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YouTube Videos 

• This lecture series is based on numerous papers of T. 
Yamakami. He gave conference talks (in English) and 
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.  

• Use the following keywords to find a playlist of those 
videos.  

• YouTube search keywords: 
    Tomoyuki Yamakami  conference  invited talk playlist 
 

Conference talk video 
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1. Counting Functions 
2. Function Class #P 
3. Function Class GapP 
4. Characterizations of NP, PP, and C=P 

I. Counting Functions 



Counting Functions 

• Like search and optimization problems, counting 
problems are quite important in practice. 

• Those counting problems can be treated as functions. 
• In general, a counting function is a function that solves a 

certain counting problem.   

• (Example) Permanent 
 instance: a non-negative integer n×n matrix A 
 output: the permanent of A 
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Function Class #P 

• To cope with counting functions, Valiant (1979)  introduced 
a counting function class, called #P. 

• A function f: Σ*→ N is in #P  ⇔  there exists a polynomial-
time NTM M such that, for every input x∈Σ*, f(x) = the 
number of all accepting computation paths of M on x. 
 

input  x 

accepted not accepted 

NTM M 

non-
deterministic 
computation 

f(x) = # of accepting 
computation paths of 
M on input x 

Such an NTM is 
often called a 
counting machine. 



#P Characterizations of NP, PP, C=P 

• #P functions are quite useful to characterize many  
classes of decision problems. 

• L be any decision problem. 

• L ∈ NP ⇔  there is a function f ∈ #P such that, for every 
input x, 
x∈L ↔  f(x) > 0  

• L ∈ PP ⇔  there are two functions f,g ∈ #P such that, for 
every input x, 
x∈L ↔  f(x) > g(x)  

• L ∈ C=P ⇔  there are two functions f ∈ #P, g ∈ FP such 
that, for every input x, 
x∈L ↔  f(x) = g(x)  

 
 

 



Function Class GapP 

• A function f: Σ*→ N is in GapP  ⇔  there exists a 
polynomial-time NTM M such that, for every input x∈Σ*, 
f(x) = the number of all accepting computation paths of 
M on x minus the number of all rejecting computation 
paths of M on x. 
 

 An alternative definition 
• A function f: Σ*→ Z is in GapP  ⇔  there are two 

functions g,h ∈ #P such that, for every input x∈Σ*, f(x) = 
g(x) – h(x). 

• We express this definition as GapP = #P − #P.  



GapP Characterizations of PP, C=P 

• Here, we give GapP characterizations of the complexity 
classes PP and C=P. 

• L be any decision problem. 

• L ∈ PP ⇔  there is a function f ∈ GapP such that, for 
every input x, 
 x∈L ↔  f(x) > 0  

• L ∈ C=P ⇔  there is a function f ∈ GapP such that, for 
every input x, 
 x∈L ↔  f(x) = 0  

• (*)  co-C=P will be discussed in Week 12 in relation to 
nondeterministic quantum computation. 

 
 



1. CSPs with Complex Numbers 
2. Expressed by Bipartite Graphs 
3. Decision CSPs 
4. Classification Theorem of Shaefer 
5. Worlds of NP and CSPs 
6. Counting CSPs (or #CSPs) 
7. Visualizing #CSP(F) 
8. Dichotomy Theorem (Exact Counting)  

II. Constraint Satisfaction Problems 



CSPs have Appeared in Many Fields 
• Generally speaking, a constraint satisfaction problem 

(CSP) takes two types of items as an input: 
 variables: x1,x2,...,xn 

 constraints: f1(x6,x3,x5),f2(x3,x6),... 

• Note that many existing real-life problems can be 
expressed in the forms of CSPs. 

• CSPs have been studied extensively in many fields, 
including: 
 artificial intelligence 
 database query evaluation 
 type inference 
 scheduling 
 graph theory 
 statistical physics 

• (Open Problem)  Can we efficiently solve all CSPs? 



CSPs with Complex Numbers 

• Standard CSPs mostly deal with strings or integers.  
• Here, we want to discuss CSPs dealing with arbitrary 

complex numbers. 
• How can we handle real numbers or even complex 

numbers? 
• There have been several ways to deal with complex 

numbers in computational complexity theory. 
• Here, we treat complex numbers as “objects” rather 

than a pair of “binary series.”  
• In this way, we perform natural operations (such as, +, 

÷, ×, etc.) on such objects. Each of those operations are 
assumed to take a unit time (i.e. one step). 
 



Extension of FP and #P to Complex Numbers 

• By allowing arbitrary complex numbers to use, we 
naturally extend the standard function classes FP and 
#P to function classes handling complex numbers. 

• Let C denote the set of all complex numbers. 

