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Course Schedule: 16 Weeks 

• Week 1:  Basic Computation Models 
• Week 2:  NP-Completeness, Probabilistic and Counting Complexity Classes  
• Week 3:  Space Complexity and the Linear Space Hypothesis 
• Week 4:  Relativizations and Hierarchies 
• Week 5:  Structural Properties by Finite Automata 
• Week 6:  Stype-2 Computability, Multi-Valued Functions, and State Complexity 
• Week 7:  Cryptographic Concepts for  Finite Automata 
• Week 8:  Constraint Satisfaction Problems 
• Week 9:  Combinatorial Optimization Problems 
• Week 10:  Average-Case Complexity 
• Week 11:  Basics of Quantum Information 
• Week 12:  BQP, NQP, Quantum NP, and Quantum Finite Automata 
• Week 13:  Quantum State Complexity and Advice 
• Week 14:  Quantum Cryptographic Systems 
• Week 15:  Quantum Interactive Proofs 
• Week 16:  Final Evaluation Day (no lecture) 

Subject to Change 



YouTube Videos 

• This lecture series is based on numerous papers of T. 
Yamakami. He gave conference talks (in English) and 
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.  

• Use the following keywords to find a playlist of those 
videos.  

• YouTube search keywords: 
    Tomoyuki Yamakami  conference  invited talk playlist 
 

Conference talk video 
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I. One-Way Functions and Pseudorandom 
Generators 



Cryptographic Primitives 

One-way 
function 

Pseudorandom 
generator 

Hardcore 
predicate 

Bit commitment Oblivious transfer 

Etc. 

Zero-knowledge proof 

• If we want to build a complex cryptographic system, it 
is necessary to break it into small building blocks. 

• Primitives are such building blocks that support 
complex cryptographic systems. 



What are One-Way Functions? 

• Yao (1982) first considered the notion of one-way function. 
• Intuitively, a (strongly) one-way function f(x) is 
 Easy to compute from its inputs x, but 
 Hard to invert from its images y=f(x) (i.e., find x′∈f-1(y)). 

Probx,A[f(A(f(x),1n)) = f(x)] < 1/p(n) for any efficient 
algorithm A, any polynomial p and almost all sizes n. 

x Computes f(x). Input 

(y,1n) Computes x∈{0,1}n 
s.t. f(x)=y. 

Input 

Easy! 

Hard! 



Probabilistic Poly-Time Algorithms (revisited) 

• Recall the model of probabilistic Turing machine from 
Week 2. 
 

•  We informally use the term “probabilistic polynomial-
time algorithm” to mean “probabilistic polynomial-time 
Turing machine.” 
 



Probabilistic Computation of PTMs (revisited) 

• A PTM produces accepting/rejecting computation paths.  

input  x 

accepted rejected 

input  x 
PTM M 

probabilistic 
computation 

probabilistic 
computation 

M accepts x M rejects x 

or 

accepted rejected 
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(Strongly) One-Way Functions  I 

• Consider a function f : {0,1}* → {0,1}*. 

• f is (strongly) one-way if  
1. (easy to compute) there is a deterministic 

polynomial-time algorithm that computes f, and 
2. (hard to invert) for every probabilistic polynomial-time 

algorithm A, every positive polynomial p, and for all 
sufficiently large length n,  

1
,

1Pr ( ( ),1 ) ( ( ))
( )n

n
A U n nA f U f f U

p n
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Un is a random 
variable ranging 
over {0,1}n. 



(Strongly) One-Way Functions  II 

• This formula means:  
 the probability that, on input (y,1n) with y∈{ f(x) | x∈ 

{0,1}n }, algorithm A finds x′ satisfying f(x′) = y is 
polynomially small.  

• Note that there are possibly many x′ satisfying f(x′) = y.  
• So, it suffices to find at least one of them probabilistically.  

1 1Pr ( ( ),1 ) ( ( ))
( )

n
n nA f U f f U

p n
− ∈ < 

y = f(x) 
x 

x′ 

{0,1}n 



Weakly One-Way Functions 

• There is another notion of one-way function. 

• f is weakly one-way if  
1. (easy to compute) there is a deterministic 

polynomial-time algorithm that computes f, and 
2. (slightly hard to invert) there exists a polynomial p 

such that, for every probabilistic polynomial-time 
algorithm A and all sufficiently large length n,  
 

 
 

• (Claim) A strongly one-way function exists ⇔ a weakly 
one-way function exists. [Yao (1982)] 

1
,
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Natural Candidates for OWFs  I 

• Unfortunately, we do not know whether or not one-way 
functions (OWFs) exist.  

