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YouTube Videos 

• This lecture series is based on numerous papers of T. 
Yamakami. He gave conference talks (in English) and 
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.  

• Use the following keywords to find a playlist of those 
videos.  

• YouTube search keywords: 
    Tomoyuki Yamakami  conference  invited talk playlist 
 

Conference talk video 



Main References by T. Yamakami 

✎T. Yamakami. Optimization, randomized approximability, 
and Boolean constraint satisfaction problems. In Proc. of 
ISAAC 2011, Lecture Notes in Computer Science, vol. 
7074, pp. 454-463 (2011) 

✎T. Yamakami. Uniform-circuit and logarithmic-space 
approximations of refined combinatorial optimization 
problems. In Proc. of COCOA 2013, Lecture Notes in 
Computer Science, vol. 8287, pp. 318-329 (2013). A 
complete version is available at arXiv:1601.01118. 
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Families of Boolean Circuits (revisited) 

• Recall that each Boolean circuit is composed of the 
following logical gates and wires (or edges).   

 
 
 

• In a family {Cn}n∈N of Boolean circuits, each Cn is a 
Boolean circuit taking n-bit inputs. 
 
 

NOT gate AND gate OR gate 

C0 C1 C2 Cn C3 

... 

... ... 

n 



Circuit Complexity Measures (revisited) 

• Recall that we treat “inputs” as input gates, 
which are technically in-degree-0 nodes, 
and treat “outputs” as output gates, which 
are out-degree-0 nodes.  

• For circuits, we usually use the following 
complexity measures. 

• Circuit complexity measures:  
 size of circuit C = number of gates in C 
 depth of circuit C = number of logical 

gates in the longest path from an input 
to an output 

Cn 

... 

... 

input gates 

output gates 



Fan-in of Circuits 

• For simplicity, we often consider Boolean circuits with 
AND and OR gates but not NOR gates. 

• Thus, input gates are labeled by literals (i.e., variables or 
the negation of variables). 

• To cope with decision problems (i.e., languages), we are 
interested in circuits that have only one output gate. 
 

• We say that a circuit C has bounded fan-in if all AND and 
OR gates used in C are of in-degree 2. 

• A circuit is said to have unbounded fan-in if its AND and 
OR gates may have an arbitrary number of in-coming 
edges.   
 

 
 



Uniform Families of Circuits 

• In Week 3, we have already discussed the notion of non-
uniformity. Here, we consider its opposite notion: 
uniformity. 

• There are numerous concepts of uniformity in use to 
describe different collections of circuit families. 

• Here, we use logarithmic-space (or L) uniformity. 
• Other uniformity concepts in use include “P-uniform” and 

“DLOGTIME-uniform.”   

• A family { Cn }n∈N of circuits is said to be logarithmic-
space uniform (log-space uniform or L-uniform) if there 
exists a log-space DTM such that, for any length 
parameter n∈N,  
on input 1n, M produces an encoding 〈Cn〉 of Cn. 

 



Complexity Classes ACk and NCk 

• Let us define circuit complexity classes. Let k ∈ N. 

• NCk = class of languages recognized by log-space 
uniform families of circuits, each Cn of which has 
polynomial-size, O(logk(n))-depth, and bounded fan-in. 

• NCk is known as Nick’s class. 

• ACk = class of languages recognized by log-space 
uniform families of circuits, each Cn  of which has 
polynomial-size, O(logk(n))-depth, and unbounded fan-in.   
 

• (Claim)  ACk ⊆ NCk+1  for any k≥0. 
• (Claim)  AC0 ≠ NC1.  [Yao (1985), Håstad (1987)] 



Open Problems 

• There are numerous open problems associated with 
circuit families. 

• Is ACk ≠ NCk+1 for any k ≥ 1?  

• SACk = languages recognized by L-uniform families of 
O(logk(n))-depth, polynomial-size, semi-unbounded fan-
in (i.e., all AND gates have in-degree 2) circuits 

• Recall the CFL hierarchy {∆k
CFL, Σk

CFL, Πk
CFL | k ≥ 1 } 

from Week 4. 
 It is known that, for example, AC0(Σ1

CFL ) = SAC1. 
 Find more relationships between Σk+1

CFL and circuit 
complexity classes, such as SACk+1.  
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Combinatorial Optimization Problems 

• Optimization problems are found everywhere and they 
have been discussed in theory and in practice.  

