
7th Week

Synopsis.
• One-Way Functions and Hardcores
• Pseudorandom Generators
• Interactive Proof Systems
• Primeimmunity

Cryptographic Concepts for Finite
Automata

May 21, 2018. 23:59

Course Schedule: 16 Weeks

• Week 1: Basic Computation Models
• Week 2: NP-Completeness, Probabilistic and Counting Complexity Classes
• Week 3: Space Complexity and the Linear Space Hypothesis
• Week 4: Relativizations and Hierarchies
• Week 5: Structural Properties by Finite Automata
• Week 6: Stype-2 Computability, Multi-Valued Functions, and State Complexity
• Week 7: Cryptographic Concepts for Finite Automata
• Week 8: Constraint Satisfaction Problems
• Week 9: Combinatorial Optimization Problems
• Week 10: Average-Case Complexity
• Week 11: Basics of Quantum Information
• Week 12: BQP, NQP, Quantum NP, and Quantum Finite Automata
• Week 13: Quantum State Complexity and Advice
• Week 14: Quantum Cryptographic Systems
• Week 15: Quantum Interactive Proofs
• Week 16: Final Evaluation Day (no lecture)

Subject to Change

YouTube Videos

• This lecture series is based on numerous papers of T.
Yamakami. He gave conference talks (in English) and
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.

• Use the following keywords to find a playlist of those
videos.

• YouTube search keywords:
 Tomoyuki Yamakami conference invited talk playlist

Conference talk video

Main References by T. Yamakami

✎ T. Yamakami. Immunity and pseudorandomness of context-
free languages. Theor. Comput. Sci. 412(45): 6432-6450
(2011)

✎ T. Yamakami. Not all multi-valued partial CFL functions are
refined by single-valued functions (extended abstract). In
Proc. of IFIP TCS 2014, Lecture Notes in Computer Science
vol. 8705, pp. 136-150 (2014)

✎ T. Yamakami. Structural complexity of multi-valued partial
functions computed by nondeterministic pushdown automata.
ICTCS 2014, CEUR Workshop Proceedings 1231, CEUR-
WS.org 2014, pp. 225-236 (2014)

✎ T. Yamakami. Pseudorandom generators against advised
context-free languages. Theor. Comput. Sci. 613: 1-27
(2016)

1. Cryptographic Primitives
2. (Strongly) One-Way Functions
3. Weakly One-Way Functions
4. Natural Candidates for OWFs
5. Pseudorandomness
6. Polynomial-Time Indistinguishability
7. Generating Pseudorandom Bits
8. Pseudorandom Generators
9. PEGs Versus OWFs

I. One-Way Functions and Pseudorandom
Generators

Cryptographic Primitives

One-way
function

Pseudorandom
generator

Hardcore
predicate

Bit commitment Oblivious transfer

Etc.

Zero-knowledge proof

• If we want to build a complex cryptographic system, it
is necessary to break it into small building blocks.

• Primitives are such building blocks that support
complex cryptographic systems.

What are One-Way Functions?

• Yao (1982) first considered the notion of one-way function.
• Intuitively, a (strongly) one-way function f(x) is
 Easy to compute from its inputs x, but
 Hard to invert from its images y=f(x) (i.e., find x′∈f-1(y)).

Probx,A[f(A(f(x),1n)) = f(x)] < 1/p(n) for any efficient
algorithm A, any polynomial p and almost all sizes n.

x Computes f(x). Input

(y,1n) Computes x∈{0,1}n
s.t. f(x)=y.

Input

Easy!

Hard!

Probabilistic Poly-Time Algorithms (revisited)

• Recall the model of probabilistic Turing machine from
Week 2.

• We informally use the term “probabilistic polynomial-
time algorithm” to mean “probabilistic polynomial-time
Turing machine.”

Probabilistic Computation of PTMs (revisited)

• A PTM produces accepting/rejecting computation paths.

input x

accepted rejected

input x
PTM M

probabilistic
computation

probabilistic
computation

M accepts x M rejects x

or

accepted rejected

[] 1Pr () 1
2M M x = > [] 1Pr () 0

2M M x = ≥

(Strongly) One-Way Functions I

• Consider a function f : {0,1}* → {0,1}*.

• f is (strongly) one-way if
1. (easy to compute) there is a deterministic

polynomial-time algorithm that computes f, and
2. (hard to invert) for every probabilistic polynomial-time

algorithm A, every positive polynomial p, and for all
sufficiently large length n,

1
,

1Pr ((),1) (())
()n

n
A U n nA f U f f U

p n
− ∈ <

Un is a random
variable ranging
over {0,1}n.