• However, we have several good candidates for OWFs. 
• The RSA function 

– with index set (N,e), where N is a product of two 
(1/2⋅log2N)-bit primes P and Q, and e is an integer 
smaller than N and relatively prime to (P-1)(Q-1). 

 
• The Rabin function 

– with a similar condition to the above, 

, ( )  mode
N eRSA x x N=

2( )  modNRabin x x N=

There is no 
common factor. 



Natural Candidates for OWFs  II 

• The DLP (discrete logarithm problem) function 
– with index set (P, G), where P is a (1/2⋅log2N)-bit 

prime P and a primitive element G in the multiplicative 
group modulo P,  
 
 

• Open Problems 
Prove or disprove that the aforementioned candidates 

are truly one-way functions. 
More generally, prove or disprove the existence of 

one-way functions. 

, ( )  modx
P GDLP x G P=



Pseudorandomness 

• Blum and Micali (1984) considered how to generate a 
sequence of bits whose next bit is hardly predicted by 
even powerful adversary. 

• In contrast, Yao (1982) considered a sequence that no 
adversary distinguishes from a uniformly random 
sequence with a small margin of error. 

• Let X = { Xn }n∈N be an ensemble of random variables 
indexed by N. 

• For example, consider an infinite series of fair coins. For 
each n∈N, we define Xn to be the outcome of the flip of 
the (n+1)th coin. 

 

meaning: “family” or “series” 



Polynomial-Time Indistinguishability 

• We start with “indistinguishability” of two ensembles of 
random variables. 

• Two ensembles X = { Xn }n∈N and Y = { Yn }n∈N  are 
indistinguishable in polynomial time (or computationally 
indistinguishable)  if  
 for every probabilistic polynomial-time algorithm M, 

every positive polynomial p, and all  sufficiently large 
length n,  1Pr ( ,1 ) 1 Pr ( ,1 ) 1

( )
n n

n nM X M Y
p n

   = − = <   

The probability of distinguishing between 
Xn and Yn is polynomially small. 



Generating Pseudorandom Bits 

short 
truly 
random 
bits 

true randomness 

computer 
algorithm 

long 
pseudorandom 
bits 

truly random 
bits 

hard to 
distinguish 
them 

?? 

“uniform” ensemble 



Pseudorandom Generators 

• An ensemble X = { Xn }n∈N is called pseudorandom if 
there is a uniform ensemble U = { Ul(n) }n∈N such that 
{ G(Un) }n∈N  and U are polynomial-time indistinguishable, 
where l: N → N is a fixed function. 

• A pseudorandom generator G is a deterministic 
polynomial-time algorithm satisfying the following two 
conditions:  
1. (expansion) there is a function l: N → N (called the 

expansion/stretch factor of G) such that l(n) > n for 
all n∈N and |G(s)| = l(|s|) for all s∈{0,1}*, and  

2. (pseudorandomness) the ensemble { G(Un) }n∈N  is 
pseudorandom.  

Ul(n)  is chosen 
uniformly at random. 



PRGs Versus OWFs 

• Let G: {0,1}* → {0,1}* be a function with expansion factor 
l(n) = 2n (that is, |G(x)| = 2|x| for all x∈{0,1}*).  

• We define a function f: {0,1}* → {0,1}* by 
          

 
• (Claim)  If G is a pseudorandom generator, then f is a 

strongly one-way function.  
 

• Moreover, we can prove the following. 

• (Claim)  If there exists a one-way function, then a 
pseudorandom generator exists. [Håstad-Impagliazzo-
Levin-Luby (1999)] 

( , ) ( )f x y G x=



1. What are Hardcore Functions? 
2. Hardcore Predicates (or Functions) 
3. Examples of Hardcores 
4. Why are Hardcores so Useful? 

II. Hardcore Functions 



What are Hardcore Functions? 

• A hardcore function P for a function f is 
Easy to compute from its inputs x, but 
Hard to “predict” P(x) from the images f(x) of the 

function f without knowing inputs x. 
|Probx,A[A(f(x),1n) = P(x)] – 1/2l(n)| < 1/p(n) for 

any polynomial p and almost all sizes n. 

x Computes P(x). Input 

(y,1n) Computes P(x) s.t. 
x∈{0,1}n and f(x)=y. 

Input 

Easy! 