• A combinatorial optimization problem P is defined as a 
tuple ( I, SOL, m, goal ), where  
 I = the set of input instances; 
 SOL(x) = a set of (feasible) solutions associated with 

instance x; 
 m: objective function (or measure function) mapping 

I×SOL(x) to R≥0; and  
 goal ∈ { max, min }. 

• Let m*(x) = goal{ m(x,y) | y∈sol(x) }. 
• y is an optimal solution w.r.t. x ↔ m(x,y) = m*(x) 



NP Optimization Problems  I 

• We are interested in NP optimization problems. 

• An NP optimization problem (or an NPO problem) is  a 
combinatorial optimization problem   P = ( I, SOL, m, 
goal ) satisfying the following extra conditions:  
 the set I is recognized in polynomial time, 
 there are a polynomial p such that, for any x ∈ I and 

for any y ∈ SOL(x), |y|≤p(|x|); moreover, for any y with 
|y|≤p(|x|), it is decidable in polynomial time whether y 
∈ SOL(x), and  

 m is computable in polynomial time. 

• If goal = max, then P is a maximization problem; 
otherwise, P is a minimization problem.  



NP Optimization Problems  II 

• Many NP problems can be turned into NP optimization 
problems. Here, we see one simple example. 

• Partition Problem (decision problem) 
 instance: a finite set A of items and a weight function 

w:A→N+ 

 question: is there any partition X,Y of A such that  
                Σx∈X w(x) = Σy∈Y w(y)? 

• Minimum Partition Problem (optimization problem) 
 instance: a finite set A of items and a weight function 

w:A→N+ 

 solution: a partition X,Y of A 
measure: min{ Σx∈X w(x), Σy∈Y w(y) } 



NPO and PONPO 

• In a polynomial-time setting, two typical classes of 
optimization problems are discussed. 
 

• NPO = a class of NP optimization problems 
• PONPO (or PO) = a class of polynomial-time solvable NP 

optimization problems 
 

• (Claim)  PONPO ⊆ NPO 



Performance ratios 

• Performance ratio 
 
 
 

• Consider a machine M 
approximating x. In this case, 

 
 

• Note that  m(x,y) = m*(x)  ↔  
R(x,y) = 0  ↔  y is optimal. 
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Approximation Schemes 

• We define approximation algorithms or schemes. 

• Let P = ( I, SOL, m, goal ) be any optimization problem. 

 
• An algorithm M is said to be a γ-approximate algorithm  
     ⇔  ∀x∈I [ R(x,M(x)) ≤ γ ].  

 
• P is polynomial-time γ-approximable  
     ⇔  ∃M polynomial-time DTM s.t. ∀x∈I [ R(x,M(x)) ≤ γ ].  



APXPNPO  (or APX) 

• In a polynomial-time setting, we take one typical class of 
optimization problems whose optimal solutions can be  
approximable. 
 

• APXPNPO (or APX) = a class of NP optimization problems 
that are polynomial-time  γ-approximable for certain 
constant γ > 0.  
 

• There are other notions of approximation algorithms. 
 polynomial-time approximation scheme (PTAS)  
 fully polynomial-time approximation scheme (FPTAS) 



Relationships among Optimization Classes 

• NPO 
 Contains combinatorial 

optimization problems defined in 
a form of NP problems 

• APXPNPO (or simply, APX) 
 Contains NPO problems whose 

optimal solutions can be 
relatively approximately found by 
deterministic TMs in poly time 

• PONPO (or simply, PO) 
 Contains NPO problems whose 

optimal solutions can be found by 
deterministic TMs in poly time  

APXPNPO 

NPO 

Assuming P ≠ NP 

PONPO 



Reductions and Completeness 

• To discuss the complexity of optimization problems, we 
need a notion of “completeness” for a given class.  

• For complete problems, we further need a notion of 
“reduction.” 

