
6th Week

Synopsis.
• Multi-Valued Partial CFL Functions
• CFLMV Hierarchy
• State Complexity for LSH
• Function-Oracle Turing Machines
• Type-2 Computability

Type-2 Computability, Multi-Valued
Functions, and State Complexity

May 14, 2018. 23:59

Course Schedule: 16 Weeks

• Week 1: Basic Computation Models
• Week 2: NP-Completeness, Probabilistic and Counting Complexity Classes
• Week 3: Space Complexity and the Linear Space Hypothesis
• Week 4: Relativizations and Hierarchies
• Week 5: Structural Properties by Finite Automata
• Week 6: Stype-2 Computability, Multi-Valued Functions, and State Complexity
• Week 7: Cryptographic Concepts for Finite Automata
• Week 8: Constraint Satisfaction Problems
• Week 9: Combinatorial Optimization Problems
• Week 10: Average-Case Complexity
• Week 11: Basics of Quantum Information
• Week 12: BQP, NQP, Quantum NP, and Quantum Finite Automata
• Week 13: Quantum State Complexity and Advice
• Week 14: Quantum Cryptographic Systems
• Week 15: Quantum Interactive Proofs
• Week 16: Final Evaluation Day (no lecture)

Subject to Change

YouTube Videos

• This lecture series is based on numerous papers of T.
Yamakami. He gave conference talks (in English) and
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.

• Use the following keywords to find a playlist of those
videos.

• YouTube search keywords:
 Tomoyuki Yamakami conference invited talk playlist

Conference talk video

Main References by T. Yamakami I

✎ K. Tadaki, T. Yamakami, J. C. H. Lin. Theory of one-tape
linear-time Turing machines. Theor. Comput. Sci. 411(1): 22-
43 (2010)

✎ T. Yamakami. Not all multi-valued partial CFL functions are
refined by single-valued functions (extended abstract). In
Proc. of IFIP TCS 2014, LNCS, vol. 8705, pp. 136-150 (2014)

✎ T. Yamakami. Structural complexity of multi-valued partial
functions computed by nondeterministic pushdown automata
(extended abstract). ICTCS 2014, CEUR Workshop
Proceedings 1231, CEUR-WS.org 2014, pp. 225-236 (2014)

✎ T. Yamakami. State complexity characterizations of
parameterized degree-bounded graph connectivity, sub-
linear-bounded computation, and the linear space hypothesis.
Preprint, March 2018. To appear shortly at arXiv.org.

✎ (Continued to the next slide)

Main References by T. Yamakami II

✎ T. Yamakami. Structural properties for feasibly computable
classes of type two. Mathematical Systems Theory 25(3):
177-201 (1992)

✎ T. Yamakami. Feasible computability and resource bounded
topology. Inf. Comput. 116(2): 214-230 (1995)

✎ S. A. Cook, R. Impagliazzo, and T. Yamakami. A tight
relationship between generic oracles and type-2 complexity
Theory. Inf. Comput. 137(2): 159-170 (1997)

1. Multi-Valued Partial Functions
2. Write-Only Output Tapes
3. Valid (or Legitimate) Outputs
4. Multi-Valued Partial CFL Functions
5. CFL∩co-CFL vs. CFLSV
6. Functional Pumping Lemma
7. Function Class NFAMV
8. Boolean Operators
9. Basic Properties

I. Multi-Valued Partial Functions

Multi-Valued Partial Functions

• A (standard) function is designed to produce only one
output value per each input.

• We can allow a function to output more than one value
simultaneously, or even allow it to output no value at all.

• A total function is a standard function f such that, for any
input x, its output f(x) always exists.

• By contrast, a partial function means that, the outputs of the
function are not guaranteed to exist for all inputs.

• A multi-valued function is called single valued if, for any
input x, the number of different output values in f(x) is ≤ 1.

• When a function produces no output value on a certain
input x, we treat f(x) to be undefined.

• Generally, we call such a function a multi-valued partial
function (where “partial” is meant for undefined values).

Early Studies

• Firstly, we consider how to compute such a function
using 1npda. Those functions are called CFL functions.

• CFL functions were first studied by Evey (1963) and
Fisher (1963).

Write-Only Output Tapes
To compute a function, we need to equip a 1npda (also called
a transducer) with an extra write-only output tape, along which
its tape head moves rightward whenever it writes a non-blank
symbol.

¢ $ σ

q

Head direction: one-way

Infinite read-only input tape

Inner state q ∈ Q

…... …..

Z0

τ

Stack
Start cell Infinite write-only output tape

…
β α

......

one-way

How to Produce Multi-Values

• We explain how a 1npda produces outcomes of a multi-
valued partial function f.

• We say that a 1npda M computes a multi-valued partial
function f: Σ1*→℘(Σ2*) if M satisfies the following:
1. for any x∈dom(f), M produces exactly all values in

f(x) along accepting computation paths, and
2. for any string x∈Σ1*-dom(f), M rejects the input x (in

which all computation paths are rejecting).

• Namely, a 1npda M with a write-only output tape can
compute a multi-valued partial function f : Σ1*→℘(Σ2*)
defined by

 f(x) = { y | M(x) outputs y }.