(Strongly) One-Way Functions II

• This formula means:
 the probability that, on input (y,1n) with y∈{ f(x) | x∈

{0,1}n }, algorithm A finds x′ satisfying f(x′) = y is
polynomially small.

• Note that there are possibly many x′ satisfying f(x′) = y.
• So, it suffices to find at least one of them probabilistically.

1 1Pr ((),1) (())
()

n
n nA f U f f U

p n
− ∈ <

y = f(x)
x

x′

{0,1}n

Weakly One-Way Functions

• There is another notion of one-way function.

• f is weakly one-way if
1. (easy to compute) there is a deterministic

polynomial-time algorithm that computes f, and
2. (slightly hard to invert) there exists a polynomial p

such that, for every probabilistic polynomial-time
algorithm A and all sufficiently large length n,

• (Claim) A strongly one-way function exists ⇔ a weakly
one-way function exists. [Yao (1982)]

1
,

1Pr ((),1) (())
()n

n
A U n nA f U f f U

p n
− ∉ >

Natural Candidates for OWFs I

• Unfortunately, we do not know whether or not one-way
functions (OWFs) exist.

• However, we have several good candidates for OWFs.
• The RSA function

– with index set (N,e), where N is a product of two
(1/2⋅log2N)-bit primes P and Q, and e is an integer
smaller than N and relatively prime to (P-1)(Q-1).

• The Rabin function

– with a similar condition to the above,

, () mode
N eRSA x x N=

2() modNRabin x x N=

There is no
common factor.

Natural Candidates for OWFs II

• The DLP (discrete logarithm problem) function
– with index set (P, G), where P is a (1/2⋅log2N)-bit

prime P and a primitive element G in the multiplicative
group modulo P,

• Open Problems
Prove or disprove that the aforementioned candidates

are truly one-way functions.
More generally, prove or disprove the existence of

one-way functions.

, () modx
P GDLP x G P=

Pseudorandomness

• Blum and Micali (1984) considered how to generate a
sequence of bits whose next bit is hardly predicted by
even powerful adversary.

• In contrast, Yao (1982) considered a sequence that no
adversary distinguishes from a uniformly random
sequence with a small margin of error.

• Let X = { Xn }n∈N be an ensemble of random variables
indexed by N.

• For example, consider an infinite series of fair coins. For
each n∈N, we define Xn to be the outcome of the flip of
the (n+1)th coin.

meaning: “family” or “series”

Polynomial-Time Indistinguishability

• We start with “indistinguishability” of two ensembles of
random variables.

• Two ensembles X = { Xn }n∈N and Y = { Yn }n∈N are
indistinguishable in polynomial time (or computationally
indistinguishable) if
 for every probabilistic polynomial-time algorithm M,

every positive polynomial p, and all sufficiently large
length n, 1Pr (,1) 1 Pr (,1) 1

()
n n

n nM X M Y
p n

 = − = <

The probability of distinguishing between
Xn and Yn is polynomially small.

Generating Pseudorandom Bits

short
truly
random
bits

true randomness

computer
algorithm

long
pseudorandom
bits

truly random
bits

hard to
distinguish
them

??

“uniform” ensemble

Pseudorandom Generators

• An ensemble X = { Xn }n∈N is called pseudorandom if
there is a uniform ensemble U = { Ul(n) }n∈N such that
{ G(Un) }n∈N and U are polynomial-time indistinguishable,
where l: N → N is a fixed function.

• A pseudorandom generator G is a deterministic
polynomial-time algorithm satisfying the following two
conditions:
1. (expansion) there is a function l: N → N (called the

expansion/stretch factor of G) such that l(n) > n for
all n∈N and |G(s)| = l(|s|) for all s∈{0,1}*, and

2. (pseudorandomness) the ensemble { G(Un) }n∈N is
pseudorandom.

Ul(n) is chosen
uniformly at random.

PRGs Versus OWFs

• Let G: {0,1}* → {0,1}* be a function with expansion factor
l(n) = 2n (that is, |G(x)| = 2|x| for all x∈{0,1}*).

• We define a function f: {0,1}* → {0,1}* by

• (Claim) If G is a pseudorandom generator, then f is a

strongly one-way function.

• Moreover, we can prove the following.

• (Claim) If there exists a one-way function, then a
pseudorandom generator exists. [Håstad-Impagliazzo-
Levin-Luby (1999)]

(,) ()f x y G x=

1. What are Hardcore Functions?
2. Hardcore Predicates (or Functions)
3. Examples of Hardcores
4. Why are Hardcores so Useful?

II. Hardcore Functions

What are Hardcore Functions?