• A reduction is a way to compare the computational 
difficulty of two optimization problems by transforming an 
optimization problem P = (I1,SOL1,m1,goal) to another 
optimization problem Q = (I2,SOL2,m2,goal) so that if Q is 
easy to solve then P is also easy to solve. 

• A complete problem is one of the most difficult problems 
in a given class C. 



Preserving Approximability of NPO Problems 

• Let us discuss an appropriate reducibility notion for 
optimization problems.   

• For NPO problems, every reduction must preserve the 
approximability of those problems. 

• More precisely,  let P = (I1,SOL1,m1,goal) and Q = 
(I2,SOL2,m2,goal).  

• When P is “reducible” to Q, we require that, if Q is 
approximable, then P is also approximable. 

• This means that “reductions” must preserve 
“approximability.” 

• (*) In the next slide, we explain “approximation-
preserving reduction” (or “APP-reduction”). 



Approximation-Preserving (APP) Reductions 

• P is APP-reducible to Q (denoted by P ≤AP
P Q) ⇔ 

• ∃f,g ∃c≥1 s.t.  
1. ∀x∈I1 ∀r∈ℚ>1 [ f(x,r)∈I2 ] 
2. ∀x∈I1 ∀r∈ℚ>1 [ SOL1(x) ≠ ∅ → SOL2(f(x,r)) ≠ ∅ ] 
3. ∀x∈I1 ∀r∈ℚ>1 ∀y∈SOL2(f(x,r)) [ g(x,y,r)∈SOL1(x) ] 
4. f, g ∈ auxFL for each fixed r∈ℚ>1 

5. ∀x∈I1 ∀r∈ℚ>1 ∀y∈SOL2(f(x,r)) [ R2(f(x,r),y) ≤ r → 
R1(x,g(x,y,r)) ≤ 1+c(r-1) ], 

       where ℚ>1 = { r∈ℚ| r>1 }.  
x∈I1 f(x,r)∈I2 

g(x,y,r)∈SOL1(x) y∈SOL2(f(x,r)) 

f 

g 



Completeness by APP-Reductions 

• With the use of APP-reductions, we can define 
completeness. 
 

• Let C be a subclass of NPO. (E.g., PONPO, APXPNPO, 
etc.) 

• Let P be any NPO problem. 
 

• We say that P is C-complete if 
1. P is in C, and  
2. for any optimization problem B in C, B is APP-

reducible to A, i.e.,  ∀B∈C [ B ≤AP
p A ]. 



Example: MinLP 

• Minimum {0,1}-Linear 
Programming Problem (MinLP) 
 Instance: matrix A∈ℤmn, 

vectors b∈ℤm, w∈ℕn 

Solution: vector x∈{0,1}n s.t. Ax 
≥ b 

Measure: scalar product  
 
 

 
• (Claim)  MinLP is NPO-complete. 
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Example: MaxCut 

• Maximum Cut Problem (MaxCut) 
 Instance: an undirected graph 

G=(V,E) 
Solution: a cut (i.e., a partition 

(S0,S1) of V) 
Measure: cut capacity (i.e., the 

number of edges crossing 
between S0 and S1) 

 
• (Claim)  MaxCut is APXPNPO-

complete. 

v2 

v5 

v8 

v1 

v9 

v4 

v7 

v3 

v6 

A cut 
    S0 = { v1,v2,v3, v5 }  
    S1 = { v4,v6,v7,v8,v9 } 

S0 S1 

cut capacity = 4 



Example: Min st-Cut 

• Minimal s-t Cut Problem (Min st-Cut) 
 Instance: directed graph G, source 

s, and sink t 
Solution: st-cut (S0,S1) with s∈S0 

and t∈S1 

Measure: capacity of st-cut (total 
number of edges from S0 to S1) 

 
• (Claim)  Min st-Cut is  PONPO-

compete. 

s 

v5 

t 

v1 v2 

v4 

v7 

v3 

v6 

An st-cut 
    S0 = { s,v1,v3,v5,v6 }  
    S1 = { v2,v4,v5,t } 

S0 
S1 

cut capacity = 3 



A Map of Complete Problems 

• We then obtain complete 
problems for each 
optimization/approximatio
n classes. 
 