Valid (or Legitimate) Outputs

• A 1npda produces valid outcomes only along accepting
computation paths.

input x

y1 y2 y3 y4 y5

rejected accepted

outputs

input x

y1 y2 y3 y4 y5

all rejected

valid
outputs

npda M

computation
paths

computation
paths

M(x) outputs { y4, y5 } M(x) outputs ∅

Formal Definition

A 1npda M = (Q,Σ,{¢,$},Θ,Γ,δ,q0,Z0,Qacc,Qrej) with a write-only
output tape is a standard 1npda plus a write-only output tape
and a special transition function δ of the form:

• Termination condition of M:
• All computation paths (both accepting and rejecting)

should terminate (reaching halting states) within O(n)
time.

• ACCM(x) = set of accepting computation paths of M on x

*: () ({ }) (({ }))haltQ Q P Qδ λ λ− × Σ∪ ×Θ→ ×Γ × Γ∪

This is because all context-free languages
are recognized by O(n)-time npda’s.

Σ =

Σ ∪ { ₵, $ } Qhalt = QaccU Qrej

Multi-Valued Partial CFL Functions

♠ Function Classes
• CFLMV = class of all multi-valued

partial functions computed by 1npda’s
• CFLSV = class of all single-valued

partial functions in CFLMV
• CFLSVt = class of all total functions in

CFLSV
• CFLMV(2) = class of all functions g

defined as g(x)=f1(x) ∩ f2(x) for f1,f2 ∈
CFLMV

• CFLMV, CFLSV, and CFLSVt are
analogues of NPMV, NPSV, and NPSVt,
respectively.

1-FLIN

CFLSVt

CFLSV

CFLMV

Containment
 & separation

proper

proper

proper

CFLMV(2)

proper

Examples: PAL

• Here, we take a look at two
simple examples.

• PAL(w) = { x | ∃u,v [w = uxv] ∧
x = xR } for all w∈{ 0,1 }*.

• I.e., PAL(w) outputs all possible
palindrome blocks in w.

• The right-hand side illustration
shows how to compute PAL.

• Thus, PAL is in CFLMVt. (total
function)

w

(1,1)

Guess (i,j)
with i=|u| ∧

j=n-|v|
(1,2) (n,n)

Find x

Check
if xR = x

x x′ x′′

yes

If yes,
output x

yes no

x x′ reject

....

....

....

input

Examples: IP2

• Let ⊙ be the binary inner
product.

• IP2(x) = { z | |x|=|z|, x⊙z ≡ 1
(mod 2) } for all x∈{ 0,1 }*.

• This is different from the
language IP2(x) = { xz | |x|=|z|,
xR⊙z ≡ 1 (mod 2) }.

• The right-hand side illustration
shows how to compute IP2.

• Thus, IP2 is in CFLMV
(actually, in NFAMV).

• See a later slide for NFAMV.

x

0n

Guess z

0n-11 1n
Compute
x⊙z
(mod 2)

0

If 1,
output z

1 0

reject reject

....

.... 0n-11

input

CFL∩co-CFL vs. CFLSV

• CFLSV is closely related to the language family
CFL∩co-CFL.

• Recall that χA is the characteristic function of a language
A.

• Lemma: [Yamakami (2016)]
 Let A be any language.
 A∈CFL∩co-CFL ⇔ χA∈CFLSV

• We can replace CFLSV by CFLSVt and CFLMV.

Functional Pumping Lemma for CFLMV

• Pumping Lemma for CFLMV: [Yamakami (2014)]
Let Σ and Γ be any alphabets and let f:Σ*→℘(Γ*) be any
function in CFLMV. There exist 3 numbers m ∈ N+ and
c,d ∈ N s.t. any w ∈Σ* with |w| ≥ m and any s ∈ f(w) are
decomposed into w = uvxyz and s = abpqr s.t.

(1) |uxy| ≤ m
(2) |vybq| ≥ 1
(3) |bq| ≤ cm+d and
(4) abipqir ∈ f(uvixyiz).

If f is further length-preserving, then
(5) |v| = |b| and |y| = |q|.

Moreover, (1)-(2) can be replaced by
(1’) |bq| ≥ 1.

Function Class NFAMV

• Similarly to CFLMV, we define the function class NFAMV
as follows.

• Let f be any multi-valued partial function.

• f is in NFAMV ⇔ there is a 1nfa M equipped with a
write-only output tape such that
1. for every x∈dom(f), M produces all elements in f(x)

along accepting computation paths, and
2. for every x∉dom(f), M rejects the input x.

• (Claim) 1-FLIN ⊆ NFAMV ⊆ CFLMV.

Conjunction/Disjunction of Functions
• We define conjunction/disjunction of function classes.

 Conjunction of F and G
• f1 ∈ F∧G

 ⇔ ∃g1 ∈ F ∃g2 ∈ G s.t. ∀x [f1(x) = g1(x)∩g2(x)]
 Disjunction of F and G

• f2 ∈ F∨G
 ⇔ ∃g1 ∈ F ∃g2 ∈ G s.t. ∀x [f2(x) = g1(x)Ug2(x)]

x

y1 y2 y3 w1 w2

x

z1 z2 z3 w1 w2 g1(x)= =g2(x)

g1 g2 f1(x)

f1 = g1 ∧ g2

f1 = g1 ∨ g2

Simple Examples of f∨g and f∧g

• Here, we present two simple examples.