1. FPC = the set of all complex functions computable in 
polynomial time 

2. #PC = the set of all complex functions computable by 
counting machines in polynomial time 



Example: Boolean Variables and Formulas 
• We begin with SAT, which is a simple example of CSP. 
• Our input instance:  a logical formula  F in CNF 

 
 
 
 
 
 

• Our Possible Questions about the formula F: 
• Is there any satisfying (variable) assignment for F? 
• How many satisfying (variable) assignments for F are 

there? 
• Can we approximate such a number? 
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Expressed by Bipartite Graphs 

• We can express the same F using a bipartite graph. 
 
 
 
 
 
 

• Is there any satisfying (variable) assignment for F? 
 

• How many satisfying (variable) assignments for F? 
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x2 
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x4 

OR3(x1,x4,x3) 

OR2(x2,x4) 

OR3(x1,x4,x3) 
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Boolean variables: {x1,x2,x3,x4} 
Unweighted constraints:  
{OR3(x1,x4,x3),OR2(x2,x4),OR3(x1,x4,x3)} 

variables 
constraints 
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Decision CSPs  I 

• The decision version of unweighted CSPs (or decision 
CSPs) are all NP problems.  

• In the study of CSPs, one research direction is to 
restrict a type of their constraints, instead of allowing all 
constraints. 

• Let F be any set of constraints. This set F is called a 
constraint language in some literature. 

• Decision CSP: CSP(F) 
 Instance:  
 a set of variables 
 a set of constraints in F 

 Question: 
 Is there any truth assignment that make all 

constraints true?  



Decision CSPs  II 

• There are a number of decision CSPs. 
• Here, we give a few examples. 
• Examples of CSP(F)’s 

• SAT (satisfiability problem) 
• COLORABILITY (colorability problem) 
• VERTEX-COVER (vertex cover problem) 

• 3-Colorability Problem 
 instance:  
 variables:  a set V of vertices in a graph G=(V,E) 
 constraints: NEQ(x,y)  (inequality) 

 question: 
 is there any coloring f: V → {1,2,3} s.t. 

NEQ(f(v),f(w)) for all (v,w)∈E? 



Classification Theorem of  Schaefer  I 

• There has been a large volume of work on CSPs. 
• We pick a notable result on the complexity of the CSPs. 

 
• Let F be any set of constraints used for CSPs. 
• Schaefer (1978) proved a dichotomy theorem for 

• unweighted Boolean CSPs, 
   (that is, F = Boolean constraints) 

 
• A dichotomy theorem says that every CSP(F) is 

classified into only two categories:  
1. problems in P, and   
2. problems that are NP-complete. 



Classification Theorem of  Schaefer  II 

• We formally state the result of Schaefer.  
• Dichotomy Theorem:  [Schaefer (1978)] 
 If F is in one of six sets of constraints described 

below, then CSP(F) is in P.  
Otherwise, CSP(F) is NP-complete. 

• Six sets of unweighted Boolean constraints: 
1. 0-valid 
2. 1-valid 
3. weakly positive 
4. weakly negative 
5. affine 
6. bijection 

E.g., an affine relation is a 
collection of solutions of a 
certain set of linear 
equations over Galois field 
GF(2).  



Worlds of NP and CSP(F)’s (if P≠NP) 
World of NP-problems 

P 

NP-complete 
problems 

infinitely 
many 
distinct 
levels 

P-computable 
CSP(F)’s 

NP-complete 
CSP(F)’s 

World of CSP(F)’s 

by Ladner (1975) 

Only 2 levels 

NP has infinitely many levels 
induced by ≤m

p, assuming P≠NP. 
CSP(F) has only 2 levels 
induced by ≤m

p, assuming P≠NP. 



Counting CSPs (or #CSPs) 

• Next, we study a counting version of CSPs 
   (called counting CSPs or #CSPs).   

• Let F be any set of constraints. 

• Counting CSP: #CSP(F) 
• Instance:  
 a set of Boolean variables 
 a set of constraints in F 

• Question: 
 How many (variable) assignments satisfy all the 

given constraints? 
 

• NOTE: all #CSPs (counting CSPs) are #P problems.  

Here, we consider only 
the “Boolean” case. 



Examples of #CSPs 

• Here are a few examples of #CSPs. 
 

• Examples: 
• #SAT (counting satisfiability problem) 
• #BIS  (counting bipartite independent set problem) 
• #DOWNSET (counting downset problems) 



Visualizing #CSP(F)  I 
• A constraint frame Ω is a tuple (G,X|F′,π), where  

1. a undirected bipartite graph G = (V1|V2,E), 
2. a variable set X = { x1,x2,...,xn },  
3. F′ ⊆ F, a finite subset, and  
4. π: V1∪V2 → X∪F′ (a labeling function) s.t. 
    π(V1)⊆X and π(V2)⊆F′.  
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(Boolean) constraints:  
π(v1) = 〈 f1, (x1,x4,x3) 〉,  
π(v2) = 〈 f2, (x2,x4) 〉,   
π(v3) = 〈 f3, (x1,x4,x3) 〉   

u1 

u2 

u3 

u4 

v1 

v2 

v3 

Boolean variables: {x1,x2,x3,x4} 
π(u1) = x1, π(u2) = x2, π(u3) = x3, 
π(u4) = x4 



Visualizing #CSP(F)  II 

• Each counting problem #CSP(F) is defined as follows. 
  