• Completeness is based 
on ≤AP

P-reductions.  

APXPNPO 

NPO 

Assuming P ≠ NP 

PONPO 

MinLP 

MaxCut 

Min st-Cut 



Inside PONPO 

• Consider the following two NP optimization problems. 
 

1. Maximum vertex weight problem (Max Vertex) 
2. Maximum Boolean formula value problem (Max BFVP) 

 
• These problems are both in PONPO, but their 

computational complexities seem to be quite different. 
 

• In the next section, we will look into the inside structure 
of PONPO. 
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How to Refine Problems Inside PONPO 

• To discuss optimization problems inside PONPO: 
• We need a refinement of the existing notions. 
• We look into log-space approximation and uniform-

circuit (based) approximation schemes. 
 
 

• First, we consider Turing machines equipped with extra 
read-once input tapes, called auxiliary tapes.  

• See the next slide. 



Auxiliary Turing Machines 

input tape 
(read-only) 

auxiliary tape 
(read-once) 

work tape 
(read/write) 

Inner 
state 

output tape 
(write-only) If necessary 

Input (x,y): 
   x on input tape 
   y on auxiliary tape 



Auxiliary TMs and Complexity Class NL 

• Nondeterministic TMs are simulated by auxiliary TMs. 

• NL: nondeterministic log-space  
• Input is given on input tape and a series of 

nondeterministic choices is given on auxiliary tape. 
 

• L: deterministic log-space class 
• Examples: 

• The s-t connectivity problem on directed graphs 
(DSTCON) is NL-complete. 

• The s-t connectivity problem on undirected graphs 
(USTCON) is L-complete.  

 
 



auxL and auxFL 

• We need to treat instances of the form (x,y). 
 

• Auxiliary L (auxL) 
 auxL = problems A solvable by auxiliary TMs M using 

log space with the following condition: 
    (*) ∃p: poly s.t., for any input (x,y) to A,   

1) (x,y)∈A ⇒ |y| ≤ p(|x|) 
2) when |y| ≤ p(|x|),  M accepts (x,y) ↔ (x,y)∈A. 

 

• Auxiliary FL (auxFL) 
 auxFL = functions computable by auxiliary TMs using 

log space with write-only output tapes  with polynomial 
output size   
 



NL Optimization (or NPO) Problems 

• NLO problem: P=(I,SOL,m,goal)  [Tantau,2007] 
• I = finite set of admissible instances 
• SOL = function from I s.t. SOL(x) is a set of feasible 

solutions of x   
• ∃q:poly ∀x∈I ∀y∈SOL(x) [ |y| ≤ q(|x|) ] 
• I°SOL = {(x,y) | x∈I, y∈SOL(x)} is in auxL  

• goal = either max or min 
• m = measure (or objective) function from I°SOL to ℕ 

• m is in auxFL 
• m*(x) = optimal value among m(x,y) with y∈SOL(x)   

• MinNL = minimization problems in NLO 
• MaxNL = maximization problems in NLO 
• NLO = MaxNL ∪ MinNL 



Example: Max Vertex 

• Maximum vertex weight problem (Max Vertex) 
 Instance: directed graph G, source s,  
                   (vertex) weight function w 
Solution: path from s to a certain  
                   vertex t 
Measure: weight of t 

• We define: 
• I = {(G,s,w): graph G, source s, weight w } 
• SOL(G,s,w) = { path p: from s to some y } 
• m((G,s,w),p) = w(y), where y is an endpoint of p 

• Thus, Max Vertex is in NLO.  
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Polynomially-Bounded Problems 

• Note that, if m ∈ auxFL, m(x,y) ≤ 2p(|x|)  for an absolute 
polynomial p.   

• It is useful to focus our attention to polynomially-bounded 
problems. 
 

• Problem P is polynomially-bounded  
       ⇔   ∃p:poly ∀(x,y)∈I°SOL [ m(x,y) ≤ p(|x|,|y|) ]. 