Hard! 

where l(n) is the size function of P  



Hardcore Predicates (or Functions) 

• Let b: {0,1}*→ {0,1} be a polynomial-time computable 
predicate (i.e., functions outputting 0 or 1). 

• Let f: {0,1}*→ {0,1}* be a function. 

• b is a hardcore predicate (or a hardcore) of f if, for every 
probabilistic polynomial-time algorithm A, every positive 
polynomial p, and all sufficiently large n,  
 
 

• This means that, to predict the value b(s) from input f(s) 
is similar to choosing 0 or 1 at random.  

• Hardcores actually exist for any strongly one-way 
function (assuming that one-way functions exist).  

  

[ ] 1 1Pr ( ( ) ( )
2 ( )n nA f U b U

p n
= < +



Examples of Hardcores 

• There are known hardcore predicates for (strongly) one-
way functions of a special form (explained below).  

• Let b: {0,1}*×{0,1}*→ {0,1} be the (bitwise) inner-product-
mod-2 function; that is,  b(x,r) = x⊙r (mod 2). 

• Example: 
 
 

• (Claim) Let f be any strongly one-way function. Define g 
as g(x,r) = f(x)r (concatenation), where |x|=|r|. The 
predicate b (defined above) is a hardcore of g. 
[Goldreich-Levin (1989)] 

(1011,1101) 1 1 0 1 1 0 1 1 (mod 2)
                    2 (mod 2) 0
b = + + +

= =
   



Why are Hardcores so Useful? 

• Let f be any one-way permutation and  
    let P be any hardcore predicate for f.  

• Define G(x) = f(x)P(x)  (string concatenation). 

• The definition of a hardcore says that we cannot predict the 
value P(x) from the value f(x) with high confidence. 

 

 

• Well-Known Result: unpredictability = pseudorandomness 

• Therefore, this function G(.) is a pseudorandom generator 
that stretches n bit seeds to n+1 bit strings. 

It’s like 
a 

magic! 

f(x) P(x) G(x) 
Guess what 
comes next? 



1. Public-Key Cryptosystems 
2. Non-Interactive Bit Commitment 

III. Basic Cryptosystems 



Private-Key/Public-Key Encryption Schemes 

An insecure channel 

A(n) secure/insecure channel 

Bob Alice 

Encryption 

Plaintext 

Decryption 

Ciphertext Ciphertext 

Encryption key 

Decryption key 

A schematic of an encryption scheme 

Symmetric/asymmetric key 

Private/public key 



Non-Interactive Bit Commitment 
• In a non-interactive bit commitment scheme, a committer 

(Alice) and a verifier (Bob) communicate with each other 
and satisfy the following conditions. 
 (hiding) In the commit phase, Alice commits to a single 

bit b and sends some information z to Bob so that Bob 
cannot recover b from z, 

 (binding) In the opening (or reveal) phase, Alice reveals 
her bit b and Bob checks if b is the correct committed bit 
from z. We require that Alice cannot cheat Bob by 
revealing a different bit.  

committing (z) 

committer verifier 

opening (b) 

(b) 



1. What is an Interactive Proof? 
2. Interactive Proof Systems 
3. Constant-Space Interactive Proofs 
4. Private Coins vs. Public Coins 
5. One-Way Functions for 1-Tape Machines 

IV. Interactive Proof Systems 



What is an Interactive Proof? 

• An interaction between two (or more) parties has been 
studied in many cryptographic contexts.  

• Goldwasser, Micali, and Rackoff (1989) studied a series of 
interactions between a prover (who presents a proof) and a 
verifier (who verifies the proof).  

• This gave rise to a notion of interactive proof (IP) systems. 
• In an IP system, a prover P sends a proof (either correct or 

wrong) and a verifier V checks if the proof is indeed correct. 

interactions 

prover verifier 



Intuitive Definition 

• A language L has an IP system ⇔ there exists a verifier V 
that satisfies the following two conditions: 

1. For every x∈L, there exists a honest prover P such that V 
accepts a proof from P with probability at least 2/3; and 

2. For every x∉L, V rejects any proof from any (possibly 
malicious) prover with probability at least 2/3. 

Accepts with probability ≥ 2/3 

Rejects with probability ≥ 2/3 prover verifier 

A proof is a piece of information. 

Believe me. This is 
a correct proof. 

Let me judge the 
correctness of your proof. 

x∈L 

x∉L 



Underlying Machine Model 

• Dwork-Stockmeyer IP system is illustrated as follows. 
 