• A hardcore function P for a function f is
Easy to compute from its inputs x, but
Hard to “predict” P(x) from the images f(x) of the

function f without knowing inputs x.
|Probx,A[A(f(x),1n) = P(x)] – 1/2l(n)| < 1/p(n) for

any polynomial p and almost all sizes n.

x Computes P(x). Input

(y,1n) Computes P(x) s.t.
x∈{0,1}n and f(x)=y.

Input

Easy!

Hard!

where l(n) is the size function of P

Hardcore Predicates (or Functions)

• Let b: {0,1}*→ {0,1} be a polynomial-time computable
predicate (i.e., functions outputting 0 or 1).

• Let f: {0,1}*→ {0,1}* be a function.

• b is a hardcore predicate (or a hardcore) of f if, for every
probabilistic polynomial-time algorithm A, every positive
polynomial p, and all sufficiently large n,

• This means that, to predict the value b(s) from input f(s)
is similar to choosing 0 or 1 at random.

• Hardcores actually exist for any strongly one-way
function (assuming that one-way functions exist).

[] 1 1Pr (() ()
2 ()n nA f U b U

p n
= < +

Examples of Hardcores

• There are known hardcore predicates for (strongly) one-
way functions of a special form (explained below).

• Let b: {0,1}*×{0,1}*→ {0,1} be the (bitwise) inner-product-
mod-2 function; that is, b(x,r) = x⊙r (mod 2).

• Example:

• (Claim) Let f be any strongly one-way function. Define g
as g(x,r) = f(x)r (concatenation), where |x|=|r|. The
predicate b (defined above) is a hardcore of g.
[Goldreich-Levin (1989)]

(1011,1101) 1 1 0 1 1 0 1 1 (mod 2)
 2 (mod 2) 0
b = + + +

= =

Why are Hardcores so Useful?

• Let f be any one-way permutation and
 let P be any hardcore predicate for f.

• Define G(x) = f(x)P(x) (string concatenation).

• The definition of a hardcore says that we cannot predict the
value P(x) from the value f(x) with high confidence.

• Well-Known Result: unpredictability = pseudorandomness

• Therefore, this function G(.) is a pseudorandom generator
that stretches n bit seeds to n+1 bit strings.

It’s like
a

magic!

f(x) P(x) G(x)
Guess what
comes next?

1. Public-Key Cryptosystems
2. Non-Interactive Bit Commitment

III. Basic Cryptosystems

Private-Key/Public-Key Encryption Schemes

An insecure channel

A(n) secure/insecure channel

Bob Alice

Encryption

Plaintext

Decryption

Ciphertext Ciphertext

Encryption key

Decryption key

A schematic of an encryption scheme

Symmetric/asymmetric key

Private/public key

Non-Interactive Bit Commitment
• In a non-interactive bit commitment scheme, a committer

(Alice) and a verifier (Bob) communicate with each other
and satisfy the following conditions.
 (hiding) In the commit phase, Alice commits to a single

bit b and sends some information z to Bob so that Bob
cannot recover b from z,

 (binding) In the opening (or reveal) phase, Alice reveals
her bit b and Bob checks if b is the correct committed bit
from z. We require that Alice cannot cheat Bob by
revealing a different bit.

committing (z)

committer verifier

opening (b)

(b)

1. What is an Interactive Proof?
2. Interactive Proof Systems
3. Constant-Space Interactive Proofs
4. Private Coins vs. Public Coins
5. One-Way Functions for 1-Tape Machines

IV. Interactive Proof Systems

What is an Interactive Proof?

• An interaction between two (or more) parties has been
studied in many cryptographic contexts.

• Goldwasser, Micali, and Rackoff (1989) studied a series of
interactions between a prover (who presents a proof) and a
verifier (who verifies the proof).

• This gave rise to a notion of interactive proof (IP) systems.
• In an IP system, a prover P sends a proof (either correct or

wrong) and a verifier V checks if the proof is indeed correct.

interactions

prover verifier

Intuitive Definition

• A language L has an IP system ⇔ there exists a verifier V
that satisfies the following two conditions:

1. For every x∈L, there exists a honest prover P such that V
accepts a proof from P with probability at least 2/3; and

2. For every x∉L, V rejects any proof from any (possibly
malicious) prover with probability at least 2/3.

Accepts with probability ≥ 2/3

Rejects with probability ≥ 2/3 prover verifier

A proof is a piece of information.

Believe me. This is
a correct proof.

Let me judge the
correctness of your proof.

x∈L

x∉L

Underlying Machine Model

• Dwork-Stockmeyer IP system is illustrated as follows.

