
8th Week

Synopsis.
• Counting Functions and #P
• Counting Constraint Satisfaction problems
• Signatures
• Approximate #CSPs
• Dichotomy Theorems

Constraint Satisfaction Problems
and Counting Functions

May 28, 2018. 23:59

Course Schedule: 16 Weeks

• Week 1: Basic Computation Models
• Week 2: NP-Completeness, Probabilistic and Counting Complexity Classes
• Week 3: Space Complexity and the Linear Space Hypothesis
• Week 4: Relativizations and Hierarchies
• Week 5: Structural Properties by Finite Automata
• Week 6: Stype-2 Computability, Multi-Valued Functions, and State Complexity
• Week 7: Cryptographic Concepts for Finite Automata
• Week 8: Constraint Satisfaction Problems
• Week 9: Combinatorial Optimization Problems
• Week 10: Average-Case Complexity
• Week 11: Basics of Quantum Information
• Week 12: BQP, NQP, Quantum NP, and Quantum Finite Automata
• Week 13: Quantum State Complexity and Advice
• Week 14: Quantum Cryptographic Systems
• Week 15: Quantum Interactive Proofs
• Week 16: Final Evaluation Day (no lecture)

Subject to Change

YouTube Videos

• This lecture series is based on numerous papers of T.
Yamakami. He gave conference talks (in English) and
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.

• Use the following keywords to find a playlist of those
videos.

• YouTube search keywords:
 Tomoyuki Yamakami conference invited talk playlist

Conference talk video

Main References by T. Yamakami

✎ T. Yamakami. Approximate counting for complex-weighted
Boolean constraint satisfaction problems. Information and
Computation 219, 17-38 (2012)

✎ T. Yamakami. A dichotomy theorem for the approximate
counting of complex-weighted bounded-degree Boolean
CSPs. Theoretical Computer Science 447, 120-135 (2012)

✎ T. Yamakami. Approximation complexity of complex-
weighted degree-two counting constraint satisfaction
problems. Theoretical Computer Science 461, 86-105 (2012)

✎ T. Yamakami. Constant unary constraints and symmetric
real-weighted counting constraint satisfaction problems.
Theory of Computing Systems 55, 170-201 (2014)

1. Counting Functions
2. Function Class #P
3. Function Class GapP
4. Characterizations of NP, PP, and C=P

I. Counting Functions

Counting Functions

• Like search and optimization problems, counting
problems are quite important in practice.

• Those counting problems can be treated as functions.
• In general, a counting function is a function that solves a

certain counting problem.

• (Example) Permanent
 instance: a non-negative integer n×n matrix A
 output: the permanent of A

11 12

11 22 12 21
21 22

det
a a

a a a a
a a

= −

11 12
11 22 12 21

21 22

a a
perm a a a a

a a

= +

Function Class #P

• To cope with counting functions, Valiant (1979) introduced
a counting function class, called #P.

• A function f: Σ*→ N is in #P ⇔ there exists a polynomial-
time NTM M such that, for every input x∈Σ*, f(x) = the
number of all accepting computation paths of M on x.

input x

accepted not accepted

NTM M

non-
deterministic
computation

f(x) = # of accepting
computation paths of
M on input x

Such an NTM is
often called a
counting machine.

#P Characterizations of NP, PP, C=P

• #P functions are quite useful to characterize many
classes of decision problems.

• L be any decision problem.

• L ∈ NP ⇔ there is a function f ∈ #P such that, for every
input x,
x∈L ↔ f(x) > 0

• L ∈ PP ⇔ there are two functions f,g ∈ #P such that, for
every input x,
x∈L ↔ f(x) > g(x)

• L ∈ C=P ⇔ there are two functions f ∈ #P, g ∈ FP such
that, for every input x,
x∈L ↔ f(x) = g(x)

Function Class GapP

• A function f: Σ*→ N is in GapP ⇔ there exists a
polynomial-time NTM M such that, for every input x∈Σ*,
f(x) = the number of all accepting computation paths of
M on x minus the number of all rejecting computation
paths of M on x.

 An alternative definition
• A function f: Σ*→ Z is in GapP ⇔ there are two

functions g,h ∈ #P such that, for every input x∈Σ*, f(x) =
g(x) – h(x).

• We express this definition as GapP = #P − #P.

GapP Characterizations of PP, C=P

• Here, we give GapP characterizations of the complexity
classes PP and C=P.

• L be any decision problem.

• L ∈ PP ⇔ there is a function f ∈ GapP such that, for
every input x,
 x∈L ↔ f(x) > 0

• L ∈ C=P ⇔ there is a function f ∈ GapP such that, for
every input x,
 x∈L ↔ f(x) = 0

• (*) co-C=P will be discussed in Week 12 in relation to
nondeterministic quantum computation.

1. CSPs with Complex Numbers
2. Expressed by Bipartite Graphs
3. Decision CSPs
4. Classification Theorem of Shaefer
5. Worlds of NP and CSPs
6. Counting CSPs (or #CSPs)
7. Visualizing #CSP(F)
8. Dichotomy Theorem (Exact Counting)

II. Constraint Satisfaction Problems

CSPs have Appeared in Many Fields
• Generally speaking, a constraint satisfaction problem

(CSP) takes two types of items as an input:
 variables: x1,x2,...,xn

 constraints: f1(x6,x3,x5),f2(x3,x6),...