 
• PBO = set of polynomially-bounded optimization 

problems 
 



LONLO, LONPO, etc. 

• LO problems inside C: P=(I,SOL,m,goal) 
• P is an optimization problem in C. 
• P is L-solvable; that is, a certain DTM 

M finds an optimal solution y of x using 
log space for every x∈I.   

• LOC = set of all LO problems inside C 
• Examples 

• LONPO = set of all LO problems in NPO 
• LONLO = set of all LO problems in NLO 

 
• (Claim) PONLO = NLO. [Yamakami (2013)] 

NPO 

PONPO 

PONLO 
= NLO 

LONLO 

LONPO 



Log-Space Approximation Schemes 

• We introduce log-space approximable problems. 

 

• Let P = ( I, sol, m, goal ) be any optimization problem. 

• Recall that an algorithm M is a γ-approximate algorithm   
⇔  ∀x∈I [ R(x,M(x)) ≤ γ ].  

• P is log-space γ-approximable  
     ⇔  ∃M log-space DTM s.t. ∀x ∈I [ R(x,M(x)) ≤ γ ].  



APXLNLO, APXLNPO, etc. 

• APXL problems P=(I,SOL,m,goal) in C: 
• P is an optimization problem in C. 
• P is L-approximable; that is, a certain 

DTM M finds an approximate optimal 
solution y of x using log space for every 
x∈I.   

• APXLC = set of all APXL problems inside 
C 
• APXLNPO = set of all APXL problems in 

NPO 
• APXLNLO = set of all LO problems in 

NLO 
• (Claim)  APXPNLO = NLO.  [Yamakami 

(2013)] 
 

NPO 

APXPNPO 

APXPNLO 
= NLO 

APXLNLO 

APXLNPO 



NC1ONLO, AC0ONLO, etc. 

• We introduce circuit-based optimization problems. 
• Recall AC0 and NC1. 

• AC0 =  Uniform circuits of constant-depth and unbounded-
fain 

• NC1 = Uniform circuits of O(log n)-depth and bounded-fain 
 

• We define the following two classes. 
• AC0ONLO = class of all NLO problems that are AC0-

solvable 
• NC1ONLO = class of all NLO problems that are NC1-

solvable 



LSASNLO 

AC0ASNPO 

APXAC0
NLO 

AC0ONLO 

APXAC0
NPO 

APXNC1
NPO 

NC1ASNPO 

APXNC1
NLO 

NC1ONLO 

AC0ONPO 

NC1ONPO 

APXLNPO 

LONPO 

APXPNPO 

PONPO 

PTASNPO 
LSASNPO 

LONLO 
AC0ASNLO 

NC1ASNLO 

APXLNLO 

NLO            
= PONLO    

=  APXPNLO 

NPO 

Relations among Refined Classes 

• We summarize the inclusion relationships among 
refined classes. 
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Approximation-Preserving Reductions 
• Let P = (I1,SOL1,m1,goal) and Q = (I2,SOL2,m2,goal).  

• P is APL-reducible to Q (P ≤AP
P Q) ⇔ 

• ∃f,g ∈ FL  ∃c ≥ 1 s.t.  
1. ∀x∈I1 ∀r∈ℚ>1 [ f(x,r)∈I2 ] 
2. ∀x∈I1 ∀r∈ℚ>1 [ SOL1(x) ≠ ∅ → SOL2(f(x,r)) ≠ ∅ ] 
3. ∀x∈I1 ∀r∈ℚ>1 ∀y∈SOL2(f(x,r)) [ g(x,y,r)∈SOL1(x) ] 
4. f, g ∈ auxFL for each fixed r∈ℚ>1 

5. ∀x∈I1 ∀r∈ℚ>1 ∀y∈SOL2(f(x,r)) [ R2(f(x,r),y) ≤ r → 
R1(x,g(x,y,r)) ≤ 1+c(r-1) ], 

       where ℚ>1 = { r∈ℚ| r>1 }.  x∈I1 f(x,r)∈I2 

g(x,y,r)∈SOL1(x) y∈SOL2(f(x,r)) 

f 

g 



More Reductions 

• We define three additional reductions:  
APL reductions (P ≤AP

L Q) 
APNC1 reductions (P ≤AP

NC1 Q) 
APAC0 reductions (P ≤AP

AC0 Q) 
 

• Moreover, if we replace ℚ>1 in P ≤sAP
L Q with ℚ≥1,  we 

obtain  
Strong APL reductions (P ≤sAP

L Q) 



Exact Reductions 

• We introduce another type of reduction. 