¢ $ x1x2x3…..xn 

An infinite private tape 

¢ $ x1x2x3…..xn 

A 
communication 

cell 

An input tape 

A finite control unit 

A pfa verifier A prover 

An input tape 

A tape head 

A 
communication 

alphabet Γ 

An alphabet 
∆ 

A tape 
alphabet Σ 



Interactive Proof Systems 

• Let (P,V) be a pair of prover P and verifier V. 
• Let L be a language over alphabet {0,1}. 

• (P,V) is an interactive proof system for L if 
 V is a specified probabilistic machine, 
 (P,V) satisfies the following conditions: 
1. (completeness) for every x∈L,  

 

2. (soundness) for any x∉L and any prover B, 

[ ] 2Pr ( , )( ) 1
3

P V x = ≥

[ ] 1Pr ( , )( ) 1
3

B V x = ≤



Constant-Space Interactive Proofs 

• Dwork and Stockmeyer (1992) considered interactive 
proof (IP) systems with 2-way probabilistic finite 
automata (2pfa’s). 

• Major advantages: we can prove certain separation 
results that are impossible (at least at present) to obtain 
for polynomial-time or logarithmic-space bounded IP 
systems. 

• IP(〈restrictions〉) = the class of all languages that have IP 
systems satisfying the restrictions given in 〈restrictions〉. 

• For example: 
• IP(2pfa,poly-time) = the class of all languages that 

have IP systems with 2pfa verifiers running in 
expected polynomial time. 



Private Coins vs. Public Coins 

• In an IP system, a verifier obtains random bits (by 
flipping coins) and decides his next actions. The verifier 
keeps those random bits secretly. A prover has no way 
knowing those bits of the verifier.  

•  This situation is described as the verifier playing with 
“private coins.” 

• In contrast, if the verifier reveals his random bits to the 
prover every time, then this situation is described as  the 
verifier playing with “public coins.”  
 

• If the verifier uses “public coins” instead of “private 
coins,” then we write AM(〈restriction〉) in place of   
IP(〈restriction〉). 

“AM” stands for “Arthur-Merlin game.” 



Known Results 

• Dwork and Stockmeyer (1992) obtained the following 
results. 

• (Claim) 
1. 2PFA ⊆ AM(2pfa) ⊆ IP(2pfa,poly-time) ⊆ IP(2pfa) 
2. Pal = { x∈{0,1}* | x=xR } is in IP(2pfa) but not in 

AM(2pfa). 
3. Center = { u1v | u,v∈{0,1}*,|u|=|v| } is in AM(2pfa) but 

not in 2PFA. 
 

• (*) We will return to this topic in Week 13. 
 



Track Notation (revisited) 

• To describe the notion of one-way function in the 1-tape 
linear-time model, we need to introduce a “track” 
notation 
 
 

• Even if  |x| ≠ |y|, we want to use the same notation to 
express  
 
 
if |x| = |y|+k and k≥1 and |x|+k =|y| and k≥1, respectively, 
where # is a distinct “blank” symbol.  
 

#k

x
y
 
 
 

#kx
y

 
 
 

1 2
1 2 1 2

1 2

,  where  and  n
n n

n

xx xx
x x x x y y y y

yy yy
     

= = =     
       

  



One-Way Functions for 1-Tape Machines I 

• A total function f : Σ1* → Σ2* is called one-way if  
1. f ∈ 1-FLIN, and  
2. there is no function g ∈1-FLIN such that  

 
 

          for all inputs x. 

• When f is length-preserving, the above equality can be 
replaced by  f(g(f(x))) = f(x).  
 

• Theorem:  [Tadaki-Yamakami-Lin (2010)] 
There is no one-way function in 1-FLIN. 

• (*) In the next slide, we will see a proof sketch. 

| |

( )
( )

1x

f x
f g f x
   

=       

∀x∈Σ1* [ |f(x)| = |x| ] 



One-Way Functions for 1-Tape Machines II 

• Recall 1-DLIN and 1-FLIN from Week 1, and 1-FLIN(partial) 
and 1-NLINMV from Week 6. 

 Proof Sketch: 
• Assume by contradiction that a one-way function f : Σ1* → 

Σ2* exists in 1-FLIN.  
• Define f-1([y 1n]T) = { x#|y|-n | |x|=n, f(x) = y } if |y|≥n; f-1([y 

1n]T) = { x | |x|=n, f(x) = y } otherwise.  
• Clearly, f-1 ∈ 1-NLINMV.  
• As seen in Week 6, since 1-NLINMV ⊑ref 1-FLIN(partial), there 

is a refinement, say, g of f-1 in 1-FLIN(partial).  
• We then construct a 1DTM computing g in O(n) time. 
• Since f-1 ⊑ref g, M converts f, a contradiction against our 

assumption.  
QED 



1. Negligible Functions 
2. C-Pseudorandomness 
3. Examples of C-Pseudorandom Languages 

V. Pseudorandomness for Automata 



Negligible Functions 

• We apply pseudorandomness to finite automata.  
 