• #CSP(F)  
 instance: a constraint frame Ω 
 task: compute the value  cspΩ 
 

• When we consider the computational complexity of 
#CSP(F), we expand FP and #P to handle arbitrary 
complex numbers.   



How to Describe a Constraint 
• A constraint f of arity k is a function from {0,1}k to C. 
• We assume a lexicographic order on {0,1}k. 
• Let  f : {0,1}2 → C be any constraint of arity 2. This  f  is 

expressed as: 
 

• Let  f : {0,1}3 → C be any constraint of arity 3. 

 
• Examples: 

1. OR2=[0,1,1,1],   OR3=[0,1,1,1,1,1,1,1] 
2. Implies=[1,1,0,1] 
3. EQ2=[1,0,0,1],   EQ3=[1,0,0,0,0,0,0,1] 
4. NAND2=[1,1,1,0],   XOR2=[0,1,1,0] 
5. ∆0 = [1,0],    ∆1 = [0,1] 

[ (00), (01), (10), (11)]f f f f f=

[ (000), (001), (010), (011), (100), (101), (110), (111)]f f f f f f f f f=



Simple Results on Unweighted Constraints 

• An unweighted (Boolean) constraint  is a constraint  
mapping {0,1}k to {0,1}  for a certain constant k∈N+. 
 

• CSPs with unweighted constraints have been studied 
for a long time.  

• (Claim)  Here are simple known results about 
unweighted (Boolean) constraints: 
#CSP(EQ2) ∈ FP 
#CSP(AND2) ∈ FP 

• (Open Problem)  Is #CSP(OR2)∈FP? 



Dichotomy Theorems (Exact Counting)  I 

• Exact Counting:  #CSP(F)  
• We review some known results about the exact counting 

of CSP(F)’s. 
 

• Creignou and Herman (1996) proved a dichotomy 
theorem about 
 unweighted Boolean #CSPs. 

• Dyer, Goldberg, and Jerrum (2009) proved a dichotomy 
theorem about 
 non-negative-weighted Boolean #CSPs. 

• Cai, Lu, and Xia (2009) proved a dichotomy theorem 
about 
 complex-weighted Boolean #CSPs. 

If F consists of affine constraints, then 
#CSP(F) is in FP. Otherwise, #CSP(F) 
is #P-complete. 



Classification Theorems (Exact Counting)  II 

• We quickly review the result of Cai, Lu, and Xia (2009). 
 

• Let F be any complex-weighted constraint set. 

• (Claim)  [Cai-Lu-Xia (2009)] 
1. If all constraints in F are affine, then #CSP(F) ∈ FPC. 
2. Otherwise, #CSP(F) is #P-complete under 

polynomial-time Turing reductions.  



1. Randomized Approximation Schemes (RASs) 
2. Randomized Approximate Counting 
3. AP-Reducibility for #CSPs 
4. Result of Dyer-Goldberg-Jerrum (2010) 
5. Classification Theorem of Dyer et al. 

 

III. Approximate Counting of CSPs 



Function-Oracle PTMs (revisited) 

• Recall function-oracle Turing machines from Week 6. 

input x 

..... 

function f 

query  z1 

answer f(z1) 

query  z2 

answer f(z2) ..... 
oracle 
TM  M 



Randomized Approximation Schemes (RASs) 

• We are focused on the approximate counting of CSPs 
instead of the exact counting of CSPs. 

• We explain what type of approximation to use. 
• Let F be a function from Σ*→ C.  
• A randomized approximation scheme (or RAS) for F is a 

probabilistic algorithm that 
• takes (x,ε)∈Σ*×R≥0 as an input, and 
• outputs a number w such that 
• F(x) are approximated by w with relative error of 2ε 

     with high probability. 
• A fully polynomial-time randomized approximation scheme 

(or FPRAS) is a RAS that runs in time polynomial in 
(|x|,1/ε). 

NOTE: in this model, even if 
α and β are approximated, 
α+β may not be 
approximated properly for 
complex numbers α, β. 

2 2   and  arg
( ) ( )
w w

F x F x
ε ε ε−  
≤ ≤ ≤ 

 



Randomized Approximate Counting 

• It is practical to approximate #CSPs rather than 
compute #CSPs exactly. 
 

• Randomized Approximate Counting:  #CSP(F) 

Let  #CSP*(F) = #CSP(F, U), where 
   U is the set of all unary constraints. 

 
 

• Here, we overview a result of Dyer, Goldberg, and 
Jerrum (2010) regarding the approximation complexity 
of #CSP(F)’s.  
 

“*” means that we 
use any unary 
constraint for free 
of charge. 