• Let P = (I1,SOL1,m1,goal) and Q = (I2,SOL2,m2,goal).  
 

• EXL reductions (P ≤EX
L Q) ⇔ 

 ∃f,g ∃c≥1 s.t.  
1. ∀x∈I1  [ f(x)∈I2 ] 
2. ∀x∈I1  [ SOL1(x) ≠ ∅ → SOL2(f(x)) ≠ ∅ ] 
3. ∀x∈I1 ∀y∈SOL2(f(x)) [ g(x,y)∈SOL1(x) ] 
4. f, g ∈ auxFL  

5. ∀x∈I1 ∀y∈SOL2(f(x)) [ R2(f(x),y) =1 → R1(x,g(x,y)) =1 ]. 
 



Example: Max Vertex 
• Maximum vertex weight problem (Max Vertex) 
 Instance: directed graph G, source s, (vertex) weight 

function w 
Solution: path from s to a certain vertex t 
Measure: weight of t ( = w(t) ) 

 
 
 
 

 
• Max Vertex is in PONPO.  
• However, it does not seem to be complete for PONPO. 
• (Question) What is the exact complexity of this problem?   
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 Optimal solution 
          s →v7→v2→v6→v3 



Example: Max BFVP 

• Maximum Boolean formula value problem (MaxBFVP) 
 Instance: set F of Boolean formulas and a Boolean 

assignment σ 
Solution: subset C of satisfied formulas by σ 
Measure: number of formulas in C 

 
 

 
 

• MaxBFVP is in PONPO.  
• However, it does not seem to be complete for PONPO. 
• (Question) What is the exact complexity of this 

problem?   

{ }1 3 1 2 3 1 2 3, ( ) ,F x x x x x x x x= ∨ ∨¬ ∧ ∨ ∨

1 2 3( ) 1, ( ) 0, ( ) 1x x xσ σ σ= = =



Complete Problems I 

• Finally, we exhibit a short list of complete problems. 
 

• Max Vertex 
 ≤AP

L-complete for APXLMaxNL [Tantau (2007)] 
• Min Path-Weight 
 ≤sAP

NC1-complete for MinNL 
• Min Forest-Path-Weight 
 ≤sAP

NC1-complete for APXLMinNL 
 
 

 



Complete Problems II 

• Recall that a problem P is polynomially-bounded  
       ⇔   ∃p:poly ∀(x,y)∈I°SOL [ m(x,y) ≤ p(|x|,|y|) ]. 

• PBO = set of polynomially-bounded optimization 
problems 

 
• Max B-Vertex 
≤EX

NC1-complete for LONLO∩PBO 
• Max BFVP 
≤EX

NC1-complete for NC1ONLO∩PBO 
 
 



1. Relations among Classes 
2. Inclusion Relationships 

V. Relations among Log-Space Classes 



Relations among Classes 

• Yamakami (2011) showed the following. 

• Implications 
L = P ⇔ LONLO∩PBO = PONLO∩PBO 
NC1 = L ⇔ NC1ONLO∩PBO = LONLO∩PBO 
L ≠ P ⇒ PONPO ⊄ APXLNLO 
NC1 ≠ NL ⇒ NC1ONLO ≠ APXNC1

NLO 

• Separations 
NC1ONLO ⊄ APXAC0

NLO 

AC0ONLO ≠ APXAC0
NLO 

 



LSASNLO 

AC0ASNPO 

APXAC0
NLO 

AC0ONLO 

APXAC0
NPO 

APXNC1
NPO 

NC1ASNPO 

APXNC1
NLO 

NC1ONLO 

AC0ONPO 

NC1ONPO 

APXLNPO 

LONPO 

APXPNPO 

PONPO 

PTASNPO 
LSASNPO 

LONLO 
AC0ASNLO 

NC1ASNLO 

APXLNLO 

NLO            
= PONLO    

=  APXPNLO 

NPO 

Inclusion Relationships (again) 
• We review our optimization classes again. 