• First, we need a notion of negligible function. 
 

• A real-valued function h: N → R≥0 is negligible  ⇔ 
 ∀p: positive polynomial, h(n) ≤ 1/p(n) holds for all but 

finitely many numbers n∈N (super-polynomially 
small). 
 

• Example: h(n) = 1/2n,  h′(n) = 1/nlog(n) 

R≥0 = { z∈R | z ≥ 0 } 



Intuition: Pseudorandomness 

•  A∆L denotes the symmetric difference (A – L)∪(L – A) . 
 

• Intuitively, the C-pseudorandomness of L means:  
    for any language A∈C and for almost all n’s, 
          |(A∆L)∩Σn| is “nearly” a half of |Σn|.  (Fig.1) 
• Equivalently: for any language A∈C and for almost all n’s, 
          |A∩(L∩Σn)|  is “nearly” equal to |A∩(Σn-L)|. (Fig.2) 

A∩Σn L∩Σn 

Σn 

A∩Σn L∩Σn 

Σn 

Fig.1 Fig.2 



C-Pseudorandomness  I 

• Let L be any language over Σ with |Σ| ≥ 2. 
• Let C be any language family. 

• L is C-pseudorandom   ⇔  for all A∈C over Σ, 
                                                  

                                               is negligible. 

 

• (Claim)  No language in C is C-pseudorandom.  
 A∩Σn L∩Σn Σn 

( ) 1
2

n

n

A L∆ ∩Σ
→

Σ

( ) 1( )
2

n

n

A L
h n

∆ ∩Σ
= −

Σ



C-Pseudorandomness  II 

• We may be focused on p-dense languages. 

• A language L (over Σ) is weakly C-pseudorandom  ⇔ 
• for all p-dense A ∈ C (over Σ),  

    h′(n) =def | |(A∩L)∩Σn| / |A∩Σn| - ½ | is negligible. 

• A language family D is (weakly) C-pseudorandom  ⇔ 
• D contains a (weakly) C-pseudorandom language.   

• NOTE: Not known whether NP is P-pseudorandom.  

A∩Σn L∩Σn Σn 

( ) 1
2

n

n

A L

A

∩ ∩Σ
→

∩Σ



Examples of C-Pseudorandom Languages 

• Let x⊙y denote the (bitwise) binary inner product.  
• Consider the following extended language in CFL. 

    IP*={ axy | a∈{λ,0,1}, x,y∈{0,1}*,|x|=|y|,xR⊙y≡1 (mod 2) }  

• IP* is REG/n-pseudorandom. Hence, we obtain: 
 

• Theorem:  [Yamakami (2011)] 
    CFL is REG/n-pseudorandom. 

 
• The proof of this theorem utilizes the swapping lemma 

for regular languages, discussed in Week 5. (See the 
next slide.) 



Swapping Lemma for REGs (revisited) 

Swapping Lemma for REGs  [Yamakami (2008),(2010)] 
• If L is regular, then ∃m>0 s.t. ∀n∈N ∀S⊆L∩∑n (|S|≥m) 

∀i∈[n] ∃xy,uv∈S (|x|=|u|=i) [ xy≠uv & uy,xv∈L ].  
 

x y 

u v 

u y 

x v 

swapping 

i 
xy, uv ∈ S uy, xv ∈ L 

• See Week 5 for the references. 



CFL/n-Pseudorandom Languages  I 

• We discuss CFL/n-pseudorandom languages.  
• Consider the languages  
 IP+ = Σ≤8 ∪ ( IP3 ∩Σ≥8 ) Σ2 , where 
 IP3 = { axyz | a∈{λ,0,1}, x,y,z∈{0,1}*,|x|=|z|,|y|=2|x|, 

(xz)⊙yR≡1 (mod 2) }  (extension of IP*) 
 

• CFL(2)/n is an advised version of CFL(2), which was 
discussed in Week 5. 

• Lemma:  [Yamakami (2016)] 
    L ∈ CFL(2)/n  ⇔  ∃ L1,L2 ∈ CFL/n  s.t.  L = L1 ∩ L2. 