AP-Reducibility for #CSPs 

• Dyer, Goldberg, Greenhill, and Jerrum (2003) introduced a 
notion of (randomized)  approximation-preserving 
reduction (or AP-reduction).  

• Let F and G be any two counting problems. 

• F is AP-reducible  to G by an AP-reduction M  ⇔   
• M is a function-oracle PTM working on input (x,ε) with 

an oracle, 
• M is a RAS for F and the oracle is also a RAS for G, 
• every oracle call made by M is of the form (w,δ) with 

1/δ ≤ poly(|x|,1/ε), 
• the running time of M is bounded by a polynomial in 

(|x|,1/ε). 



Notational Convention 

• Notation: 
1. F ≤AP G ⇔ F is AP-reducible to G. 
2. F ≡AP G  ⇔  F ≤AP G and G ≤AP F. 

 
• We list some simple known results about unweighted 

(Boolean) constraints: 
#CSP(OR2) ≡AP #CSP(NAND2) ≡AP #SAT 
#CSP(Implies) ≡AP #BIS 

 
• (Claim)  [Dyer-Goldberg-Jerrum (2003)] 
    #DOWNSET ≡AP #BIS ≤AP #SAT 

 



Result of Dyer-Goldberg-Jerrum (2010) 
• Before describing our result, we quickly go over the 

aforementioned result of Dyer, Goldberg, and Jerrum 
(2010). 

• They proved the next theorem on unweighted constraints. 
• Let F be any set of unweighted constraints. 
• Trichotomy Theorem:  [Dyer-Goldberg-Jerrum (2010)]. 

• If F consists of affine constraints, then #CSP(F)∈FP. 
• Otherwise, if F ⊆ IM-conj, then #CSP(F) ≡AP #BIS. 
• Otherwise, #CSP(F) ≡AP #SAT. 

• IM-conj = set of Boolean constraints logically equivalent to 
products of Implies, ∆0, and ∆1, where  
• ∆0(x) = False,   ∆1(x) = True, and 
• “Implies” means a logical connective “→” (implies); i.e., 

Implies(x,y) = OR2(NOT(x), y) 



1. Unary Constraints are Free of Charge 
2. Degenerate Constraints 
3. Special Constraint Sets 
4. Dichotomy Theorem 
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6. T-Constructability 
7. Examples of Operations 
8. Useful Properties of T-Constructability 

IV. Classification Theorem 



Unary Constraints are Free of Charge 

• Here, any unary constraint is used for free of charge.  
• Let U be the set of all unary constraints. 
• Constant unary constraints are ∆0, and ∆1. 
• Such a use of free unary constraints has been made 

elsewhere. 
o Feder (2001) for Boolean CSPs 
o Dalmau and Ford (2003) for Boolean CSPs 
o Cai, Huang, and Lu (2010) for Holant problems 
o Cai, Lu, and Xia (2009) for Holant problems 
o Dyer, Goldberg, Jalsenius, and Richerby (2010) for 

bounded-degree #CSPs 
o Yamakami (2010) for bounded-degree #CSPs 

• Notational convention: 
 #CSP*(F)  =def  #CSP(F,U) 

∆0(x) = False(x)   
∆1(x) = True(x)  



Degenerate Constraints 

• Degenerate constraints are ones that are expressed as 
products of unary constraints. 

• To be more precise, let us consider a constraint f of arity k 
that can be factorized into k unary constraints u1,u2,...,uk. 
 
 
 
 
 
 
 

• In this case, f is called degenerate. 
• cspΩ is simply calculated as: 

x1 

x2 

xk 

f (x1,x2,...,xk ) 

label 

label 

x1 

x2 

x4 

u1(x1) 

u2(x2) 

uk(xk) 

label label 

... 
... 

... 
... 

... 

( )
1
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i

csp u uΩ
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= +∏

factorization 
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Special Constraint Sets 

• Let each hi denote a unary constraint.  

• NZ = set of constraints f of arity ≥1 such that 
f(x1,x2,...,xk) ≠ 0 (non-zero)  for all (x1,x2,...,xk)∈{0,1}k   

• DG = set of all degenerate constraints 

• ED = set of constraints f of arity ≥1 such that 

 

with ℓ1,ℓ2≥0, ℓ1+ℓ2≥1, and 1≤ji,mi,ni≤k, where each gi is 
either binary EQ2 or XOR2. 

• IM = set of constraints f∉NZ of arity ≥1 such that  
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Dichotomy Theorem 

• Let  #SATC be a complex-weighted version of the 
counting satisfiability problem. 

• Yamakami’s (2012) dichotomy theorem says: 
• Dichotomy Theorem:  [Yamakami (2012)] 

1. If F⊆ED, then #CSP*(F)∈FPC. 
2. Otherwise, #SATC ≤AP #CSP*(F). 

• A key is the following proposition on signatures  f. 
• Proposition:  [Yamakami (2012)] 

Assume that f ∉ AF∪ED. Let F be any signature set. 
1. #CSP*(Implies,F) ≡AP #CSP*(OR2, F).  
2. If f ∉ED∪NZ, then #CSP*(OR2,F) ≤AP #CSP*( f, F). 