• Consider the following f and g.
 f(x) = { anbn | n=|x| }
 g(x) = {anb2n | n=|x| }
 (f ∨ g)(x) = { anbn, anb2n | n=|x| }

• Consider the following f and g.
 f(x) = { anbncm | n=|x|, m≥0 }
 g(x) = {ambncn | n=|x|, m≥0 }
 (f ∧ g)(x) = { anbncn | n=|x| }

Function Classes CFLMV(k)

• We extend CFLMV using “conjunction” operator.
1. CFLMV(1) = CFLMV
2. CFLMV(k+1) = CFLMV(k) ∧ CFLMV
3. CFLSV(k) = { f ∈ CFLMV(k) | f is single-valued }

• Lemma: [Yamakami (2014)]
1) CFLMV(max{k,m}) ⊆ CFLMV(k)∨CFLMV(m) ⊆

CFLMV(km).
2) CFLMV(max{k,m}) ⊆ CFLMV(k)∧CFLMV(m) ⊆

CFLMV(k+m).
3) CFLSV(k) ≠ CFLSV(k+1) for any k≥1.

Difference/Complement of Functions
• We define the difference/complement of function classes.

 Difference between F and G

• f ∈ F ⊖ G ⇔ ∃g1 ∈ F ∃g2 ∈ G s.t. ∀x [f(x) = g1(x) − g2(x)]

 Complement of F

• f ∈ co-F
 ⇔ ∃g ∈ F ∃p: linear polynomial ∃n0: constant s.t.
 ∀(x,y) with |x|≥n0 [y∈f(x) ↔ |y|≤p(|x|) ∧ y∈g(x)]

x

y1 y2 y3 y4 y5 w1 g(x)=

f(x) = Σ≤p(|x|) - g(x)

w2 w3 Σ≤p(|x|)

set difference

Boolean Operations

• Using two operators ⊖ and co-, we define the following
function classes.
• co-CFLMV (complement)

• CFLMV ⊖ CFLMV (difference)
• CFLMV ∧ co-CFLMV (conjunction with complement)

• Recall IP2(x) = { z | |x|=|z|, x⊙z ≡ 1 (mod 2) } for all x∈{

0,1 }*.
• Define IPc(x) = { z | |x|≥|z|, x⊙z0|x|-|z| ≡ 0 (mod 2) } for

any x.
• It follows that IPc ∈ co-CFLMVt since IP2 ∈ CFLMVt and

IPc(x) = Σ≤|x| − IP2(x) for any x.

Basic Properties

• The following basic properties hold.

• Proposition: [Yamakami (2014)]

1. co-(co-CFLMV) = CFLMV
2. co-CFLMV = NFAMV ⊖ CFLMV
3. CFLMV ⊖ CFLMV = CFLMV ∧ co-CFLMV
4. CFLMV ≠ co-CFLMV
5. CFLMVt ≠ co-CFLMVt

1. Refinement of Functions
2. Refinement Separation: CFLMV
3. 1-FLIN(partial), 1_NLINMV, and 1-NLINSV
4. Refinement of 1-NLINMV

II. Refinement of Functions

Refinement of Functions

• The notion of refinement is more useful than a standard
set inclusion, because, e.g., CFLSVt ≠ CFLSV ≠ CFLMV
holds.

• Let f,g be any two functions from Σ* to ℘(Γ*).

 g is a refinement of f (notationally, f ⊑ref g)
 ⇔ ∀x∈Σ*

1. f(x) ≠ ∅ ⇔ g(x) ≠ ∅
2. g(x) ⊆ f(x) (as set inclusion).

• For two function classes F and G,
 F ⊑ref G ⇔ ∀ f∈F ∃ g∈G [f ⊑ref g]
• NOTE: F ⊆ G ⇒ F ⊑ref G.

Refinement is
also known as
uniformization.

Example: maxPAL

• Let us see an example of refinement.

• Recall PAL(w) = { x | ∃u,v [w = uxv] ∧ x = xR }.

• For each w∈{ 0,1 }*, we define

 maxPAL(w) = maximum element in PAL(w),

 where “maximum” is according to a dictionary order.

• maxPAL is a single-valued total function.

• (Claim) PAL ⊑ref maxPAL (PAL is refined by maxPAL)

 Proof: This is because dom(PAL) = dom(maxPAL) and
maxPAL(x) ⊆ PAL(x) for all x.

Refinement Separation: CFLMV I

• Let us consider the refinement separation between CFLMV
and CFLSV.

• Actually, we can show a much stronger separation as
explained below.

• CFL2V is the collection of all partial functions f in CFLMV
such that the number of f’s output values on each input
must be at most 2 (called 2-valued functions).

• The machine 1npda M is called unambiguous if, for any
input x and any output value y, M has exactly one
accepting computation path producing y from x.

• UCFL2V is the collection of all 2-valued partial functions
computed by unambiguous 1npda’s.

• (Claim) UCFL2V ⊆ CFL2V ⊆ CFLMV.

Refinement Separation: CFLMV II

• Here, we claim the desired separation result.
• Theorem: [Yamakami (2014)]
 UCFL2V ⋢ref CFLSV.

• The above theorem implies that CFLMV ⋢ref CFLSV.

 Proof Sketch:
• It suffices to define an example function, say, h3 as in

the next slide and prove the following 2 claims.
1. h3 ∈ UCFL2V.
2. h3 has no refinement in CFLSV.

Refinement Separation: CFLMV III
• The desired function h3 is defined as follows.