¢ $ x1x2x3…..xn

An infinite private tape

¢ $ x1x2x3…..xn

A
communication

cell

An input tape

A finite control unit

A pfa verifier A prover

An input tape

A tape head

A
communication

alphabet Γ

An alphabet
∆

A tape
alphabet Σ

Interactive Proof Systems

• Let (P,V) be a pair of prover P and verifier V.
• Let L be a language over alphabet {0,1}.

• (P,V) is an interactive proof system for L if
 V is a specified probabilistic machine,
 (P,V) satisfies the following conditions:
1. (completeness) for every x∈L,

2. (soundness) for any x∉L and any prover B,

[] 2Pr (,)() 1
3

P V x = ≥

[] 1Pr (,)() 1
3

B V x = ≤

Constant-Space Interactive Proofs

• Dwork and Stockmeyer (1992) considered interactive
proof (IP) systems with 2-way probabilistic finite
automata (2pfa’s).

• Major advantages: we can prove certain separation
results that are impossible (at least at present) to obtain
for polynomial-time or logarithmic-space bounded IP
systems.

• IP(〈restrictions〉) = the class of all languages that have IP
systems satisfying the restrictions given in 〈restrictions〉.

• For example:
• IP(2pfa,poly-time) = the class of all languages that

have IP systems with 2pfa verifiers running in
expected polynomial time.

Private Coins vs. Public Coins

• In an IP system, a verifier obtains random bits (by
flipping coins) and decides his next actions. The verifier
keeps those random bits secretly. A prover has no way
knowing those bits of the verifier.

• This situation is described as the verifier playing with
“private coins.”

• In contrast, if the verifier reveals his random bits to the
prover every time, then this situation is described as the
verifier playing with “public coins.”

• If the verifier uses “public coins” instead of “private
coins,” then we write AM(〈restriction〉) in place of
IP(〈restriction〉).

“AM” stands for “Arthur-Merlin game.”

Known Results

• Dwork and Stockmeyer (1992) obtained the following
results.

• (Claim)
1. 2PFA ⊆ AM(2pfa) ⊆ IP(2pfa,poly-time) ⊆ IP(2pfa)
2. Pal = { x∈{0,1}* | x=xR } is in IP(2pfa) but not in

AM(2pfa).
3. Center = { u1v | u,v∈{0,1}*,|u|=|v| } is in AM(2pfa) but

not in 2PFA.

• (*) We will return to this topic in Week 13.

Track Notation (revisited)

• To describe the notion of one-way function in the 1-tape
linear-time model, we need to introduce a “track”
notation

• Even if |x| ≠ |y|, we want to use the same notation to
express

if |x| = |y|+k and k≥1 and |x|+k =|y| and k≥1, respectively,
where # is a distinct “blank” symbol.

#k

x
y

#kx
y

1 2
1 2 1 2

1 2

, where and n
n n

n

xx xx
x x x x y y y y

yy yy

= = =

One-Way Functions for 1-Tape Machines I

• A total function f : Σ1* → Σ2* is called one-way if
1. f ∈ 1-FLIN, and
2. there is no function g ∈1-FLIN such that

 for all inputs x.

• When f is length-preserving, the above equality can be
replaced by f(g(f(x))) = f(x).

• Theorem: [Tadaki-Yamakami-Lin (2010)]
There is no one-way function in 1-FLIN.

• (*) In the next slide, we will see a proof sketch.

| |

()
()

1x

f x
f g f x

=

∀x∈Σ1* [|f(x)| = |x|]

One-Way Functions for 1-Tape Machines II

• Recall 1-DLIN and 1-FLIN from Week 1, and 1-FLIN(partial)
and 1-NLINMV from Week 6.

 Proof Sketch:
• Assume by contradiction that a one-way function f : Σ1* →

Σ2* exists in 1-FLIN.
• Define f-1([y 1n]T) = { x#|y|-n | |x|=n, f(x) = y } if |y|≥n; f-1([y

1n]T) = { x | |x|=n, f(x) = y } otherwise.
• Clearly, f-1 ∈ 1-NLINMV.
• As seen in Week 6, since 1-NLINMV ⊑ref 1-FLIN(partial), there

is a refinement, say, g of f-1 in 1-FLIN(partial).
• We then construct a 1DTM computing g in O(n) time.
• Since f-1 ⊑ref g, M converts f, a contradiction against our

assumption.
QED

1. Negligible Functions
2. C-Pseudorandomness
3. Examples of C-Pseudorandom Languages

V. Pseudorandomness for Automata

Negligible Functions

• We apply pseudorandomness to finite automata.

• First, we need a notion of negligible function.

• A real-valued function h: N → R≥0 is negligible ⇔
 ∀p: positive polynomial, h(n) ≤ 1/p(n) holds for all but

finitely many numbers n∈N (super-polynomially
small).