• Note that many existing real-life problems can be
expressed in the forms of CSPs.

• CSPs have been studied extensively in many fields,
including:
 artificial intelligence
 database query evaluation
 type inference
 scheduling
 graph theory
 statistical physics

• (Open Problem) Can we efficiently solve all CSPs?

CSPs with Complex Numbers

• Standard CSPs mostly deal with strings or integers.
• Here, we want to discuss CSPs dealing with arbitrary

complex numbers.
• How can we handle real numbers or even complex

numbers?
• There have been several ways to deal with complex

numbers in computational complexity theory.
• Here, we treat complex numbers as “objects” rather

than a pair of “binary series.”
• In this way, we perform natural operations (such as, +,

÷, ×, etc.) on such objects. Each of those operations are
assumed to take a unit time (i.e. one step).

Extension of FP and #P to Complex Numbers

• By allowing arbitrary complex numbers to use, we
naturally extend the standard function classes FP and
#P to function classes handling complex numbers.

• Let C denote the set of all complex numbers.

1. FPC = the set of all complex functions computable in
polynomial time

2. #PC = the set of all complex functions computable by
counting machines in polynomial time

Example: Boolean Variables and Formulas
• We begin with SAT, which is a simple example of CSP.
• Our input instance: a logical formula F in CNF

• Our Possible Questions about the formula F:
• Is there any satisfying (variable) assignment for F?
• How many satisfying (variable) assignments for F are

there?
• Can we approximate such a number?

1 4 3 2 4 3 2 4() () ()F x x x x x x x x= ∨ ∨ ∧ ∨ ∧ ∨ ∨

3 1 4 3(, ,)OR x x x 2 2 4(,)OR x x 3 3 2 4(, ,)OR x x x

3 1 4 3 2 2 4 3 3 2 4(, ,) (,) (, ,)F OR x x x OR x x OR x x x= ⋅ ⋅Equivalently,

Functional
expression

Decision CSP

Exact
counting CSP

Approximate counting CSP

Expressed by Bipartite Graphs

• We can express the same F using a bipartite graph.

• Is there any satisfying (variable) assignment for F?

• How many satisfying (variable) assignments for F?

x1

x2

x3

x4

OR3(x1,x4,x3)

OR2(x2,x4)

OR3(x1,x4,x3)

{ }1 2 3 4

3 1 4 3 2 2 4 3 3 2 4
, , , 0,1

of such assignments (, ,) (,) (, ,)
x x x x

OR x x x OR x x OR x x x
∈

= ⋅ ⋅∑

3 1 4 3 2 2 4 3 3 2 4(, ,) (,) (, ,)F OR x x x OR x x OR x x x= ⋅ ⋅

Boolean variables: {x1,x2,x3,x4}
Unweighted constraints:
{OR3(x1,x4,x3),OR2(x2,x4),OR3(x1,x4,x3)}

variables
constraints

{ }1 2 3 4 3 1 4 3 2 2 4 3 3 2 4, , , 0,1 s.t. (, ,) (,) (, ,) 0x x x x OR x x x OR x x OR x x x∃ ∈ ≠

Decision CSPs I

• The decision version of unweighted CSPs (or decision
CSPs) are all NP problems.

• In the study of CSPs, one research direction is to
restrict a type of their constraints, instead of allowing all
constraints.

• Let F be any set of constraints. This set F is called a
constraint language in some literature.

• Decision CSP: CSP(F)
 Instance:
 a set of variables
 a set of constraints in F

 Question:
 Is there any truth assignment that make all

constraints true?

Decision CSPs II

• There are a number of decision CSPs.
• Here, we give a few examples.
• Examples of CSP(F)’s

• SAT (satisfiability problem)
• COLORABILITY (colorability problem)
• VERTEX-COVER (vertex cover problem)

• 3-Colorability Problem
 instance:
 variables: a set V of vertices in a graph G=(V,E)
 constraints: NEQ(x,y) (inequality)

 question:
 is there any coloring f: V → {1,2,3} s.t.

NEQ(f(v),f(w)) for all (v,w)∈E?

Classification Theorem of Schaefer I

• There has been a large volume of work on CSPs.
• We pick a notable result on the complexity of the CSPs.

• Let F be any set of constraints used for CSPs.
• Schaefer (1978) proved a dichotomy theorem for

• unweighted Boolean CSPs,
 (that is, F = Boolean constraints)

• A dichotomy theorem says that every CSP(F) is

classified into only two categories:
1. problems in P, and
2. problems that are NP-complete.

Classification Theorem of Schaefer II

• We formally state the result of Schaefer.
• Dichotomy Theorem: [Schaefer (1978)]
 If F is in one of six sets of constraints described

below, then CSP(F) is in P.
Otherwise, CSP(F) is NP-complete.

• Six sets of unweighted Boolean constraints:
1. 0-valid
2. 1-valid
3. weakly positive
4. weakly negative
5. affine
6. bijection

E.g., an affine relation is a
collection of solutions of a
certain set of linear
equations over Galois field
GF(2).

Worlds of NP and CSP(F)’s (if P≠NP)
World of NP-problems

P

NP-complete
problems

infinitely
many
distinct
levels

P-computable
CSP(F)’s

NP-complete
CSP(F)’s

World of CSP(F)’s

by Ladner (1975)

Only 2 levels

NP has infinitely many levels
induced by ≤m

p, assuming P≠NP.
CSP(F) has only 2 levels
induced by ≤m

p, assuming P≠NP.