• For example,
 h3(001#100#000) = { 0112 }

 h3(001#100#001) = { 0112, 0213 }

 h3(111#011#101) = ∅

{ }{ }*1 2 3 1 2 3# # | , , 0,1L x x x x x x= ∈

(){ }3 , | , ,1 3I i j i j N i j+= ∈ ≤ < ≤

{ }3 1 2 3 1 2 3 3| , , [# #], (,) []R
i jL w x x x w x x x L i j I x x= ∃ = ∈ ∃ ∈ =

() { }3 1 2 3
3

 01 | (,) , if # # ,

 if .

i j R
i ji j I x x w x x x L

h w
w L

 ∈ = = ∈=
∅ ∉

QED

001R = 100

001R = 100, 100R = 001

1-FLIN(partial), 1-NLINMV, and 1-NLINSV

• Recall 1-FLIN from Week 1.
• Here, we relax the function condition of 1-FLIN to obtain 1-

FLIN(partial), which is composed of all partial functions
computable by 1DTM in linear time with no extra output.

• In other words, if we restrict all partial functions in 1-
FLIN(partial) to be total, we immediately obtain 1-FLIN.

• Next, we define 1-NLINMV and 1-NLINSV.
• A multi-valued partial function f: Σ1*→℘(Σ2*) is in 1-NLINMV

if there exists a 1NTM M such that
1. for any string x∈dom(f), M produces exactly all values

in f(x) along accepting computation paths, and
2. for any string x∈Σ1*-dom(f), M rejects the input x.
3. for any input x∈Σ1*, M halts within O(|x|) time in the

strong sense.

Refinements of 1-NLINMV

• 1-NLINSV is the collection of all single-
valued partial functions in 1-NLINMV.

• 1-NLINSVt consists of all total functions
in 1-NLINSV.

• A single-valued function f: Σ1*→Σ2* is
length-preserving if, for any input x ∈
Σ1*, |f(x)| = |x| holds.

• Theorem: [Tadaki-Yamakami-Lin
(2010)]
Every length-preserving 1-NLINMV
function has a 1-FLIN(partial)
refinement.

• (*) This will be used for one-way
functions in Week 7.

1-FLIN(partial)

1-NLINSV

1-NLINMV

Containment
 & separation

proper

proper

1-FLIN
proper

1. The CFL Hierarchy
2. The CFLMV Hierarchy
3. Refinement Separations and Collapses
4. The //-Advice Operator
5. Basic Properties
6. Functional Composition
7. Separations

III. The CFLMV Hierarchy

REG

 co-CFL = ΠCFL
1

ΣCFL
2

ΣCFL
1 = CFL

CFL2

ΣCFL
3

ΠCFL
2

ΠCFL
3

DSPACE(O(n))

CSL

inclusion

proper inclusion

CFLH

CFL(2)

CFL(3)

AC0(CFL)
= LOGCFL

= SAC1

CFLm
CFL(1)

 = CFLm[1]
CFL

CFLm
CFL(ω)

REG/n

CFL/n
L

no inclusion

NL
CFL(ω)

BHCFL

CFL3

NC2

CFLm
CFL(2)

 = CFLm[2]
CFL

PCFL

BPCFL

TC1

AC0(REG)
= NC1

The CFL Hierarchy (revisited)

The CFLMV Hierarchy

• Similarly to CFLA (relative to A), we can relativize CFLMV
to oracle A and obtain CFLMVA by attaching query tapes to
underlying 1npda’s with output tapes.

• We then define the CFLMV hierarch as follows.

• Similarly, we define the CFLSV hierarchy by setting:

• Theorem: [Yamakami (2014)] (k≥1)
1. ΣCFL

kSV ⊑ref ΣCFL
kMV.

2. ΣCFL
kSV = ΣCFL

k+1SV ⇒ ΣCFL
k = ΣCFL

k+1

3. ΣCFL
k = ΣCFL

k+1 ⇒ ΣCFL
k SV= ΣCFL

k+1SV

1 1;
CFL
kCFL A CFL

kMV CFLMV MV CFLMV Σ
+Σ = Σ =

{ | is single-valued }CFL CFL
k kSV f MV fΣ = ∈Σ

Refinement Separations and Collapses

• We have seen CFLMV ⋢ref CFLSV. This is equivalent to
ΣCFL

0MV ⋢ref ΣCFL
0SV.

• (Open Problem) Is ΣCFL
kMV ⋢ref ΣCFL

kSV for each k≥2?

• Related to this question, we obtain the following.

• Lemma: [Yamakami (2014)] (k≥1)
 ΣCFL

kMV ⊑ref ΣCFL
k+1SV

• Theorem: [Yamakami (2014)] (k≥2)
 ΣCFL

k = ΣCFL
k+1 ⇒ ΣCFL

k+1MV ⊑ref ΣCFL
k+1SV.

• Corollary: [Yamakami (2014)] (k≥2)
 ΣCFL

kMV ⊑ref ΣCFL
kSV ⇒ PH = Σp

k.

The //-Advice Operator

• Köbler and Thierauf (1994) introduced the //-advice
operator, which is a natural extension of the /-advice
operator (used to define P/poly).

• We adapt this operator to apply to automata.

• Let F be a class of multi-valued functions.

• A language L is in REG//F ⇔ there are a language B ∈
REG and a function h ∈ F such that, for any x,

• Analogously, CFL//F is defined using CFL instead of
REG.

() s.t.
x

x L y h x B
y

∈ ⇔ ∃ ∈ ∈

Basic Properties

• We list basic properties of the //-advice operator.

• Proposition: [Yamakami (2014)]

1. REG//NFASVt ⊄ CFL and CFL ⊄ REG//NFAMV.
2. REG//NFASVt = co-(REG//NFASVt)
3. REG//NFAMV ≠ co-(REG//NFAMV)
4. CFL ∩ co-CFL ≠ REG//CFLSVt

• (*) The last claim is compared to NP ∩ co-NP = P//NPSVt.
[Köbler-Thierauf (1994)]

• Proposition: [Yamakami (2014)]
 ΣCFL

k ∩ ΠCFL
k = REG//ΣCFL

k SVt. for any k≥3.