• Example: h(n) = 1/2n, h′(n) = 1/nlog(n)

R≥0 = { z∈R | z ≥ 0 }

Intuition: Pseudorandomness

• A∆L denotes the symmetric difference (A – L)∪(L – A) .

• Intuitively, the C-pseudorandomness of L means:
 for any language A∈C and for almost all n’s,
 |(A∆L)∩Σn| is “nearly” a half of |Σn|. (Fig.1)
• Equivalently: for any language A∈C and for almost all n’s,
 |A∩(L∩Σn)| is “nearly” equal to |A∩(Σn-L)|. (Fig.2)

A∩Σn L∩Σn

Σn

A∩Σn L∩Σn

Σn

Fig.1 Fig.2

C-Pseudorandomness I

• Let L be any language over Σ with |Σ| ≥ 2.
• Let C be any language family.

• L is C-pseudorandom ⇔ for all A∈C over Σ,

 is negligible.

• (Claim) No language in C is C-pseudorandom.
 A∩Σn L∩Σn Σn

() 1
2

n

n

A L∆ ∩Σ
→

Σ

() 1()
2

n

n

A L
h n

∆ ∩Σ
= −

Σ

C-Pseudorandomness II

• We may be focused on p-dense languages.

• A language L (over Σ) is weakly C-pseudorandom ⇔
• for all p-dense A ∈ C (over Σ),

 h′(n) =def | |(A∩L)∩Σn| / |A∩Σn| - ½ | is negligible.

• A language family D is (weakly) C-pseudorandom ⇔
• D contains a (weakly) C-pseudorandom language.

• NOTE: Not known whether NP is P-pseudorandom.

A∩Σn L∩Σn Σn

() 1
2

n

n

A L

A

∩ ∩Σ
→

∩Σ

Examples of C-Pseudorandom Languages

• Let x⊙y denote the (bitwise) binary inner product.
• Consider the following extended language in CFL.

 IP*={ axy | a∈{λ,0,1}, x,y∈{0,1}*,|x|=|y|,xR⊙y≡1 (mod 2) }

• IP* is REG/n-pseudorandom. Hence, we obtain:

• Theorem: [Yamakami (2011)]
 CFL is REG/n-pseudorandom.

• The proof of this theorem utilizes the swapping lemma

for regular languages, discussed in Week 5. (See the
next slide.)

Swapping Lemma for REGs (revisited)

Swapping Lemma for REGs [Yamakami (2008),(2010)]
• If L is regular, then ∃m>0 s.t. ∀n∈N ∀S⊆L∩∑n (|S|≥m)

∀i∈[n] ∃xy,uv∈S (|x|=|u|=i) [xy≠uv & uy,xv∈L].

x y

u v

u y

x v

swapping

i
xy, uv ∈ S uy, xv ∈ L

• See Week 5 for the references.

CFL/n-Pseudorandom Languages I

• We discuss CFL/n-pseudorandom languages.
• Consider the languages
 IP+ = Σ≤8 ∪ (IP3 ∩Σ≥8) Σ2 , where
 IP3 = { axyz | a∈{λ,0,1}, x,y,z∈{0,1}*,|x|=|z|,|y|=2|x|,

(xz)⊙yR≡1 (mod 2) } (extension of IP*)

• CFL(2)/n is an advised version of CFL(2), which was
discussed in Week 5.

• Lemma: [Yamakami (2016)]
 L ∈ CFL(2)/n ⇔ ∃ L1,L2 ∈ CFL/n s.t. L = L1 ∩ L2.

CFL/n-Pseudorandom Languages II

• Theorem: [Yamakami (2016)]
1. IP3 and IP+ are in L ∩ CFL(2)/n.
2. IP3 and IP+ are CFL/n-pseudorandom.

• For the latter claim of the above theorem, we need the

swapping lemma for context-free languages discussed in
Week 5. (See the next slide.)

• Corollary: [Yamakami (2016)]
1. L ∩ CFL(2)/n ⊄ CFL/n.
2. CFL(2) ⊄ CFL/n.

Swapping Lemma for CFLs (revisited)

Swapping Lemma for CFLs [Yamakami, (2008,2016)]
• If L is context-free, then ∃m>0 s.t. ∀n≥2 ∀S⊆L∩∑n ∀j0,k0

∈[2,n-1]Z(k0≥2j0)∀i∈[0,n]∀j∈[j0,k0](i+j≤n)∀u∈∑j0

(|Si,u|<|S|/m(k0-j0+1)(n-j0+1))∃x=x1x2x3,y=y1y2y3∈S
(|x1|=|y1|=i)(|x2|=|y2|=j)(|x3|=|y3|) [x2≠y2&x1y2x3,y1x2y3∈L].

x1 x3

x1x2x3, y1y2y3 ∈ S x1y2x3, y1x2y3 ∈ L

swapping

i

x2

j

y1 y3 y2

x1 x3 y2

y1 y3 x2

• See Week 5 for the references.