Counting CSPs (or #CSPs)

• Next, we study a counting version of CSPs
 (called counting CSPs or #CSPs).

• Let F be any set of constraints.

• Counting CSP: #CSP(F)
• Instance:
 a set of Boolean variables
 a set of constraints in F

• Question:
 How many (variable) assignments satisfy all the

given constraints?

• NOTE: all #CSPs (counting CSPs) are #P problems.

Here, we consider only
the “Boolean” case.

Examples of #CSPs

• Here are a few examples of #CSPs.

• Examples:
• #SAT (counting satisfiability problem)
• #BIS (counting bipartite independent set problem)
• #DOWNSET (counting downset problems)

Visualizing #CSP(F) I
• A constraint frame Ω is a tuple (G,X|F′,π), where

1. a undirected bipartite graph G = (V1|V2,E),
2. a variable set X = { x1,x2,...,xn },
3. F′ ⊆ F, a finite subset, and
4. π: V1∪V2 → X∪F′ (a labeling function) s.t.
 π(V1)⊆X and π(V2)⊆F′.

x1

x2

x3

x4

〈f1,(x1,x4,x3)〉

〈f2,(x2,x4)〉

〈f3,(x1,x4,x3)〉

{ }1 2 3 4

1 1 4 3 2 2 4 3 3 2 4
, , , 0,1

(, ,) (,) (, ,)
x x x x

csp f x x x f x x f x x xΩ
∈

= ⋅ ⋅∑

V1 V2 label
label

E

(Boolean) constraints:
π(v1) = 〈 f1, (x1,x4,x3) 〉,
π(v2) = 〈 f2, (x2,x4) 〉,
π(v3) = 〈 f3, (x1,x4,x3) 〉

u1

u2

u3

u4

v1

v2

v3

Boolean variables: {x1,x2,x3,x4}
π(u1) = x1, π(u2) = x2, π(u3) = x3,
π(u4) = x4

Visualizing #CSP(F) II

• Each counting problem #CSP(F) is defined as follows.

• #CSP(F)
 instance: a constraint frame Ω
 task: compute the value cspΩ

• When we consider the computational complexity of
#CSP(F), we expand FP and #P to handle arbitrary
complex numbers.

How to Describe a Constraint
• A constraint f of arity k is a function from {0,1}k to C.
• We assume a lexicographic order on {0,1}k.
• Let f : {0,1}2 → C be any constraint of arity 2. This f is

expressed as:

• Let f : {0,1}3 → C be any constraint of arity 3.

• Examples:

1. OR2=[0,1,1,1], OR3=[0,1,1,1,1,1,1,1]
2. Implies=[1,1,0,1]
3. EQ2=[1,0,0,1], EQ3=[1,0,0,0,0,0,0,1]
4. NAND2=[1,1,1,0], XOR2=[0,1,1,0]
5. ∆0 = [1,0], ∆1 = [0,1]

[(00), (01), (10), (11)]f f f f f=

[(000), (001), (010), (011), (100), (101), (110), (111)]f f f f f f f f f=

Simple Results on Unweighted Constraints

• An unweighted (Boolean) constraint is a constraint
mapping {0,1}k to {0,1} for a certain constant k∈N+.

• CSPs with unweighted constraints have been studied
for a long time.

• (Claim) Here are simple known results about
unweighted (Boolean) constraints:
#CSP(EQ2) ∈ FP
#CSP(AND2) ∈ FP

• (Open Problem) Is #CSP(OR2)∈FP?

Dichotomy Theorems (Exact Counting) I

• Exact Counting: #CSP(F)
• We review some known results about the exact counting

of CSP(F)’s.

• Creignou and Herman (1996) proved a dichotomy
theorem about
 unweighted Boolean #CSPs.

• Dyer, Goldberg, and Jerrum (2009) proved a dichotomy
theorem about
 non-negative-weighted Boolean #CSPs.

• Cai, Lu, and Xia (2009) proved a dichotomy theorem
about
 complex-weighted Boolean #CSPs.

If F consists of affine constraints, then
#CSP(F) is in FP. Otherwise, #CSP(F)
is #P-complete.

Classification Theorems (Exact Counting) II

• We quickly review the result of Cai, Lu, and Xia (2009).

• Let F be any complex-weighted constraint set.

• (Claim) [Cai-Lu-Xia (2009)]
1. If all constraints in F are affine, then #CSP(F) ∈ FPC.
2. Otherwise, #CSP(F) is #P-complete under

polynomial-time Turing reductions.

1. Randomized Approximation Schemes (RASs)
2. Randomized Approximate Counting
3. AP-Reducibility for #CSPs
4. Result of Dyer-Goldberg-Jerrum (2010)
5. Classification Theorem of Dyer et al.

III. Approximate Counting of CSPs

Function-Oracle PTMs (revisited)

• Recall function-oracle Turing machines from Week 6.

input x

.....

function f

query z1

answer f(z1)

query z2

answer f(z2)
oracle
TM M

Randomized Approximation Schemes (RASs)

• We are focused on the approximate counting of CSPs
instead of the exact counting of CSPs.

• We explain what type of approximation to use.
• Let F be a function from Σ*→ C.
• A randomized approximation scheme (or RAS) for F is a

probabilistic algorithm that
• takes (x,ε)∈Σ*×R≥0 as an input, and
• outputs a number w such that
• F(x) are approximated by w with relative error of 2ε

 with high probability.
• A fully polynomial-time randomized approximation scheme

(or FPRAS) is a RAS that runs in time polynomial in
(|x|,1/ε).