An Outline of the Proof of the Proposition 

• Let us give an outline of the proof of Item (2) of the 
previous proposition. 

• The proof proceeds by induction on the arity of  f.  

1. Basis case: k = 1. 
2. Next basis case: k = 2. 
3. Induction case: k ≥ 3. 

• Since Basis Case (k=1) is trivial, we are focused on 
Next Basis Case. 

• In the next slide, we will present a bit of flavor of the 
proof.  

Trivial from the definitions. 

By constructing AP-reductions. 

A core of the proof. 



Next Basis Case: k = 2 
• The next basis case is handled case by case.  

 
           CASES                                   WANTS TO PROVE 

 
• Let  f = [a,0,0,b]  with  ab ≠ 0.  

 
• Let  f = [0,a,b,0]  with  ab ≠ 0.  

 
• Let  f = [a,b,c,0]  with  abc ≠ 0.  

 
• Let  f = [1,a,b,c]   
             with  abc ≠ 0  and  ab ≠ c.  
 
• Let  f = [a,b,0,c]  with  abc ≠ 0.  

#CSP*(EQ2,F) ≤AP #CSP*( f ,F) 

#CSP*(XOR,F) ≤AP #CSP*( f ,F) 

#CSP*(OR2,F) ≤AP #CSP*( f ,F) 

We will prove this claim in 
the subsequent slides. 

#CSP*(OR2,F) ≤AP #CSP*( f ,F) 



T-Constructability  I 

• For the case of k≥3, we need to introduce a useful notion 
of “T-constructability.” 

• A signature  f  is T-constructable from a set G of 
signatures if  f  is obtained from G by recursively applying 
the following operations. 
1. permutation 
2. pinning 
3. projection 
4. linking 
5. multiplication 
6. expansion 
7. normalization  

• We write  f ≤conG  if  f  is T-constructable from G.  
• If G = {g}, we simply write f ≤cong.  

See the subsequent slides 



T-Constructability  II 

• We explain the operation “linking.” 
• linking 

 
 
 

• That is, “linking” is a replacement of variable xi by xj. 
 
 
 
 

,   wherei jx xg g =


1 1 1 1 1 1( , , , , ) ( , , , , , )i jx x
i i k i j i kg x x x x g x x x x x=
− + − +=   

x1 

xi 

xj 

xk 

g(x1,...,xk) 

x1 

xi 

xj 

xk 

gxi=xj(x1,...,xk) 

linking 



T-Constructability  III 

• We explain another operation “multiplication.” 
• multiplication 

 
 
 

• “Multiplication” is a multiplication of two signatures. 

1 2 ,   whereg g g 

1 2 1 1 1 2 1( , , ) ( , , ) ( , , )k k kg g x x g x x g x x=   

x1 

xi 

xj 

xk 

g1(x1,...,xk) 

g2(x1,...,xk) 

x1 

xi 

xj 

xk 

g1(x1,...,xk) x1 

xi 

xj 

xk 
g2(x1,...,xk) 

+ 
multiplication 



Useful Properties of T-Constructability 

• We list a few useful properties of T-constructability. 

• (Claim)   ≤con is a partial order; that is, 
 (reflexivity)  g ≤con g. 
 (transitivity)   g ≤con h  and  h ≤con k  imply  g ≤con k. 

 
• (Claim)  T-constructability is invariant under AP-

reductions; that is, 

 
• This last claim helps us prove that   

* *       # ( , ) # ( , )con APg f F CSP g F CSP f F ≤ ⇒ ∀ ≤ 

* *# (Implies, ) # ( , )APCSP F CSP f F≤



Case of  f = [1,a,0,b]  with ab ≠ 0.  

• In the case of f = [a,b,0,c] with abc≠0, we may set a=1. 
• Let  f = [1,a,0,b]  with ab ≠ 0. Here, we want to show that  

 
 

• To prove this, it suffices to show that  Implies ≤con { f, u, v } 
for some unary signatures u,v∈U∩NZ. 

 Proof Sketch: We express “Implies” by the following h.  
 

* *  # ( , ) # ( , )APF CSP Implies F CSP f F ∀ ≤ 

x1 

x2 

u(x1) 

f (x1,x2) 

g(x1,x2) 

x1 

x2 

x3 

g(x1,x3) 

g(x2,x3) 

v(x3) 

{ }3

1 2 1 3 2 3 3
0,1

( , ) ( , ) ( , ) ( )
x

h x x g x x g x x v x
∈

= ∑

u=(1,a/b),   v=(1,1/a3) 



Dichotomy Theorem (again) 

• Let  #SATC be a complex-weighted version of the 
counting satisfiability problem. 