Functional Composition

• Let f,g be any multi-valued partial functions.
• The functional composition f °g of f and g is defined as

 for every x.
• For two function classes F and G, a new function class

F ° G is defined as

• Let
 CFLSV(1) = CFLSV.
 CFLSV(k+1) = CFLSV ° CFLSV(k) for each k≥1.

() ()
() ()

y g x
f g x f y

∈
=

{ }| ,F G f g f F g G= ∈ ∈

Separations

• We show a simple separation result.

• Proposition: [Yamakami (2014)]
1. CFLSVt

 ≠ CFLSV(2)
t

2. The same holds for CFLSV and CFLMV.

 Proof Sketch:
• Define fdup#(x) = { x#x } for any x∈{0,1}*.
• Clearly, fdup#(x) ∈ CFLSV(2)

t.
• However, if fdup#(x) ∈ CFLSVt, then the language DUP#

= { x#x | x∈{0,1}* } must belong to CFL.
• Since DUP#∉CFL, we conclude fdup#(x) ∉ CFLSVt.

 QED

OptCFL

• Krentel (1988) introduced a function class OptP, which
consists of the optimal cost functions of NP optimization
problems.

• Similarly, Yamakami (2014) considered its pushdown-
automaton version, which is called OptCFL.

• We assume the standard lexicographic order on Σ*.

• A function f: Σ* → Σ* is in OptCFL ⇔ there exists a
1npda M with a write-only output tape s.t.

 f(x) = opt { y ∈Σ* | M(x) produces y },
 where opt ∈ { max, min }.

Open Problems

1. Prove that ΣCFL

k+1MV ≠ ΣCFL
k+2MV for all k≥1.

• Note that proving that ΣCFL
k+1MV = ΣCFL

k+2MV is much
more difficult because this implies ΣP

k = ΣP
k+1, as

discussed in Week 4

2. Prove that ΣCFL
kSV ⋢ref ΣCFL

kMV for all k≥2.

3. Prove that OptCFL ⊈ ΣCFL
2SVt or OptCFL ⊈ ΣCFL

3SVt.

1. State Complexity of Automata Families
2. L-Uniform Families of Finite Automata
3. State Complexity of Transformation
4. Characterization of NL⊆L/poly
5. Constant-Branching Simple 2nfa’s
6. Characterizing PsubLIN by Narrow 2afa’s
7. Non-Uniform Linear Space Hypothesis
8. Characterization of LSH

IV. State Complexity Characterizations

State Complexity of Automata Families

• Let M = (Q,Σ,δ,q0,Qacc,Qrej) be any finite automaton.
• The state complexity of M is st(M) = |Q| (the number of

inner states).

• We consider a family {Mn}n∈N of finite automata, each Mn
of which is of the form (Qn,Σn,δn,q0n,Qacc,n,Qrej,n) .

• We often take the same input alphabet Σn = Σ for all n.

• Note that the state complexity of this family {Mn}n∈N
becomes a function st(n) = |Qn| in length n.

L-Uniform Families of Finite Automata

• We consider a family of finite automata, each of which
can be constructed by a single production algorithm.

• Let {Mn}n∈N be any family of finite automata, each Mn of
which is of the form (Qn,Σn,δn,q0n,Qacc,n,Qrej,n).

• This family {Mn}n∈N is called L-uniform if there exists a
log-space DTM A with a write-only output tape such that,
for any length n∈N, A takes input of the form 1n and
produces an encoding of Mn on the output tape.

• (*) In comparison, we will discuss uniform families of

Boolean circuits in Week 8.

Equivalent Finite Automata

• We define the notion of equivalence between two finite
automata.

• Let M and N be two finite automata (of possibly different
types).

• We say that M is equivalent to N if L(M) = L(N).

• That is, M agrees with N on all inputs; i.e., for every input
string x,

 M accepts x ↔ N accepts x.

• Two families {Mn}n∈N and {Nn}n∈N of finite automata are
said to be equivalent if, for any n∈N, Mn and Nn are
equivalent.

State Complexity of Transformation

• Consider two different types of finite automata: type 1
and type 2.

• We say that the state complexity of transforming type-1
automata to type-2 automata is t(n) if, for any n-state
type-1 automaton M, there exists another type-2
automaton N such that (i) N has at most t(n) states and
(ii) N is equivalent to M.

Example of Transformation

• Consider the following
example.

• Fig.1 is a 1nfa with 3
states, and Fig.2 is its
equivalent 1dfa with 4
states.

Fig.1

Fig.2

Characterization of NL⊆L/poly

• Recall the non-uniform class L/poly from Week 3.
• Note that we do not know whether or not NL⊆L/poly.
• Kapoutsis (2014) and Kapoutsis and Pighizzini (2015) gave

a new characterization of NL⊆L/poly in terms of state-
complexity of transforming 2nfa’s to 2dfa’s.

• (Claim) The following statements are logically equivalent.
1. NL⊆L/poly.
2. There exists a polynomial p such that, for any n-state

2nfa N, there is another 2dfa M of at most p(n) states
such that M agrees with N on all inputs of length ≤ n.

• Note that a straightforward textbook algorithm transforms
an n-state 2nfa into an equivalent 2dfa of 2O(n) states.