NOTE: in this model, even if
α and β are approximated,
α+β may not be
approximated properly for
complex numbers α, β.

2 2 and arg
() ()
w w

F x F x
ε ε ε−
≤ ≤ ≤

Randomized Approximate Counting

• It is practical to approximate #CSPs rather than
compute #CSPs exactly.

• Randomized Approximate Counting: #CSP(F)

Let #CSP*(F) = #CSP(F, U), where
 U is the set of all unary constraints.

• Here, we overview a result of Dyer, Goldberg, and
Jerrum (2010) regarding the approximation complexity
of #CSP(F)’s.

“*” means that we
use any unary
constraint for free
of charge.

AP-Reducibility for #CSPs

• Dyer, Goldberg, Greenhill, and Jerrum (2003) introduced a
notion of (randomized) approximation-preserving
reduction (or AP-reduction).

• Let F and G be any two counting problems.

• F is AP-reducible to G by an AP-reduction M ⇔
• M is a function-oracle PTM working on input (x,ε) with

an oracle,
• M is a RAS for F and the oracle is also a RAS for G,
• every oracle call made by M is of the form (w,δ) with

1/δ ≤ poly(|x|,1/ε),
• the running time of M is bounded by a polynomial in

(|x|,1/ε).

Notational Convention

• Notation:
1. F ≤AP G ⇔ F is AP-reducible to G.
2. F ≡AP G ⇔ F ≤AP G and G ≤AP F.

• We list some simple known results about unweighted

(Boolean) constraints:
#CSP(OR2) ≡AP #CSP(NAND2) ≡AP #SAT
#CSP(Implies) ≡AP #BIS

• (Claim) [Dyer-Goldberg-Jerrum (2003)]
 #DOWNSET ≡AP #BIS ≤AP #SAT

Result of Dyer-Goldberg-Jerrum (2010)
• Before describing our result, we quickly go over the

aforementioned result of Dyer, Goldberg, and Jerrum
(2010).

• They proved the next theorem on unweighted constraints.
• Let F be any set of unweighted constraints.
• Trichotomy Theorem: [Dyer-Goldberg-Jerrum (2010)].

• If F consists of affine constraints, then #CSP(F)∈FP.
• Otherwise, if F ⊆ IM-conj, then #CSP(F) ≡AP #BIS.
• Otherwise, #CSP(F) ≡AP #SAT.

• IM-conj = set of Boolean constraints logically equivalent to
products of Implies, ∆0, and ∆1, where
• ∆0(x) = False, ∆1(x) = True, and
• “Implies” means a logical connective “→” (implies); i.e.,

Implies(x,y) = OR2(NOT(x), y)

1. Unary Constraints are Free of Charge
2. Degenerate Constraints
3. Special Constraint Sets
4. Dichotomy Theorem
5. An Outline of the Proof of the Theorem
6. T-Constructability
7. Examples of Operations
8. Useful Properties of T-Constructability

IV. Classification Theorem

Unary Constraints are Free of Charge

• Here, any unary constraint is used for free of charge.
• Let U be the set of all unary constraints.
• Constant unary constraints are ∆0, and ∆1.
• Such a use of free unary constraints has been made

elsewhere.
o Feder (2001) for Boolean CSPs
o Dalmau and Ford (2003) for Boolean CSPs
o Cai, Huang, and Lu (2010) for Holant problems
o Cai, Lu, and Xia (2009) for Holant problems
o Dyer, Goldberg, Jalsenius, and Richerby (2010) for

bounded-degree #CSPs
o Yamakami (2010) for bounded-degree #CSPs

• Notational convention:
 #CSP*(F) =def #CSP(F,U)

∆0(x) = False(x)
∆1(x) = True(x)

Degenerate Constraints

• Degenerate constraints are ones that are expressed as
products of unary constraints.

• To be more precise, let us consider a constraint f of arity k
that can be factorized into k unary constraints u1,u2,...,uk.

• In this case, f is called degenerate.
• cspΩ is simply calculated as:

x1

x2

xk

f (x1,x2,...,xk)

label

label

x1

x2

x4

u1(x1)

u2(x2)

uk(xk)

label label

...
...

...
...

...

()
1

(0) (1)
k

i i
i

csp u uΩ
=

= +∏

factorization

f

Special Constraint Sets

• Let each hi denote a unary constraint.

• NZ = set of constraints f of arity ≥1 such that
f(x1,x2,...,xk) ≠ 0 (non-zero) for all (x1,x2,...,xk)∈{0,1}k

• DG = set of all degenerate constraints

• ED = set of constraints f of arity ≥1 such that

with ℓ1,ℓ2≥0, ℓ1+ℓ2≥1, and 1≤ji,mi,ni≤k, where each gi is
either binary EQ2 or XOR2.

• IM = set of constraints f∉NZ of arity ≥1 such that

1 2

1 2
1 1

(, ,...,) () (,)
i i ik i j i m n

i i
f x x x h x g x x

= =

=

∏ ∏

1 2

1 2
1 1

(, ,...,) () Implies(,)
i i ik i j m n

i i
f x x x h x x x

= =

=

∏ ∏

Dichotomy Theorem

• Let #SATC be a complex-weighted version of the
counting satisfiability problem.