• Yamakami’s (2012) dichotomy theorem says: 
• Dichotomy Theorem:  [Yamakami (2012)] 

1. If F⊆ED, then #CSP*(F)∈FPC. 
2. Otherwise, #SATC ≤AP #CSP*(F). 

• A key is the following proposition on signatures  f. 
• Proposition:  [Yamakami (2010)] 

Assume that f ∉ AF∪ED. Let F be any signature set. 
1. #CSP*(Implies,F) ≡AP #CSP*(OR2, F).  
2. If f ∉ED∪NZ, then #CSP*(OR2,F) ≤AP #CSP*( f, F). 



1. Counting CSPs of Bounded Degree 
2. Visualizing #CSPd(F) 
3. Result of Dyer-Goldberg-Jalsenius-Richerby 
4. Classification Theorem of Dyer et al. (2010) 
5. Dichotomy Theorem for #CSPd(F) 

 

V. Counting CSPs of Bounded Degree 



Counting CSPs (or #CSPs) of Bounded Degree 

• We study #CSP whose constraints have bounded 
degrees. 

• Let F be any set of constraints and d be a positive integer. 

• Degree-d Counting CSP: #CSPd(F) 
 Instance:  

• a set of Boolean variables 
• a set of constraints in F satisfying the degree-d 

condition 
Question: 

• How many (variable) assignments satisfy all the 
given constraints? 

• We write #CSPd*(F) for #CSPd(F,U), where U is the set of 
all unary constraints. 

The degree is the 
maximal number of 
times that any variable 
appears among its 
constraints. 



Visualizing #CSPd(F) 

• #CSPd(F)  
• Instance: an input Ω with the degree-d condition 
• Task: compute the value  cspΩ.  

 
 

 
 x1 

x2 

x3 

x4 

〈f1,(x1,x4,x3)〉 

〈f2,(x2,x4)〉 

〈f3,(x1,x4,x3)〉 

{ }1 2 3 4

1 1 4 3 2 2 4 3 3 2 4
, , , 0,1

( , , ) ( , ) ( , , )
x x x x

csp f x x x f x x f x x xΩ
∈

= ⋅ ⋅∑

V1 V2 label 
label 

E 

(Boolean) constraints:  
π(v1) = 〈 f1, (x1,x4,x3) 〉,  
π(v2) = 〈 f2, (x2,x4) 〉,   
π(v3) = 〈 f3, (x1,x4,x3) 〉   

u1 

u2 

u3 

u4 

v1 

v2 

v3 

Boolean variables: {x1,x2,x3,x4} 
π(u1) = x1, π(u2) = x2, π(u3) = x3, 
π(u4) = x4 

The degree-d 
condition means 
that the degree of 
each node in V1 is 
at most d. 



Approximating Bounded-Degree #CSPs 

• It is practical to approximate #CSPs rather than 
compute #CSPs exactly. 

• Here, we overview a known result about the 
approximation complexity of #CSPd(F)’s with bounded 
degree d.  
 

• Approximate Counting:  #CSP*d(F) 
• Dyer, Goldberg, Jalsenius, and Richerby (2010)  
     proved a classification theorem on 
 unweighted Boolean #CSPs of degree ≥ 3. 

• Yamakami (2010) proved a classification theorem on  
 complex-weighted Boolean #CSPs of degree ≥ 3.  

 

“*” means that we 
use any unary 
constraint for free 
of charge. 



Result of Dyer-Goldberg-Jalsenius-Richerby  I 

• Dyer, Goldberg, Jalsenius, and Richerby (2010) proved 
the following classification theorem on unweighted 
Boolean constraints. 

• To describe their result, we need the following 
definitions. 

 IM-conj = set of Boolean constraints logically 
equivalent to products of Implies, ∆0, and ∆1 

OR-conj, NAND-conj = similarly defined 
#BIS = problem of counting the independent sets in a 

bipartite graph 
#w-HISd = problem of counting the independent sets 

in a width-w hypergraph H of degree at most d 



Result of Dyer-Goldberg-Jalsenius-Richerby  II 

• Let F be a set of unweighted Boolean constraints and 
set  d ≥ 3. 

• Classification Theorem: [Dyer-Goldberg-Jalsenius-
Richerby (2010)]  
1. If F consists of affine constraints, then #CSP*d(F) is 

in FP. 
2. Otherwise, if F ⊆ IM-conj, then #CSP*d(F) ≡AP #BIS. 
3. Otherwise, if F ⊆ OR-conj ∪ NAND-conj, then #w-

HISd ≤AP #CSP*d(F) ≤AP #w-HISkd (where k is a 
constant). 

4. Otherwise, #CSP*d(F) ≡AP #SAT. 



Classification Theorem of Dyer et al. (2010) 

#P-complete 
#CSP*d(F)’s 

The 
intermediate   
level 

P-computable 
#CSP*d(F)’s 

#SAT 

#BIS 

#w-HISd 

Possibly 3 levels 

• Dyer, Goldberg, Jalsenius, and Richerby (2010) proved 
the following classification theorem on unweighted 
#CSP*d(F)’s. 