Open Problems

• There are many open questions to solve.

1. Is there any CFL/n-pseudorandom language in CFL(2)
(instead of CFL(2)/n)?

2. Find natural languages that are C-pseudorandom
against D for reasonable language families C and D.

1. P-Denseness
2. P-Dense REG-Immunity
3. C-Primeimmunity
4. Examples of C-Primeimmune Languages
5. C-Bi-Primeimmunity
6. Examples of C-Bi-Primeimmune Languages
7. A Connection to C-Pseudorandomness

VI. P-Denseness and Primeimmunity

C-Immunity (revisited)

• Recall the definition of C-immune languages in Week 5.
• Immunity is concerned with “finiteness.”

• Let C be any nonempty language family.

• A language L is C-immune ⇔

1) L is infinite, and
2) no infinite subset A of L exists in C.

• A language family D is C-immune ⇔
• D contains a C-immune language.

A∈C

L: infinite

A: finite

P-Denseness

• All known context-free REG-immune
languages L make the ratio |L∩Σn| / |Σn|
exponentially small.
 E.g., Leq and Pal#

• A language L is polynomially dense (or
p-dense) ⇔
 There is a non-zero polynomial p s.t.

 |L∩Σn| / |Σn| ≥ 1/p(n) for all but finitely
 many n (i.e., only polynomially small).

• Polynomial denseness is a key to our
further discussion.

L∩Σn

Σn

Σn

L∩Σn

P-Dense REG-Immunity

• What language family is p-dense REG-immune?

• Theorem: [Yamakami (2011)]
 L ∩ CFL/n is p-dense REG-immune.

 Proof Sketch:
• Consider the language

 LCenter = { ax0m10my | a∈{λ,0,1}, 2m≤|x|=|y|< 2m+1 }.
• Cleraly, LCenter ∈ L ∩ CFL/n. Thus, it suffices to prove
 LCenter is p-dense REG-immune,

 by the pumping lemma for REGs.

• (Open Problem) Is CFL p-dense REG-immune?

QED

C-Primeimmunity

• Let us introduce a variant of C-immunity using “p-dense”
sets in place of “finite” sets.

• Let C be any language family.

• A language L is C-primeimmune ⇔
1) L is p-dense, and
2) L has no p-dense subset in C.

• A language family D is C-primeimmune ⇔
 D contains a C-primeimmune language.

• NOTE: p-dense REG-immune ⇒ REG-primeimmune

L: p-dense

A: not
p-dense

A∈C

Examples of C-Primeimmune Languages

• Equal = { x ∈ {0,1}* | #0(x) = #1(x) } is not p-dense.
• Here, we consider its extended language:
 Equal* = { aw | a ∈ {λ,0,1}, w ∈ Equal }

• (Claim)
1. Equal* is p-dense.
2. Equal* is in CFL.
3. Equal* is not REG-immune.
4. Equal* is REG/n-primeimmune.

• Theorem: [Yamakami (2011)]
 CFL is REG/n-primeimmune.

 Proof: This comes from Claims 2 & 4 above.

C-Bi-Primeimmunity

• Let C be any language family.

• A language L is C-bi-primeimmune ⇔
• L and Lc are both C-primeimmune.

• A language family D is C-bi-primeimmune ⇔

• D contains a C-bi-primeimmune language.

Lc

C-primeimmune

L

C-primeimmune

Σ*

Examples of C-Bi-Primeimmune Languages

• Recall that x⊙y is the (bitwise) inner product of x and y.
• Consider the following language:
 IP* = { axy | a∈{λ,0,1}, x,y ∈ {0,1}*, |x|=|y|, xR⊙y ≡ 1

(mod 2) }.

• Lemma: [Yamakami (2011)]
 IP* is REG/n-bi-primeimmune.

• Since IP*∈CFL, we conclude the following statement.

• Theorem: [Yamakami (2011)]
 CFL is REG/n-bi-primeimmune.

A Connection to C-Pseudorandomeness

• There is a connection to C-pseudorandomness.

• Lemma: [Yamakami (2011)]
If L is weakly C-pseudorandom, then it is C-bi-
primeimmune.

• The converse does not hold, because the language
Equal* (∈ CFL) is REG-primeimmune but not weakly
REG-pseudorandom.