• Yamakami’s (2012) dichotomy theorem says:
• Dichotomy Theorem: [Yamakami (2012)]

1. If F⊆ED, then #CSP*(F)∈FPC.
2. Otherwise, #SATC ≤AP #CSP*(F).

• A key is the following proposition on signatures f.
• Proposition: [Yamakami (2012)]

Assume that f ∉ AF∪ED. Let F be any signature set.
1. #CSP*(Implies,F) ≡AP #CSP*(OR2, F).
2. If f ∉ED∪NZ, then #CSP*(OR2,F) ≤AP #CSP*(f, F).

An Outline of the Proof of the Proposition

• Let us give an outline of the proof of Item (2) of the
previous proposition.

• The proof proceeds by induction on the arity of f.

1. Basis case: k = 1.
2. Next basis case: k = 2.
3. Induction case: k ≥ 3.

• Since Basis Case (k=1) is trivial, we are focused on
Next Basis Case.

• In the next slide, we will present a bit of flavor of the
proof.

Trivial from the definitions.

By constructing AP-reductions.

A core of the proof.

Next Basis Case: k = 2
• The next basis case is handled case by case.

 CASES WANTS TO PROVE

• Let f = [a,0,0,b] with ab ≠ 0.

• Let f = [0,a,b,0] with ab ≠ 0.

• Let f = [a,b,c,0] with abc ≠ 0.

• Let f = [1,a,b,c]
 with abc ≠ 0 and ab ≠ c.

• Let f = [a,b,0,c] with abc ≠ 0.

#CSP*(EQ2,F) ≤AP #CSP*(f ,F)

#CSP*(XOR,F) ≤AP #CSP*(f ,F)

#CSP*(OR2,F) ≤AP #CSP*(f ,F)

We will prove this claim in
the subsequent slides.

#CSP*(OR2,F) ≤AP #CSP*(f ,F)

T-Constructability I

• For the case of k≥3, we need to introduce a useful notion
of “T-constructability.”

• A signature f is T-constructable from a set G of
signatures if f is obtained from G by recursively applying
the following operations.
1. permutation
2. pinning
3. projection
4. linking
5. multiplication
6. expansion
7. normalization

• We write f ≤conG if f is T-constructable from G.
• If G = {g}, we simply write f ≤cong.

See the subsequent slides

T-Constructability II

• We explain the operation “linking.”
• linking

• That is, “linking” is a replacement of variable xi by xj.

, wherei jx xg g =

1 1 1 1 1 1(, , , ,) (, , , , ,)i jx x
i i k i j i kg x x x x g x x x x x=
− + − +=

x1

xi

xj

xk

g(x1,...,xk)

x1

xi

xj

xk

gxi=xj(x1,...,xk)

linking

T-Constructability III

• We explain another operation “multiplication.”
• multiplication

• “Multiplication” is a multiplication of two signatures.

1 2 , whereg g g

1 2 1 1 1 2 1(, ,) (, ,) (, ,)k k kg g x x g x x g x x=

x1

xi

xj

xk

g1(x1,...,xk)

g2(x1,...,xk)

x1

xi

xj

xk

g1(x1,...,xk) x1

xi

xj

xk
g2(x1,...,xk)

+
multiplication

Useful Properties of T-Constructability

• We list a few useful properties of T-constructability.

• (Claim) ≤con is a partial order; that is,
 (reflexivity) g ≤con g.
 (transitivity) g ≤con h and h ≤con k imply g ≤con k.

• (Claim) T-constructability is invariant under AP-

reductions; that is,

• This last claim helps us prove that

* * # (,) # (,)con APg f F CSP g F CSP f F ≤ ⇒ ∀ ≤

* *# (Implies,) # (,)APCSP F CSP f F≤

Case of f = [1,a,0,b] with ab ≠ 0.

• In the case of f = [a,b,0,c] with abc≠0, we may set a=1.
• Let f = [1,a,0,b] with ab ≠ 0. Here, we want to show that

• To prove this, it suffices to show that Implies ≤con { f, u, v }
for some unary signatures u,v∈U∩NZ.

 Proof Sketch: We express “Implies” by the following h.

* * # (,) # (,)APF CSP Implies F CSP f F ∀ ≤

x1

x2

u(x1)

f (x1,x2)

g(x1,x2)

x1

x2

x3

g(x1,x3)

g(x2,x3)

v(x3)

{ }3

1 2 1 3 2 3 3
0,1

(,) (,) (,) ()
x

h x x g x x g x x v x
∈

= ∑

u=(1,a/b), v=(1,1/a3)

Dichotomy Theorem (again)

• Let #SATC be a complex-weighted version of the
counting satisfiability problem.

• Yamakami’s (2012) dichotomy theorem says:
• Dichotomy Theorem: [Yamakami (2012)]

1. If F⊆ED, then #CSP*(F)∈FPC.
2. Otherwise, #SATC ≤AP #CSP*(F).

• A key is the following proposition on signatures f.
• Proposition: [Yamakami (2010)]

Assume that f ∉ AF∪ED. Let F be any signature set.
1. #CSP*(Implies,F) ≡AP #CSP*(OR2, F).
2. If f ∉ED∪NZ, then #CSP*(OR2,F) ≤AP #CSP*(f, F).