Dichotomy Theorems for #CSPd(F) 

• The dichotomy theorem of Yamakami (2012) says: 

• Dichotomy Theorem:   Let d ≥ 3. 
1. If F⊆ED, then #CSP*d(F) is in FPC. 
2. Otherwise, #SAT*C ≤AP #CSP*d(F). 

• There has been an open problem of whether a similar 
theorem holds for degree-2 Boolean #CSPs. 
 

• when d =1 or 2, we have the following result.  

• Theorem:   [Yamakami (2012)]  
1. #CSP*1(F) is in FPC.  
2. #CSP*2(F) ≡AP Holant*(F).  

Holant*(F) uses any 
graph, not 
necessarily limited 
to bipartite graphs. 
[Cai-Lu-Xia (2009)] 
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VI. Counting CSPs of Degree 2 



Two Classification Theorems 

• Here are two classification theorems of Yamakami 
(2012) regarding ternary constraints. 

• Theorem:  [Yamakami (2012)]  
     Let f be any ternary constraint. 
 If f ∉ SIG, then #SAT ≤AP #CSP*2(f).  

• Theorem:  [Yamakami (2012)] 
    Let f be any ternary constraint in SIG1.  

1. If f ∈ DUP, then #CSP*2(f) ∈ FP.  
2. Otherwise, #SAT ≤AP #CSP*2(f). 

 
• In the next slide, we will explain SIG and DUP.  

 



Symmetric Constraints of Arity 3 

• Let S3 be the set of all permutations over {1,2,3}. 

• A constraint is called symmetric if its output values 
depend only on the Hamming weights of input bits.  

• In other words, the following equations hold. 
 
 
 
 

(001) (010) (100)
(011) (101) (110)

f f f
f f f

= =
= =

x1 

x2 

x3 f (x1,x2,x3) 

f 
xσ(1) 

f (xσ(1),xσ(2),xσ(3)) 

f 

xσ(3) 

xσ(2) 

for any permutation σ∈S3 



Asymmetric Constraints of Arity 3 

• Any constraint that is not symmetric is called asymmetric. 
 
 

• There is a natural question of how we should deal with 
asymmetric constraints of arity 3. 

• A useful method that we take is “symmetrization” of 
asymmetric constraints. 

• Let f be any ternary constraint. We define Sym(f) as 
follows: 
 
 
 

• (Claim) 
    For any ternary constraint f, Sym(f) is symmetric. 

2 2 2

1 1 1

1 2 3 1 2 3 1 2 3
, , {0,1}

( )( , , )
      ( , , ) ( , , ) ( , , )

x y z

Sym f x y z
f x x z f y y x f z z y

∈

= ∑

y1 

y2 

z2 
x1 

x2 

z1 

f 

f 

f 

1 2 2 3 3 1( , ) ( , ) ( , )F OR x x OR x x OR x x= ⋅ ⋅

1 2 2 3( , ) ( , )F OR x x OR x x= ⋅

symmetric 

asymmetric 



Two Symmetric Constraint Sets 

• Cai, Lu, and Xia (2009) recognized two important sets of 
ternary symmetric constraints, which we tentatively call 
Sig(1) and Sig(2). 

• For any symmetric constraint f of arity 3, we define: 
       f ∈ Sig(1)  ⇔   f(000)+f(011)=0   and   f(001)+f(111)=0 
       f ∈ Sig(2)  ⇔   ∃α,β∈C (not both zero) s.t.  
 αf(000)+βf(001)—αf(011)=0   and αf(001)+βf(011)—αf(111)=0  

• Sym(f) behaves quite differently on Sig(1)  and Sig(2).  
• Lemma:  [Yamakami (2012)] 
 If f ∈ Sig(1), then Sym(f) ∈ DG.      
 If f ∈ Sig(2), then Sym(f) ∈ Sig(2).  

DG = set of degenerate constraints 



Constraint Set  SIG 

• Recall that S3 is the set of all permutations over {1,2,3}. 
• Notation: For a ternary constraint f and a permutation 

σ∈S3, we define a permuted constraint fσ as: 
 
 

• Using this notation, we define SIG as follows. 
(1) (2)

3{ | [ ( ) ( ) ]}SIG f S Sym f DG Sym f Sig Sigσ σσ= ∀ ∈ ∉ → ∈ ∪

0 3{ | [ ( ) ]}SIG f S Sym f DGσσ= ∀ ∈ ∈
(1)

1 3{ | [ ( ) ( ) ]}SIG f S Sym f DG Sym f Sigσ σσ= ∃ ∈ ∉ ∧ ∈
(2)

2 3{ | [ ( ) ( ) ]}SIG f S Sym f DG Sym f Sigσ σσ= ∃ ∈ ∉ ∧ ∈

1 2 3 (1) (2) (3)( , , ) : ( , , )f x x x f x x xσ σ σ σ=



Constraint Set  DUP 

• We define DUP as a set of certain simple-structured 
constraints.  