The Linear Space Hypothesis (LSH) (revisited)

• Recall the linear space hypothesis (LSH) from Week 3.

• LSH (or LSH for 2SAT3) states:
There is no deterministic algorithm that solves 2SAT3 in
time p(|x|) using at most mvbl(x)εl(|x|) space on instance
x for a certain polynomial p, a certain polylog function l,
and a certain constant ε∈[0,1).

• We can replace (2SAT3,mvbl) by (3DSTCON,mver),
where mver(〈G,s,t〉) = the number of vertices in G.

• Here, we want to give a state complexity
characterization of LSH.

Circular Tapes and Sweeping Moves

• When both ends of a tape are glued together, we call
this tape a circular tape.

• A tape head is said to sweep a tape if the tape head
moves to the right from ₵ to $. In this case, the tape
head is called sweeping.

circular tape

sweeping

₵ $ ₵

$
x x

Constant Branching

• Let c ∈ N+.
• A 2nfa is c-branching if it makes only at most c

nondeterministic choices at every step.
• In particular, every 2dfa is 1-branching.
• A family {Mn}n∈N of 2nfa’s is called constant-branching if

there exists a constant c ∈ N+ such that every Mn is c-
branching.

3-branching 2-branching

Constant-Branching Simple 2nfa’s

• We place certain restrictions on 2nfa’s.
• We consider only 2nfa’s whose input tapes are circular.

• We say that a 2nfa is simple if

1. its input tape is circular,
2. its tape head sweeps the tape, and
3. it makes nondeterministic choices only at the right

endmarker ($).

• In what follows, we will consider only a family of
constant-branching simple 2nfa’s.

Alternating Finite Automata (revisited)

∀

∃

∃

∀

∀

accepting
computation tree

∃

∀

∀

∃

∃

∀

∀

rejecting
computation tree

∃

∀

accepting
subtree

• Recall the definition of 2afa’s from Week 1.

Narrow 2afa’s

• Instead of using computation
trees, we use computation
graphs.

• Here, we further consider
additional restrictions on 2afa’s.

• Let f:N→N be a function.

• A family {Mn}n∈N of 2afa’s is
called f(n)-narrow if, for any
n∈N and any input x of length n,
a {∀,∃}-leveled computation
graph of Mn on input x has
width at most f(n) at every ∀-
level.

∀

∃

∃

∀

∀

computation graph

∃

∀

width ≤ f(n)

t(n)-Time Space Constructibility

• We need a restricted notion of space constructibility.

• Let t,f: N → N be functions.

• A function f is called t(n)-time space constructible ⇔
there exists a DTM M with a write-only output tape that,
on each input 1n, M produces 1f(n) on the output tape and
halts within O(t(n)) steps.

 input

tape

output
tape

1n 1n

1f(x)

≤ ct(n) steps

Characterizing PsubLIN by Narrow 2afa’s

• Theorem: [Yamakami (2018)]
Let t,ℓ : N → N+ be s.t. t is log-space computable and ℓ is
O(t(n))-time space constructible. Let L and m be a
language over alphabet Σ and a log-space size parameter.
1. (L,m)∈TIME,SPACE(t(|x|),ℓ(m(x))), then there are two

constants c1,c2>0 and an L-uniform family {Mn,ℓ}n,ℓ∈N of
c2ℓ(m(x))-narrow 2afa’s such that each Mn,|x| has at most
c1t(|x|)ℓ(m(x)) states and computes L(x) on all inputs
satisfying m(x)=n.

2. If there are constants c1,c2>0 and an L-uniform family
{Mn,ℓ}n,ℓ∈N of c2ℓ(m(x))-narrow 2afa’s such that each Mn,|x|
has at most c1t(|x|)ℓ(m(x)) states and computes L(x) on
all inputs satisfying m(x)=n, then (L,m) belongs to
TIME,SPACE(t(|x|)ℓ(m(x)),ℓ(m(x))+log(t(|x|))+log|x|).

State Complexity Bounds

• The following assertion is an easy adaptation of Barnes
et al.’s (1998) algorithm for DSTCON on top of the
previous theorem.

• Proposition: [Yamakami (2018)]
Every L-uniform family of constant-branching O(nlog(n))-
state simple 2nfa’s can be converted into another L-
uniform family of equivalent O(n1-c/√log(n))-narrow 2afa’s
with nO(1)-states for a certain constant c>0.

• (Open Problem)
Is it possible to reduce the factor n1-c/√log(n) to nε for a
certain constant ε with 0 ≤ ε < 1?

Characterization of LSH: Uniform Case

• Theorem: [Yamakami (2018)]
 The following statements are logically equivalent.

1. LSH fails.
2. For any two constants c>0 and k≥1, there exists a

constant ε∈[0,1) such that every L-uniform family of
constant-branching simple 2nfa’s of state at most
cnlogk(n) can be converted into another L-uniform
family of equivalent O(nε)-narrow 2afa’s with nO(1) states.

3. For any constant c>0, there exists a constant ε∈[0,1)
and a function f∈FL such that, on inputs of an encoding
of c-branching simple n-state 2nfa, f produces another
encoding of equivalent O(nε)-narrow 2afa of nO(1) states.

Direct Implications

• The previous theorem implies the following.
• If we need to prove the validity of LSH, it suffices to

show that the state complexity of transforming an L-
uniform family of constant-branching simple 2afa’s of
O(n⋅polylog(n)) states to an L-uniform family of
equivalent O(nε)-narrow 2afa’s is super-polynomial in n
for any ε∈[0,1).