1. Counting CSPs of Bounded Degree
2. Visualizing #CSPd(F)
3. Result of Dyer-Goldberg-Jalsenius-Richerby
4. Classification Theorem of Dyer et al. (2010)
5. Dichotomy Theorem for #CSPd(F)

V. Counting CSPs of Bounded Degree

Counting CSPs (or #CSPs) of Bounded Degree

• We study #CSP whose constraints have bounded
degrees.

• Let F be any set of constraints and d be a positive integer.

• Degree-d Counting CSP: #CSPd(F)
 Instance:

• a set of Boolean variables
• a set of constraints in F satisfying the degree-d

condition
Question:

• How many (variable) assignments satisfy all the
given constraints?

• We write #CSPd*(F) for #CSPd(F,U), where U is the set of
all unary constraints.

The degree is the
maximal number of
times that any variable
appears among its
constraints.

Visualizing #CSPd(F)

• #CSPd(F)
• Instance: an input Ω with the degree-d condition
• Task: compute the value cspΩ.

 x1

x2

x3

x4

〈f1,(x1,x4,x3)〉

〈f2,(x2,x4)〉

〈f3,(x1,x4,x3)〉

{ }1 2 3 4

1 1 4 3 2 2 4 3 3 2 4
, , , 0,1

(, ,) (,) (, ,)
x x x x

csp f x x x f x x f x x xΩ
∈

= ⋅ ⋅∑

V1 V2 label
label

E

(Boolean) constraints:
π(v1) = 〈 f1, (x1,x4,x3) 〉,
π(v2) = 〈 f2, (x2,x4) 〉,
π(v3) = 〈 f3, (x1,x4,x3) 〉

u1

u2

u3

u4

v1

v2

v3

Boolean variables: {x1,x2,x3,x4}
π(u1) = x1, π(u2) = x2, π(u3) = x3,
π(u4) = x4

The degree-d
condition means
that the degree of
each node in V1 is
at most d.

Approximating Bounded-Degree #CSPs

• It is practical to approximate #CSPs rather than
compute #CSPs exactly.

• Here, we overview a known result about the
approximation complexity of #CSPd(F)’s with bounded
degree d.

• Approximate Counting: #CSP*d(F)
• Dyer, Goldberg, Jalsenius, and Richerby (2010)
 proved a classification theorem on
 unweighted Boolean #CSPs of degree ≥ 3.

• Yamakami (2010) proved a classification theorem on
 complex-weighted Boolean #CSPs of degree ≥ 3.

“*” means that we
use any unary
constraint for free
of charge.

Result of Dyer-Goldberg-Jalsenius-Richerby I

• Dyer, Goldberg, Jalsenius, and Richerby (2010) proved
the following classification theorem on unweighted
Boolean constraints.

• To describe their result, we need the following
definitions.

 IM-conj = set of Boolean constraints logically
equivalent to products of Implies, ∆0, and ∆1

OR-conj, NAND-conj = similarly defined
#BIS = problem of counting the independent sets in a

bipartite graph
#w-HISd = problem of counting the independent sets

in a width-w hypergraph H of degree at most d

Result of Dyer-Goldberg-Jalsenius-Richerby II

• Let F be a set of unweighted Boolean constraints and
set d ≥ 3.

• Classification Theorem: [Dyer-Goldberg-Jalsenius-
Richerby (2010)]
1. If F consists of affine constraints, then #CSP*d(F) is

in FP.
2. Otherwise, if F ⊆ IM-conj, then #CSP*d(F) ≡AP #BIS.
3. Otherwise, if F ⊆ OR-conj ∪ NAND-conj, then #w-

HISd ≤AP #CSP*d(F) ≤AP #w-HISkd (where k is a
constant).

4. Otherwise, #CSP*d(F) ≡AP #SAT.

Classification Theorem of Dyer et al. (2010)

#P-complete
#CSP*d(F)’s

The
intermediate
level

P-computable
#CSP*d(F)’s

#SAT

#BIS

#w-HISd

Possibly 3 levels

• Dyer, Goldberg, Jalsenius, and Richerby (2010) proved
the following classification theorem on unweighted
#CSP*d(F)’s.

Dichotomy Theorems for #CSPd(F)

• The dichotomy theorem of Yamakami (2012) says:

• Dichotomy Theorem: Let d ≥ 3.
1. If F⊆ED, then #CSP*d(F) is in FPC.
2. Otherwise, #SAT*C ≤AP #CSP*d(F).

• There has been an open problem of whether a similar
theorem holds for degree-2 Boolean #CSPs.

• when d =1 or 2, we have the following result.

• Theorem: [Yamakami (2012)]
1. #CSP*1(F) is in FPC.
2. #CSP*2(F) ≡AP Holant*(F).

Holant*(F) uses any
graph, not
necessarily limited
to bipartite graphs.
[Cai-Lu-Xia (2009)]

1. Two Classification Theorems
2. Symmetric Constraints of Arity 3
3. Asymmetric Constraints of Arity 3
4. Two Symmetric Constraint Sets
5. Constraint Set SIG
6. Constraint Set DUP

VI. Counting CSPs of Degree 2

Two Classification Theorems

• Here are two classification theorems of Yamakami
(2012) regarding ternary constraints.

• Theorem: [Yamakami (2012)]
 Let f be any ternary constraint.
 If f ∉ SIG, then #SAT ≤AP #CSP*2(f).

• Theorem: [Yamakami (2012)]
 Let f be any ternary constraint in SIG1.