CFL/n-Pseudorandom Languages  II 

• Theorem:  [Yamakami (2016)] 
1. IP3 and IP+ are in L ∩ CFL(2)/n. 
2. IP3 and IP+ are CFL/n-pseudorandom. 

 
• For the latter claim of the above theorem, we need the 

swapping lemma for context-free languages discussed in 
Week 5. (See the next slide.) 
 

• Corollary:  [Yamakami (2016)] 
1. L ∩ CFL(2)/n ⊄ CFL/n. 
2. CFL(2) ⊄ CFL/n. 

 
 



Swapping Lemma for CFLs (revisited) 

Swapping Lemma for CFLs  [Yamakami, (2008,2016)]  
• If L is context-free, then ∃m>0 s.t. ∀n≥2 ∀S⊆L∩∑n ∀j0,k0 

∈[2,n-1]Z(k0≥2j0)∀i∈[0,n]∀j∈[j0,k0](i+j≤n)∀u∈∑j0 

(|Si,u|<|S|/m(k0-j0+1)(n-j0+1))∃x=x1x2x3,y=y1y2y3∈S 
(|x1|=|y1|=i)(|x2|=|y2|=j)(|x3|=|y3|) [ x2≠y2&x1y2x3,y1x2y3∈L ].  
 

x1 x3 

x1x2x3, y1y2y3 ∈ S x1y2x3, y1x2y3 ∈ L 

swapping 

i 

x2 

j 

y1 y3 y2 

x1 x3 y2 

y1 y3 x2 

• See Week 5 for the references. 



Open Problems 

• There are many open questions to solve. 
 

1. Is there any CFL/n-pseudorandom language in CFL(2) 
(instead of  CFL(2)/n)? 

2. Find natural languages that are C-pseudorandom 
against D for reasonable language families C and D. 



1. P-Denseness 
2. P-Dense REG-Immunity 
3. C-Primeimmunity 
4. Examples of C-Primeimmune Languages 
5. C-Bi-Primeimmunity 
6. Examples of C-Bi-Primeimmune Languages 
7. A Connection to C-Pseudorandomness 

VI. P-Denseness and Primeimmunity 



C-Immunity (revisited) 

• Recall the definition of C-immune languages in Week 5. 
• Immunity is concerned with “finiteness.” 

 
• Let C be any nonempty language family. 

 
• A language L is C-immune  ⇔ 

1) L is infinite, and  
2) no infinite subset A of L exists in C.    
 

• A language family D is C-immune  ⇔ 
• D contains a C-immune language. 

A∈C 

L: infinite 

A: finite 



P-Denseness 

• All known context-free REG-immune 
languages L make the ratio |L∩Σn| / |Σn| 
exponentially small. 
  E.g., Leq and Pal#  

• A language L is polynomially dense (or 
p-dense)  ⇔ 
 There is a non-zero polynomial p s.t.  

    |L∩Σn| / |Σn| ≥ 1/p(n) for all but finitely  
    many n  (i.e., only polynomially small). 

• Polynomial denseness is a key to our 
further discussion. 

L∩Σn 

Σn 

Σn 

L∩Σn 



P-Dense REG-Immunity 

• What language family is p-dense REG-immune? 

• Theorem:  [Yamakami (2011)] 
    L ∩ CFL/n is p-dense REG-immune. 

 Proof Sketch: 
• Consider the language 

  LCenter = { ax0m10my | a∈{λ,0,1}, 2m≤|x|=|y|< 2m+1 }. 
• Cleraly,  LCenter ∈ L ∩ CFL/n. Thus, it suffices to prove 
 LCenter is p-dense REG-immune,   

    by the pumping lemma for REGs.  

• (Open Problem)  Is  CFL  p-dense REG-immune? 

QED 



C-Primeimmunity 

• Let us introduce a variant of C-immunity using “p-dense” 
sets in place of “finite” sets.  
 

• Let C be any language family. 

• A language L is C-primeimmune   ⇔ 
1) L is p-dense, and 
2) L has no p-dense subset in C. 

• A language family D is C-primeimmune   ⇔ 
 D contains a C-primeimmune language. 

• NOTE:  p-dense REG-immune  ⇒  REG-primeimmune 

L: p-dense 

A: not 
p-dense 

A∈C 



Examples of C-Primeimmune Languages 

• Equal = { x ∈ {0,1}* | #0(x) = #1(x) } is not p-dense.  
• Here, we consider its extended language: 
 Equal* = { aw | a ∈ {λ,0,1}, w ∈ Equal } 

• (Claim)  
1. Equal* is p-dense.  
2. Equal* is in CFL. 
3. Equal* is not REG-immune. 
4. Equal* is REG/n-primeimmune. 