Non-Uniform Linear Space Hypothesis

• Next, we give a state-complexity characterization of a
non-uniform version of the linear space hypothesis.

• In 2018, Yamakami introduced the non-uniform version
of LSH.

• Similarly to P/poly and L/poly, we can define a non-
uniform version of PsubLIN (denoted by PsubLIN/poly)
by supplementing polynomial-size advice to underlying
DTMs with a read-only advice tape.

• The non-uniform LSH states that (2SAT3,mvbl) does not
belong to PsubLIN/poly.

Characterization of LSH: Non-Uniform Case

• We also obtain a non-uniform version of the previous
characterization of LSH.

• Theorem: [Yamakami (2018)]
 The following statements are logically equivalent.

1. The non-uniform LSH fails.
2. For any constant c>0, there exists a constant ε∈[0,1)

such that every c-branching simple n-state 2nfa can
be converted into an equivalent O(nε)-narrow 2afa of
nO(1) states.

Open Problems

• The following is a list of important open problems.

1. Is it possible to reduce the factor n1-c/√log(n) to nε for a
certain constant ε with 0 ≤ ε < 1?

2. Prove or disprove that LSH is true.
3. Find a different characterization of LSH.
4. Find natural applications of the characterization of LSH

in terms of state complexity.

1. Historical Account
2. Functionals and Relations
3. Function-Oracle Turing Machines
4. Type-2 Computation
5. Power of Generic Oracles
6. Close Connection to Generic Oracles
7. The Polynomial Hierarchy of Type 2
8. Hierarchy Theorem
9. Regular/Irregular Complexity Classes

V. Type-2 Computability

Historical Account

• Constable (1973) and Mehlhorn (1973,1976) initiated a
functional approach to the study on the polynomial-time
computability.

• Townsend (1982,1990) reformulated the polynomial-time
computability of type-2 functionals.

• Buss (1986) also considered polynomial-time
computability of type-2 functionals.

• In a slightly different way, Ko (1985) considered
complexity-bounded class of operators.

• Yamakami (1995) further developed a theory of type-2
functionals and also introduced a type-2 analogue of the
polynomial-time hierarchy, extending Townsend’s
framework.

Functionals and Relations

• ω ≡ N (the set of all non-negative integers)
• ωω = the set of all total functions from ω to ω

• k,lω = ωk × (ωω)l E.g., 3,2ω = ω × ω × ω × ωω × ωω

• (m,α) ∈ k,lω ⇔ m ∈ ωk and α ∈ (ωω)l
• A partial functional F of rank (k,l) satisfies that
 Dom(F) ⊆ k,lω and Im(F) ⊆ ω.

• A total functional F of rank (k,l) satisfies that
 Dom(F) = k,lω and Im(F) ⊆ ω.

• A relation R of rank (k,l) is a subset of k,lω. (namely, R ⊆

k,lω.)

Function-Oracle Turing Machines
• Here, we use a function f as an oracle, which returns

values (not limited to YES or NO) of f when a query is
invoked, directly to a designated tape, called a query tape.
1. An underlying oracle Turing machine M wants to makes

a query to the function oracle f by writing a query word
z on the query tape.

2. M enters a query state qquery.
3. The query word z is sent to the function oracle f, the

tape automatically becomes empty (i.e., blank), and the
tape head of this tape jumps to the start cell.

4. The function oracle f returns f(z) by writing it down onto
the query tape and changes M’s inner state to qanswer.

5. M can now read some symbols of f(z) by moving its
tape head back and forth.

See the next slide!

Query-and-Answer Mechanism

z

blank

query tape

f(z)

function
oracle

f

qquery

qanswer

Type-2 Computation

• A partial functional F is polynomial-time computable if it
is computed by a certain function-oracle Turing machine
with an output tape.

• (*) When a function oracle returns an extremely long bits
of an answer to a query, a time-bounded machine may
not read all bits of this answer.

• A relation R is called polynomial-time computable if there

exists a deterministic function-oracle Turing machine that
recognizes R.

Functional Classes Ptf and Ptf(A)

• We define a functional class, called Ptf.

• Ptf = class of all polynomial-time computable total
functionals

• Let A be any language.

• Ptf(A) = class of all functionals computed by polynomial-
time function-oracle Turing machines with output tapes
using oracle A

• Let C be any family of languages (or a complexity class).

• Let Ptf(C) = ∪A∈C Ptf(A).

The Polynomial Hierarchy of Type 2

• We define the polynomial(-time) hierarch of type 2.
[Townsend (1982,1990), Yamakami (1995)]

0, 0, 0,
0 0 0 p p p∆ = Σ = Π = class of polynomial-time

computable relations 0,
0

p Ptf=

()0, 0, 0,
1 0{ (,) (, ,) | , } p p p

k kx F m R x m R Fα α+Σ = ∃ ≤ ∈Π ∈

()0, 0, 0,
1 0{ (,) (, ,) | , } p p p

k kx F m R x m R Fα α+Π = ∀ ≤ ∈Σ ∈

()0, 0,
1
p p

k kPtf+ = Σ

0, 0,
1 1{ | } p p

k R kR χ+ +∆ = ∈

Hierarchy Theorem

• Townsend (1990) proved the following.

• Hierarchy Theorem: for all n≥1,

• Next, we define

• This is compared to ∆k+1
0,p = { R | χR∈Ptf(Σk

0,p) }.