1. Pseudorandom Generators
2. Existence and Limitation
3. Proof Idea for the Theorem
4. Generators Against CFL/n

VII. PRGs by Finite Automata

Pseudorandom Generators I

• Let G: {0,1}*→ {0,1}* be any function.

• G has stretch factor s(n) ⇔
• |G(x)|=s(|x|) for all x ∈ {0,1}*.

• G fools a language A (over {0,1}*) ⇔

• l(n) =def | Probx[A(G(x))=1] – Proby[A(y)=1] | is
negligible, where |x|=n and |y|=s(|x|).

• Intuitively: A cannot tell the difference between truly
random strings y and generated strings G(x).

x n

G(x) s(n)

Pseudorandom Generators II

• Let G: {0,1}*→ {0,1}* be any function.

• G is a pseudorandom generator against C ⇔
 for all A ∈ C (over {0,1}), G fools A.

• G is a weakly pseudorandom generator against C ⇔
 for all p-dense A ∈ C (over {0,1}), G fools A.

• NOTE: pseudorandom generator ⇒ weakly

pseudorandom generator

Connection to Pseudorandom Languages I

• There is a close connection between C-pseudorandom
generators and C-pseudorandom languages.

• First, we introduce a notion of almost one-to-oneness.

• Let G: {0,1}*→ {0,1}* have stretch factor n+1.

• G is almost 1-1 ⇔
There is a negligible function t such that

 |{ G(x) | x∈{0,1}n }| = |{0,1}n|(1 - t(n)) holds for all n.

• NOTE: If G is exactly 1-1, then t(n)=0.

Connection to Pseudorandom Languages II

• Let G: {0,1}*→ {0,1}* be any almost 1-1 function with
stretch factor n+1.

• Let SG = { G(x) | x ∈ {0,1}* } be the image of G.

• Lemma: [Yamakami (2011)]
 G is a (weakly) pseudorandom generator against C ⇔
 the image SG of G is (weakly) C-pseudorandom.

• (Open Problem)

Can we weaken the above conditions of “almost 1-1”
and “stretch factor n+1”?

Existence I

• Here, we show the existence of pseudorandom
generators against REG/n.

• Recall the function class CFLSVt.

• Theorem: [Yamakami (2011)]
There exists an almost 1-1 pseudorandom generator G
in CFLSVt with stretch factor n+1 against REG/n.

• (*) In the next slide, we will give a sketch of the proof of
the above theorem.

Existence II

 Proof Sketch:
• First, we define an almost 1-1 function G: {0,1}*→ {0,1}*

with stretch factor n+1 such that G ∈CFLSVt and SG =
IP*, where SG is the image { G(x) | x ∈ {0,1}* } of G.

• We already know that IP* is REG/n-pseudorandom.
• Since SG = IP*, SG is REG/n-pseudorandom.
• As seen before, this implies that G is a pseudorandom

generator against REG/n.

QED

Non-Existence I

Next, we show a limitation of pseudorandom generators
against REG/n.

• Theorem: [Yamakami (2011)]
There is no almost 1-1 weakly pseudorandom generator
in 1-FLIN with stretch factor n+1 against REG.

• (*) In the next slide, we will give a sketch of the proof.

Non-Existence II

 Proof Sketch:
• Assume that such a generator G exists.
• Define H(xb) = G(x) for any b∈{0,1}.
• Since H∈1-FLIN, it follows that H-1∈1-NLINMV.
• Take a refinement f of H-1 in 1-FLIN(partial) by Week 6.
• Consider the image SG of G. Note that y∈SG ↔ f(y)↓.
• Since f ∈1-FLIN(partial), we obtain SG ∈1-DLIN = REG.
• It follows that SG is REG-pseudorandom.
• Since REG cannot be weakly REG-pseudorandom, a

contradiction follows.
 QED

Function Class CFLMV(2)/n

• Before moving to the next subject, we discuss an
advised function class, called CFLMV(2)/n.

• Recall CFLMV(2) (= CFLMV ∧ CFLMV) from Week 6.
• Here, we consider its advised version, denoted by

CFLMV(2)/n.

• Lemma: [Yamakami (2016)]
For any multi-valued partial function f, f ∈ CFLMV(2)/n
⇔ there exist two multi-valued partial functions g,h ∈
CFLMV/n such that f(x) = g(x) ∩ h(x) for any x.

• In other words, CFLMV(2)/n = CFLMV/n ∧ CFLMV/n.

Generators Against CFL/n I

• Next, we consider pseudorandom generators against
CFL/n.

• Theorem: [Yamakami (2016)]
There exists an almost 1-1 pseudorandom generator G in
FL ∩ CFLMV(2)/n against CFL/n.