• Theorem:  [Yamakami (2011)] 
    CFL is REG/n-primeimmune. 

 Proof: This comes from Claims 2 & 4 above. 



C-Bi-Primeimmunity 

• Let C be any language family. 
 

• A language L is C-bi-primeimmune   ⇔ 
• L and Lc are both C-primeimmune. 

 
• A language family D is C-bi-primeimmune   ⇔ 

• D contains a C-bi-primeimmune language. 

Lc 

C-primeimmune 

L 

C-primeimmune 

Σ* 



Examples of C-Bi-Primeimmune Languages 

• Recall that x⊙y is the (bitwise) inner product of x and y. 
• Consider the following language: 
 IP* = { axy | a∈{λ,0,1}, x,y ∈ {0,1}*, |x|=|y|, xR⊙y ≡ 1 

(mod 2) }. 

• Lemma:  [Yamakami (2011)]  
    IP* is  REG/n-bi-primeimmune. 

• Since IP*∈CFL, we conclude the following statement.  

• Theorem:  [Yamakami (2011)] 
    CFL is REG/n-bi-primeimmune. 



A Connection to C-Pseudorandomeness 

• There is a connection to C-pseudorandomness. 
 

• Lemma:  [Yamakami (2011)] 
If L is weakly C-pseudorandom, then it is C-bi-
primeimmune. 
 

• The converse does not hold, because the language 
Equal* (∈ CFL) is REG-primeimmune but not weakly 
REG-pseudorandom. 
 



1. Pseudorandom Generators 
2. Existence and Limitation 
3. Proof Idea for the Theorem 
4. Generators Against CFL/n 

VII. PRGs by Finite Automata 



Pseudorandom Generators  I 

• Let G: {0,1}*→ {0,1}* be any function. 
 

• G has stretch factor s(n)   ⇔ 
• |G(x)|=s(|x|) for all x ∈ {0,1}*. 

 
• G fools a language A (over {0,1}*)   ⇔ 

• l(n) =def | Probx[A(G(x))=1] – Proby[A(y)=1] | is 
negligible,  where |x|=n and |y|=s(|x|). 

• Intuitively: A cannot tell the difference between truly 
random strings y and generated strings G(x).  

x n 

G(x) s(n) 



Pseudorandom Generators  II 

• Let G: {0,1}*→ {0,1}* be any function. 
 
• G is a pseudorandom generator against C  ⇔ 
 for all A ∈ C (over {0,1}), G fools A.  

 
• G is a weakly pseudorandom generator against C  ⇔ 
 for all p-dense A ∈ C (over {0,1}), G fools A.  

 
• NOTE: pseudorandom generator   ⇒    weakly 

pseudorandom generator 



Connection to Pseudorandom Languages  I 

• There is a close connection between C-pseudorandom 
generators and C-pseudorandom languages. 

• First, we introduce a notion of  almost one-to-oneness. 

• Let G: {0,1}*→ {0,1}* have stretch factor n+1.  

• G is almost 1-1  ⇔ 
There is a negligible function t such that 

    |{ G(x) | x∈{0,1}n }| = |{0,1}n|(1 - t(n)) holds for all n. 

• NOTE: If G is exactly 1-1, then t(n)=0. 
 



Connection to Pseudorandom Languages  II 

• Let G: {0,1}*→ {0,1}* be any almost 1-1 function with 
stretch factor n+1.  

• Let  SG = { G(x) | x ∈ {0,1}* } be the image of G. 
 

• Lemma:  [Yamakami (2011)] 
    G is a (weakly) pseudorandom generator against C ⇔  
 the image SG of G is (weakly) C-pseudorandom. 

 
• (Open Problem) 

Can we weaken the above conditions of “almost 1-1” 
and “stretch factor n+1”?  



Existence  I 

• Here, we show the existence of pseudorandom 
generators against REG/n. 

• Recall the function class CFLSVt. 
 

• Theorem:  [Yamakami (2011)]  
There exists an almost 1-1 pseudorandom generator G 
in CFLSVt  with stretch factor n+1 against REG/n. 
 

• (*) In the next slide, we will give a sketch of the proof of 
the above theorem. 