• Proposition: [Yamakami (1995)] for all n≥1,

0, 0, 0, p p p
n n n∆ ≠ Σ ≠ Π
0, 0,

1
p p

n n+≠

(){ }0,
1 1| NP p p

k R k kR Ptfχ+ −∆ = ∈ Σ ∪Σ

0,
1

p p p NP
n n n n+∆ = Σ ⇔ ∆ = ∆

0, 0,
1

p p NP p p
n n n n n+Σ = Π ⇔ ∆ ⊆ Σ ∩Π

Relativization and Type-2 Computation

• Let C be any “typical” type-1 complexity class.

• Let be any “natural” type-2 counterpart, based on the
same resource-bounds used to define C, and for each
oracle A, a natural relativized version CA.

• For example, we can take the following classes as C:
 P, NP, BPP, NP∩co-NP, etc.

• Given a type-2 relation R and an oracle A, we define the
type-1 relation R[A] as

 R[A] (x) = R(x,A)
 for every type-1 object x.

• For a class of type-2 relations, let

C

C { }[] [] |C A R A R C= ∈

Regular Complexity Classes

• Let C be any “typical” type-1 complexity class and let
 be any “natural” type-2 counterpart, based on the
same resource-bounds used to define C, and for each
oracle A, a natural relativized version CA.

• We say that C is regular if, for all A,

• (Claim)
P and NP are regular.
Namely, for any oracle A, it follows that

 []AC C A=

C

[]AP P A=

 []ANP NP A=

Irregular Complexity Classes

• A complexity class C that is not regular is called irregular.

• Question: is there any irregular complexity class?

• Proposition: [Cook-Impagliazzo-Yamakami (1997)]
NP∩co-NP and BPP are irregular.
That is, there exist oracles A, B such that

()- - []A ANP co NP NP co NP A∩ ≠ ∩

 []BBPP BPP B≠

Close Connection to Generic Oracles

• Recall the notion of generic oracle from Week 4.
• There is a close connection between type-2

computability and generic oracle.

• Let C and D be classes of computable type-2 relations.
• Assume that C and D are closed under ≤p

m-reductions.
• For any generic oracle G,

[] []C D C G D G⊆ ⇔ ⊆

Power of Generic Oracles

• Recall that there are oracles A and B for which

• However, we can show the following for generic oracles.

• Proposition: [Cook-Impagliazzo-Yamakami (1997)]
 For any generic oracle G,

()- - []G GNP co NP NP co NP G∩ = ∩

 []GBPP BPP G=

()- - []A ANP co NP NP co NP A∩ ≠ ∩

 []BBPP BPP B≠

Open Problems

• Develop a theory of computability of higher types.
• Find more complexity classes C such that

1. there is an oracle A satisfying

2. for all generic oracle G,
 []AC C A≠

 []GC C G=

Q & A
I’m happy to take your question!

 END

	6th Week
	Course Schedule: 16 Weeks
	YouTube Videos
	Main References by T. Yamakami I
	Main References by T. Yamakami II
	I. Multi-Valued Partial Functions
	Multi-Valued Partial Functions
	Early Studies
	Write-Only Output Tapes
	How to Produce Multi-Values
	Valid (or Legitimate) Outputs
	Formal Definition
	Multi-Valued Partial CFL Functions
	Examples: PAL
	Examples: IP2
	CFLco-CFL vs. CFLSV
	Functional Pumping Lemma for CFLMV
	Function Class NFAMV
	Conjunction/Disjunction of Functions
	Simple Examples of fg and fg
	Function Classes CFLMV(k)
	Difference/Complement of Functions
	Boolean Operations
	Basic Properties
	II. Refinement of Functions
	Refinement of Functions
	Example: maxPAL
	Refinement Separation: CFLMV I
	Refinement Separation: CFLMV II
	Refinement Separation: CFLMV III
	1-FLIN(partial), 1-NLINMV, and 1-NLINSV
	Refinements of 1-NLINMV
	III. The CFLMV Hierarchy
	Slide Number 34
	The CFLMV Hierarchy
	Refinement Separations and Collapses
	The //-Advice Operator
	Basic Properties
	Functional Composition
	Separations
	OptCFL
	Open Problems
	IV. State Complexity Characterizations
	State Complexity of Automata Families
	L-Uniform Families of Finite Automata
	Equivalent Finite Automata
	State Complexity of Transformation
	Example of Transformation
	Characterization of NLL/poly
	The Linear Space Hypothesis (LSH) (revisited)
	Circular Tapes and Sweeping Moves
	Constant Branching
	Constant-Branching Simple 2nfa’s
	Alternating Finite Automata (revisited)
	Narrow 2afa’s
	t(n)-Time Space Constructibility
	Characterizing PsubLIN by Narrow 2afa’s
	State Complexity Bounds
	Characterization of LSH: Uniform Case
	Direct Implications
	Non-Uniform Linear Space Hypothesis
	Characterization of LSH: Non-Uniform Case
	Open Problems
	V. Type-2 Computability
	Historical Account
	Functionals and Relations
	Function-Oracle Turing Machines
	Query-and-Answer Mechanism
	Type-2 Computation
	Functional Classes Ptf and Ptf(A)
	The Polynomial Hierarchy of Type 2
	Hierarchy Theorem
	Relativization and Type-2 Computation
	Regular Complexity Classes
	Irregular Complexity Classes
	Close Connection to Generic Oracles
	Power of Generic Oracles
	Open Problems
	Slide Number 79
	Slide Number 80
	Slide Number 81