1. If f ∈ DUP, then #CSP*2(f) ∈ FP.
2. Otherwise, #SAT ≤AP #CSP*2(f).

• In the next slide, we will explain SIG and DUP.

Symmetric Constraints of Arity 3

• Let S3 be the set of all permutations over {1,2,3}.

• A constraint is called symmetric if its output values
depend only on the Hamming weights of input bits.

• In other words, the following equations hold.

(001) (010) (100)
(011) (101) (110)

f f f
f f f

= =
= =

x1

x2

x3 f (x1,x2,x3)

f
xσ(1)

f (xσ(1),xσ(2),xσ(3))

f

xσ(3)

xσ(2)

for any permutation σ∈S3

Asymmetric Constraints of Arity 3

• Any constraint that is not symmetric is called asymmetric.

• There is a natural question of how we should deal with
asymmetric constraints of arity 3.

• A useful method that we take is “symmetrization” of
asymmetric constraints.

• Let f be any ternary constraint. We define Sym(f) as
follows:

• (Claim)
 For any ternary constraint f, Sym(f) is symmetric.

2 2 2

1 1 1

1 2 3 1 2 3 1 2 3
, , {0,1}

()(, ,)
 (, ,) (, ,) (, ,)

x y z

Sym f x y z
f x x z f y y x f z z y

∈

= ∑

y1

y2

z2
x1

x2

z1

f

f

f

1 2 2 3 3 1(,) (,) (,)F OR x x OR x x OR x x= ⋅ ⋅

1 2 2 3(,) (,)F OR x x OR x x= ⋅

symmetric

asymmetric

Two Symmetric Constraint Sets

• Cai, Lu, and Xia (2009) recognized two important sets of
ternary symmetric constraints, which we tentatively call
Sig(1) and Sig(2).

• For any symmetric constraint f of arity 3, we define:
 f ∈ Sig(1) ⇔ f(000)+f(011)=0 and f(001)+f(111)=0
 f ∈ Sig(2) ⇔ ∃α,β∈C (not both zero) s.t.
 αf(000)+βf(001)—αf(011)=0 and αf(001)+βf(011)—αf(111)=0

• Sym(f) behaves quite differently on Sig(1) and Sig(2).
• Lemma: [Yamakami (2012)]
 If f ∈ Sig(1), then Sym(f) ∈ DG.
 If f ∈ Sig(2), then Sym(f) ∈ Sig(2).

DG = set of degenerate constraints

Constraint Set SIG

• Recall that S3 is the set of all permutations over {1,2,3}.
• Notation: For a ternary constraint f and a permutation

σ∈S3, we define a permuted constraint fσ as:

• Using this notation, we define SIG as follows.
(1) (2)

3{ | [() ()]}SIG f S Sym f DG Sym f Sig Sigσ σσ= ∀ ∈ ∉ → ∈ ∪

0 3{ | [()]}SIG f S Sym f DGσσ= ∀ ∈ ∈
(1)

1 3{ | [() ()]}SIG f S Sym f DG Sym f Sigσ σσ= ∃ ∈ ∉ ∧ ∈
(2)

2 3{ | [() ()]}SIG f S Sym f DG Sym f Sigσ σσ= ∃ ∈ ∉ ∧ ∈

1 2 3 (1) (2) (3)(, ,) : (, ,)f x x x f x x xσ σ σ σ=

Constraint Set DUP

• We define DUP as a set of certain simple-structured
constraints.

• Notation:

• Let f be any ternary constraint.
• f ∈ DUP ⇔ ∃σ: permutation of variable indices, ∃u: unary

constraint, and ∃h: binary constraint s.t. f = u(xσ(1))･(h,h).

• Graphically, f can be expressed as follows:

f (x1,x2,x3)

xσ(1)

h xσ(3)

xσ(2)

u

2 3 0 2 3
0 1

2 3 1 2 3

(0, ,) (,)
(,)

(1, ,) (,)
f x x f x x

f f f
f x x f x x

=
= ⇔ =

x1

x2

x3

f

Two Classification Theorems (again)

• Recall the two classification theorems of Yamakami
(2012).

• Theorem: [Yamakami (2012)]
 Let f be any ternary constraint.
 If f ∉ SIG, then #SAT ≤AP #CSP*2(f).

• Theorem: [Yamakami (2012)]
 Let f be any ternary constraint in SIG1.

1. If f ∈ DUP, then #CSP*2(f) ∈ FP.
2. Otherwise, #SAT ≤AP #CSP*2(f).

• (Open Problem) How about the case of f∈SIG2?

1. Elimination of Constant Unary Constraints
2. Key Proposition
3. Special Constraint Sets

VII. Elimination of Constant Unary Constraints

Elimination of Constant Unary Constraints

• Hereafter, we consider only real-weighted constraints.

• Recall the two constant unary constraints:

 ∆0 = [1,0] and ∆1 = [0,1].

• Yamakami (2014) proved the following theorem.

• Theorem: [Yamakami (2014)]
Let F be any nonempty set of real-valued constraints.
There exists a constant unary constraint h ∈ { ∆0, ∆1 }
for which #CSP(h,F) ≡AP #CSP(F).

• This means that either h = ∆0 or h = ∆1 can be
completely eliminated from F ∪ { h }.

Key Proposition

• A key is the following proposition on signatures f.