• Notation: 
 

• Let f be any ternary constraint.  
• f ∈ DUP  ⇔  ∃σ: permutation of variable indices, ∃u: unary 

constraint, and ∃h: binary constraint  s.t. f = u(xσ(1))･(h,h). 

• Graphically,  f can be expressed as follows: 

f (x1,x2,x3) 

xσ(1) 

h xσ(3) 

xσ(2) 

u 

2 3 0 2 3
0 1

2 3 1 2 3

(0, , ) ( , )
( , )    

(1, , ) ( , )
f x x f x x

f f f
f x x f x x

=
= ⇔  =

x1 

x2 

x3 

f 



Two Classification Theorems (again) 

• Recall the two classification theorems of Yamakami 
(2012). 

• Theorem:  [Yamakami (2012)]  
     Let f be any ternary constraint. 
 If f ∉ SIG, then #SAT ≤AP #CSP*2(f).  

• Theorem:  [Yamakami (2012)] 
    Let f be any ternary constraint in SIG1.  

1. If f ∈ DUP, then #CSP*2(f) ∈ FP.  
2. Otherwise, #SAT ≤AP #CSP*2(f). 

• (Open Problem)  How about the case of  f∈SIG2? 



1. Elimination of Constant Unary Constraints 
2. Key Proposition 
3. Special Constraint Sets 

VII. Elimination of Constant Unary Constraints 



Elimination of Constant Unary Constraints 

• Hereafter, we consider only real-weighted constraints. 

• Recall the two constant unary constraints: 

                  ∆0 = [1,0]  and ∆1 = [0,1].  

• Yamakami (2014) proved the following theorem. 

• Theorem:  [Yamakami (2014)] 
Let F be any nonempty set of real-valued constraints. 
There exists a constant unary constraint  h ∈ { ∆0, ∆1 } 
for which #CSP(h,F) ≡AP #CSP(F). 

• This means that either h = ∆0 or h = ∆1 can be 
completely eliminated from F ∪ { h }. 



Key Proposition 

• A key is the following proposition on signatures  f. 

• Proposition:  [Yamakami (2014)] 
Let F be any nonempty set of real-valued constraints 
of arity ≥ 2.  
1. If either F ⊆ DG ∪ ED1

(+) or F ⊆ DG(-) ∪ ED1 ∪ AZ ∪ 
AZ1 ∪ B0, then #CSP(F) ∈FPR.  

2. Otherwise, for any constraint set G, #CSP*(g,G) ≤AP 
#CSP(F,G), where g is an appropriate constraint of 
one of the following 3 special forms. 
a) [0,y,z] with y,z>0. 
b) [x,y,0] with x,y>0. 
c) [x,y,z] with x,y,z>0 and xz≠y2. 



Special Constraint Sets  I 

• We introduce 6 special constraint sets. 

• DG = set of constraints f that are expressed by products 
of unary functions, as shown before 

• ED1 = set of constraints of the form: [x,±x], [x,0,...,0,±x] 
of arity ≥2, and [0,x0] with x≠0 

• ED1
(+) = set of constraints of the form: [x,y], [x,0,...,0,y] 

of arity ≥2, [0,x,0] with x,y≠0 
• AZ = set of constraints of arity ≥3 of the form: 

[0,x,0,x,...,0 or x], [x,0,x,0,...,x or 0] with x≠0 
• AZ1 = set of constraints of arity ≥3 of the form:      

[0,x,0,-x,0,x,...,0 or x or -x] and [x,0,-x,0,x,0,...,-x or x or 
0] with x≠0  



Special Constraint Sets  II 

• B0 = set of constraints of the form  [z0,z1,...,zk] with k ≥ 2 
and z0 ≠ 0 such that  
1) z2i+1 = z2i+2 = (-1)i+1z0  for all i satisfying 2i+1∈ [k] or 

2i+2 ∈ [k], or 
2) z2i = z2i+1 = (-1)iz0  for all i satisfying 2i∈ [k] or 2i+1 ∈ 

[k] 
• For example, B0 contains  [1,1,-1]  and  [1,-1,1]. 



Key Proposition (again) 

• Recall the key proposition regarding signatures  f. 

• Theorem:  [Yamakami (2014)] 
Let F be any nonempty set of real-valued constraints 
of arity ≥2.  
1. If either F ⊆ DG ∪ ED1

(+) or F ⊆ DG(-) ∪ ED1 ∪ AZ ∪ 
AZ1 ∪ B0, then #CSP(F) ∈FPR.  

2. Otherwise, for any constraint set G, #CSP*(g,G) ≤AP 
#CSP(F,G), where g is an appropriate constraint of 
one of the following 3 special forms. 
a) [0,y,z] with y,z>0. 
b) [x,y,0] with x,y>0. 
c) [x,y,z] with x,y,z>0 and xz≠y2. 





Q & A 
I’m happy to take your question! 



 
 

                                 END 
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