Existence  II 

 Proof Sketch: 
• First, we define an almost 1-1 function G: {0,1}*→ {0,1}* 

with stretch factor n+1 such that G ∈CFLSVt  and SG = 
IP*, where SG is the image { G(x) | x ∈ {0,1}* } of G.  

• We already know that IP* is REG/n-pseudorandom. 
• Since SG = IP*, SG is REG/n-pseudorandom. 
• As seen before, this implies that G is a pseudorandom 

generator against REG/n. 

QED 



Non-Existence  I 

Next, we show a limitation of pseudorandom generators 
against REG/n. 
 

• Theorem:  [Yamakami (2011)]  
There is no almost 1-1 weakly pseudorandom generator 
in 1-FLIN with stretch factor n+1 against REG.  
 

• (*) In the next slide, we will give a sketch of the proof. 
 



Non-Existence  II 

 Proof Sketch: 
• Assume that such a generator G exists.  
• Define H(xb) = G(x) for any b∈{0,1}.  
• Since H∈1-FLIN, it follows that H-1∈1-NLINMV.  
• Take a refinement f of H-1 in 1-FLIN(partial) by Week 6. 
• Consider the image SG of G. Note that y∈SG ↔ f(y)↓.  
• Since f ∈1-FLIN(partial), we obtain SG ∈1-DLIN = REG.  
• It follows that SG is REG-pseudorandom.  
• Since REG cannot be weakly REG-pseudorandom, a 

contradiction follows. 
 QED 



Function Class CFLMV(2)/n 

• Before moving to the next subject, we discuss an 
advised function class, called CFLMV(2)/n. 

• Recall CFLMV(2) (= CFLMV ∧ CFLMV) from Week 6. 
• Here, we consider its advised version, denoted by 

CFLMV(2)/n.  
 

• Lemma:  [Yamakami (2016)] 
For any multi-valued partial function f,  f ∈ CFLMV(2)/n  
⇔  there exist two multi-valued partial functions g,h ∈ 
CFLMV/n  such that  f(x) = g(x) ∩ h(x)  for any x.  

• In other words, CFLMV(2)/n = CFLMV/n ∧ CFLMV/n. 



Generators Against CFL/n  I 

• Next, we consider pseudorandom generators against 
CFL/n. 
 

• Theorem:  [Yamakami (2016)] 
There exists an almost 1-1 pseudorandom generator G in 
FL ∩ CFLMV(2)/n against CFL/n. 
 

• Note that a famous design-theoretic method of Nisan and 
Wigderson (1994) does not provide a generator in FL ∩ 
CFLMV(2)/n.  
 

• (*) In the next slide, we will show how to define such a G.  



Definition of the Desired Generator 

 Proof Idea: 
• We define the desired generator G as follows. 
• Let us set the value G(w) with w = axy and |x|=|y|+1 for a ∈ 

{ λ,0,1 } and x,y ∈ { 0,1 }*. 
• If a ≠ λ, set G(aw) = aG(xy). 
• Assume a = λ. Let x = bz for b ∈ { 0,1 } and k = (|w|-1)/2. 

1. If w = bzy ∧ zR⊙y ≡ 1 (mod 2), set G(w) = bzybc.  
2. If w = 1zy ∧ zR⊙y ≡ 0 (mod 2), set G(w) = 1zy1.  
3. If w = 0zy ∧ zR⊙y ≡ 0 (mod 2), there are two cases. 

a. If ∃ i [ z(k-i-1) = 1, set G(w) = 0zy*0, where y* is 
obtained from y by flipping only the i-th bit. 

b. Otherwise,  G(w) = 1zy1. 
QED 



Generators Against CFL/n  II 

• Here, we present an impossibility result.  
 

• Theorem:  [Yamakami (2016)] 
There is no almost 1-1 weakly pseudorandom generator 
in CFLMV with stretch factor n+1 against CFL.  

 
• The proof can be done by contradiction. 

 



Open Problems 

• There are many open questions to solve. 
1. Does a 1-1 PRG against CFL/n exist in CFLMV(2)/n? 
2. What happens if we use randomized advice instead of 

deterministic advice for pseudorandom generators? 
3. Is CFL p-sense REG-immune? 
4. We can define CFL-primesimple languages. Find CFL-

primesimple languages. 
5. Is DCFL weakly REG/n-pseudorandom? 
6. Construct efficient pseudorandom generators against 

Σk
CFL.  (See Week 4 for Σk

CFL .) 
7. Find a natural 1-1 pseudorandom generator against 

REG/n. 





Q & A 
I’m happy to take your question! 



 
 

                                 END 
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