• Proposition: [Yamakami (2014)]
Let F be any nonempty set of real-valued constraints
of arity ≥ 2.
1. If either F ⊆ DG ∪ ED1

(+) or F ⊆ DG(-) ∪ ED1 ∪ AZ ∪
AZ1 ∪ B0, then #CSP(F) ∈FPR.

2. Otherwise, for any constraint set G, #CSP*(g,G) ≤AP
#CSP(F,G), where g is an appropriate constraint of
one of the following 3 special forms.
a) [0,y,z] with y,z>0.
b) [x,y,0] with x,y>0.
c) [x,y,z] with x,y,z>0 and xz≠y2.

Special Constraint Sets I

• We introduce 6 special constraint sets.

• DG = set of constraints f that are expressed by products
of unary functions, as shown before

• ED1 = set of constraints of the form: [x,±x], [x,0,...,0,±x]
of arity ≥2, and [0,x0] with x≠0

• ED1
(+) = set of constraints of the form: [x,y], [x,0,...,0,y]

of arity ≥2, [0,x,0] with x,y≠0
• AZ = set of constraints of arity ≥3 of the form:

[0,x,0,x,...,0 or x], [x,0,x,0,...,x or 0] with x≠0
• AZ1 = set of constraints of arity ≥3 of the form:

[0,x,0,-x,0,x,...,0 or x or -x] and [x,0,-x,0,x,0,...,-x or x or
0] with x≠0

Special Constraint Sets II

• B0 = set of constraints of the form [z0,z1,...,zk] with k ≥ 2
and z0 ≠ 0 such that
1) z2i+1 = z2i+2 = (-1)i+1z0 for all i satisfying 2i+1∈ [k] or

2i+2 ∈ [k], or
2) z2i = z2i+1 = (-1)iz0 for all i satisfying 2i∈ [k] or 2i+1 ∈

[k]
• For example, B0 contains [1,1,-1] and [1,-1,1].

Key Proposition (again)

• Recall the key proposition regarding signatures f.

• Theorem: [Yamakami (2014)]
Let F be any nonempty set of real-valued constraints
of arity ≥2.
1. If either F ⊆ DG ∪ ED1

(+) or F ⊆ DG(-) ∪ ED1 ∪ AZ ∪
AZ1 ∪ B0, then #CSP(F) ∈FPR.

2. Otherwise, for any constraint set G, #CSP*(g,G) ≤AP
#CSP(F,G), where g is an appropriate constraint of
one of the following 3 special forms.
a) [0,y,z] with y,z>0.
b) [x,y,0] with x,y>0.
c) [x,y,z] with x,y,z>0 and xz≠y2.

Q & A
I’m happy to take your question!

 END

	8th Week
	Course Schedule: 16 Weeks
	YouTube Videos
	Main References by T. Yamakami
	I. Counting Functions
	Counting Functions
	Function Class #P
	#P Characterizations of NP, PP, C=P
	Function Class GapP
	GapP Characterizations of PP, C=P
	II. Constraint Satisfaction Problems
	CSPs have Appeared in Many Fields
	CSPs with Complex Numbers
	Extension of FP and #P to Complex Numbers
	Example: Boolean Variables and Formulas
	Expressed by Bipartite Graphs
	Decision CSPs I
	Decision CSPs II
	Classification Theorem of Schaefer I
	Classification Theorem of Schaefer II
	Worlds of NP and CSP(F)’s (if PNP)
	Counting CSPs (or #CSPs)
	Examples of #CSPs
	Visualizing #CSP(F) I
	Visualizing #CSP(F) II
	How to Describe a Constraint
	Simple Results on Unweighted Constraints
	Dichotomy Theorems (Exact Counting) I
	Classification Theorems (Exact Counting) II
	III. Approximate Counting of CSPs
	Function-Oracle PTMs (revisited)
	Randomized Approximation Schemes (RASs)
	Randomized Approximate Counting
	AP-Reducibility for #CSPs
	Notational Convention
	Result of Dyer-Goldberg-Jerrum (2010)
	IV. Classification Theorem
	Unary Constraints are Free of Charge
	Degenerate Constraints
	Special Constraint Sets
	Dichotomy Theorem
	An Outline of the Proof of the Proposition
	Next Basis Case: k = 2
	T-Constructability I
	T-Constructability II
	T-Constructability III
	Useful Properties of T-Constructability
	Case of f = [1,a,0,b] with ab 0.
	Dichotomy Theorem (again)
	V. Counting CSPs of Bounded Degree
	Counting CSPs (or #CSPs) of Bounded Degree
	Visualizing #CSPd(F)
	Approximating Bounded-Degree #CSPs
	Result of Dyer-Goldberg-Jalsenius-Richerby I
	Result of Dyer-Goldberg-Jalsenius-Richerby II
	Classification Theorem of Dyer et al. (2010)
	Dichotomy Theorems for #CSPd(F)
	VI. Counting CSPs of Degree 2
	Two Classification Theorems
	Symmetric Constraints of Arity 3
	Asymmetric Constraints of Arity 3
	Two Symmetric Constraint Sets
	Constraint Set SIG
	Constraint Set DUP
	Two Classification Theorems (again)
	VII. Elimination of Constant Unary Constraints
	Elimination of Constant Unary Constraints
	Key Proposition
	Special Constraint Sets I
	Special Constraint Sets II
	Key Proposition (again)
	Slide Number 72
	Slide Number 73
	Slide Number 74