• Note that a famous design-theoretic method of Nisan and
Wigderson (1994) does not provide a generator in FL ∩
CFLMV(2)/n.

• (*) In the next slide, we will show how to define such a G.

Definition of the Desired Generator

 Proof Idea:
• We define the desired generator G as follows.
• Let us set the value G(w) with w = axy and |x|=|y|+1 for a ∈

{ λ,0,1 } and x,y ∈ { 0,1 }*.
• If a ≠ λ, set G(aw) = aG(xy).
• Assume a = λ. Let x = bz for b ∈ { 0,1 } and k = (|w|-1)/2.

1. If w = bzy ∧ zR⊙y ≡ 1 (mod 2), set G(w) = bzybc.
2. If w = 1zy ∧ zR⊙y ≡ 0 (mod 2), set G(w) = 1zy1.
3. If w = 0zy ∧ zR⊙y ≡ 0 (mod 2), there are two cases.

a. If ∃ i [z(k-i-1) = 1, set G(w) = 0zy*0, where y* is
obtained from y by flipping only the i-th bit.

b. Otherwise, G(w) = 1zy1.
QED

Generators Against CFL/n II

• Here, we present an impossibility result.

• Theorem: [Yamakami (2016)]
There is no almost 1-1 weakly pseudorandom generator
in CFLMV with stretch factor n+1 against CFL.

• The proof can be done by contradiction.

Open Problems

• There are many open questions to solve.
1. Does a 1-1 PRG against CFL/n exist in CFLMV(2)/n?
2. What happens if we use randomized advice instead of

deterministic advice for pseudorandom generators?
3. Is CFL p-sense REG-immune?
4. We can define CFL-primesimple languages. Find CFL-

primesimple languages.
5. Is DCFL weakly REG/n-pseudorandom?
6. Construct efficient pseudorandom generators against

Σk
CFL. (See Week 4 for Σk

CFL .)
7. Find a natural 1-1 pseudorandom generator against

REG/n.

Q & A
I’m happy to take your question!

 END

	7th Week
	Course Schedule: 16 Weeks
	YouTube Videos
	Main References by T. Yamakami
	I. One-Way Functions and Pseudorandom Generators
	Cryptographic Primitives
	What are One-Way Functions?
	Probabilistic Poly-Time Algorithms (revisited)
	Probabilistic Computation of PTMs (revisited)
	(Strongly) One-Way Functions I
	(Strongly) One-Way Functions II
	Weakly One-Way Functions
	Natural Candidates for OWFs I
	Natural Candidates for OWFs II
	Pseudorandomness
	Polynomial-Time Indistinguishability
	Generating Pseudorandom Bits
	Pseudorandom Generators
	PRGs Versus OWFs
	II. Hardcore Functions
	What are Hardcore Functions?
	Hardcore Predicates (or Functions)
	Examples of Hardcores
	Why are Hardcores so Useful?
	III. Basic Cryptosystems
	Private-Key/Public-Key Encryption Schemes
	Non-Interactive Bit Commitment
	IV. Interactive Proof Systems
	What is an Interactive Proof?
	Intuitive Definition
	Underlying Machine Model
	Interactive Proof Systems
	Constant-Space Interactive Proofs
	Private Coins vs. Public Coins
	Known Results
	Track Notation (revisited)
	One-Way Functions for 1-Tape Machines I
	One-Way Functions for 1-Tape Machines II
	V. Pseudorandomness for Automata
	Negligible Functions
	Intuition: Pseudorandomness
	C-Pseudorandomness I
	C-Pseudorandomness II
	Examples of C-Pseudorandom Languages
	Swapping Lemma for REGs (revisited)
	CFL/n-Pseudorandom Languages I
	CFL/n-Pseudorandom Languages II
	Swapping Lemma for CFLs (revisited)
	Open Problems
	VI. P-Denseness and Primeimmunity
	C-Immunity (revisited)
	P-Denseness
	P-Dense REG-Immunity
	C-Primeimmunity
	Examples of C-Primeimmune Languages
	C-Bi-Primeimmunity
	Examples of C-Bi-Primeimmune Languages
	A Connection to C-Pseudorandomeness
	VII. PRGs by Finite Automata
	Pseudorandom Generators I
	Pseudorandom Generators II
	Connection to Pseudorandom Languages I
	Connection to Pseudorandom Languages II
	Existence I
	Existence II
	Non-Existence I
	Non-Existence II
	Function Class CFLMV(2)/n
	Generators Against CFL/n I
	Definition of the Desired Generator
	Generators Against CFL/n II
	Open Problems
	Slide Number 73
	Slide Number 74
	Slide Number 75

