tape. 
1. An underlying oracle Turing machine M wants to makes 

a query to the function oracle f by writing a query word 
z on the query tape.  

2. M enters a query state  qquery. 
3. The query word z is sent to the function oracle f, the 

tape automatically becomes empty (i.e., blank), and the 
tape head of this tape jumps to the start cell. 

4. The function oracle f returns f(z) by writing it down onto 
the query tape and changes M’s inner state to qanswer. 

5. M can now read some symbols of f(z) by moving its 
tape head back and forth. 

See the next slide! 



Query-and-Answer Mechanism 

z 

blank 

query tape 

f(z) 

function 
oracle 
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Type-2 Computation 

• A partial functional F is polynomial-time computable if it 
is computed by a certain function-oracle Turing machine 
with an output tape.   
 

• (*) When a function oracle returns an extremely long bits 
of an answer to a query, a time-bounded machine may 
not read all bits of this answer. 

 
• A relation R is called polynomial-time computable if there 

exists a deterministic function-oracle Turing machine that 
recognizes R.  
 
 



Functional Classes  Ptf and Ptf(A) 

• We define a functional class, called Ptf. 

• Ptf = class of all polynomial-time computable total  
functionals 
 

• Let A be any language. 

• Ptf(A) = class of all functionals computed by polynomial-
time function-oracle Turing machines with output tapes 
using oracle A 
 

• Let C be any family of languages (or a complexity class). 

• Let Ptf(C) = ∪A∈C Ptf(A).  
 
 



The Polynomial Hierarchy of Type 2 

• We define the polynomial(-time) hierarch of type 2. 
[Townsend (1982,1990), Yamakami (1995)] 

0, 0, 0,
0 0 0  p p p∆ = Σ = Π = class of polynomial-time 

computable relations 0,
0

p Ptf=

( )0, 0, 0,
1 0{ ( , ) ( , , ) | , } p p p

k kx F m R x m R Fα α+Σ = ∃ ≤ ∈Π ∈

( )0, 0, 0,
1 0{ ( , ) ( , , ) | , } p p p

k kx F m R x m R Fα α+Π = ∀ ≤ ∈Σ ∈

( )0, 0,
1
p p

k kPtf+ = Σ

0, 0,
1 1{ | } p p

k R kR χ+ +∆ = ∈



Hierarchy Theorem 

• Townsend (1990) proved the following. 

• Hierarchy Theorem:  for all n≥1,  
 
 
 

• Next, we define 

• This is compared to ∆k+1
0,p = { R | χR∈Ptf(Σk

0,p) }. 

• Proposition:  [Yamakami (1995)]  for all n≥1, 
 

0, 0, 0,  p p p
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0, 0,

1
p p
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1 1|  NP p p

k R k kR Ptfχ+ −∆ = ∈ Σ ∪Σ

0,
1

p p p NP
n n n n+∆ = Σ ⇔ ∆ = ∆

0, 0,
1

p p NP p p
n n n n n+Σ = Π ⇔ ∆ ⊆ Σ ∩Π



Relativization and Type-2 Computation 

• Let C be any “typical” type-1 complexity class. 

• Let      be any “natural” type-2 counterpart, based on the 
same resource-bounds used to define C, and for each 
oracle A, a natural relativized version CA.  

• For example, we can take the following classes as C: 
                 P, NP, BPP, NP∩co-NP, etc.  

• Given a type-2 relation R and an oracle A, we define the 
type-1 relation R[A] as  

                         R[A] (x) = R(x,A)     
    for every type-1 object x. 

• For a class     of type-2 relations, let  

C

C { }[ ] [ ] |C A R A R C= ∈



Regular Complexity Classes 

• Let C be any “typical” type-1 complexity class and let   
     be any “natural” type-2 counterpart, based on the 
same resource-bounds used to define C, and for each 
oracle A, a natural relativized version CA.  

• We say that C is regular if, for all A,  
 

• (Claim)  
P and NP are regular.  
Namely, for any oracle A, it follows that  

 
 

 [ ]AC C A=

C

[ ]AP P A=

 [ ]ANP NP A=



Irregular Complexity Classes 

• A complexity class C that is not regular is called irregular. 
 

• Question:  is there any irregular complexity class? 
 

• Proposition:  [Cook-Impagliazzo-Yamakami (1997)] 
NP∩co-NP and BPP are irregular.  
That is, there exist oracles A, B such that 

 
 

 

( )- - [ ]A ANP co NP NP co NP A∩ ≠ ∩

 [ ]BBPP BPP B≠



Close Connection to Generic Oracles 

• Recall the notion of generic oracle from Week 4. 
• There is a close connection between type-2 

computability and generic oracle. 
 

• Let C and D be classes of computable type-2 relations. 
• Assume that C and D are closed under ≤p

m-reductions.  
• For any generic oracle G, 

[ ] [ ]C D C G D G⊆ ⇔ ⊆



Power of Generic Oracles 

• Recall that there are oracles A and B for which  
 
 
 

• However, we can show the following for generic oracles. 
 

• Proposition:  [Cook-Impagliazzo-Yamakami (1997)] 
    For any generic oracle G, 

 
 
 
 

( )- - [ ]G GNP co NP NP co NP G∩ = ∩

 [ ]GBPP BPP G=

( )- - [ ]A ANP co NP NP co NP A∩ ≠ ∩

 [ ]BBPP BPP B≠



Open Problems 

 
• Develop a theory of computability of higher types. 
• Find more complexity classes C such that  

1. there is an oracle A satisfying   
 

2. for all  generic oracle G,  
 [ ]AC C A≠

 [ ]GC C G=





Q & A 
I’m happy to take your question! 



 
 

                                 END 
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