 
 
 
 
 
 
 
 
 

• Open Problem:  We need to find  more interesting  
problems inside those classes.  



1. Combinatorial Optimization Problems 
2. Maximization CSPs 
3. Visualizing MAX-CSP(F) 
4. A Known Classification Theorem 
5. A Use of Products of Objective Functions 
6. Definition of MAX-PROD-CSPs 

 

VI. Optimization CSPs 



Counting Constraint Satisfaction Problems (revisited) 

• We recall the notion of counting CSPs or #CSPs from 
Week 8. 

• Let F be any set of constraints. 

• Counting CSP: #CSP(F) 
• Instance:  
 a set of Boolean variables 
 a set of constraints in F 

• Question: 
 How many (variable) assignments satisfy all the 

given constraints? 
 

• NOTE: all #CSPs (counting CSPs) are #P problems.  



Weighted Constraints 

• Creignou (1995) first gave a formal treatment to 
maximization problem. He used unweighted Boolean 
constraints. 
 

• Here, we consider nonnegative real weighted  
constraints, which are functions from {0,1}k to R≥0 = { 
r∈R | r ≥ 0 }. 
 

• Creignou (1995) and Khanna, Sudan, Trevisan, and 
Williamson (2001) studied maximization CSPs. 



Maximization CSPs (or MAX-CSPs) 
• Let F be any set of constraints. 
• Maximization CSP: MAX-CSP(F) 

• Instance:  
• A finite set of elements of the form 
〈h,(xi1,xi2,...,xik)〉 on Boolean variables xi1,xi2,...,xik, 
where h∈F, {i1,i2,...,ik} ⊆ [n]. 

• Solution: 
• A truth assignment σ to x1,x2,...,xn.  

• Measure: 
• The sum  ∑ h(σ(xi1),σ(xi2), ..., σ(xik)), where the 

sum is taken over all 〈h,(xi1,xi2,...,xik)〉 ∈ H.  

• MAX-CSP(XOR) coincides with MAX-CUT, which is 
MAX-SNP-complete [Papadimitriou-Yannakakis (1991)] 

This measure is 
referred to as an 
additive measure. 



Visualizing MAX-CSP(F) 

• An input Ω = (G,F’,π), where  
1. a bipartite graph G = (V1|V2,E), 
2. F’ ⊆ F, a finite subset, 
3. π: V2 → F’ (a labeling function). 

 
 
 
 
 
 
 
 

 
• MAX-CSP(F)  

• Instance: an input Ω  
• Solution: find an optimal solution  
• Measure: sum of all constraints 

x1 

x2 

x3 

x4 

f1(x1,x4,x3) 

f2(x2,x4) 

f3(x1,x4,x3) 

{ }
{ }

1 2 3 4
1 1 4 3 2 2 4 3 3 2 4, , , 0,1

max ( , , ) ( , ) ( , , )
x x x x

f x x x f x x f x x x
∈

+ +

V1 
V2 label 

label 

E 

Boolean variables: {x1,x2,x3,x4} 
(Boolean) constraints:  
{ f1(x1,x4,x3), f2(x2,x4), f3(x1,x4,x3) } 

We want to maximize the sum of all 
objective values. 



A Known Classification Theorem 

• Creignou (1995) and Khanna, Sudan, Trevisan, and 
Williamson (2001) proved the following classification 
theorem on MAX-CSPs. 
 

• Let F be any set of 
constraints. 
 

• Dichotomy Theorem  
• If F is 0-valid, 1-valid, or 2-

monotone, then MAX-
CSP(F) is in PO.  

• Otherwise, MAX-CSP(F) 
is APX-complete. 

P-computable 
MAX-CSP(F)’s 

APX-complete 
MAX-CSP(F)’s 

World of MAX-CSP(F)’s 

Only 2 levels 



A Use of Products of Objective Functions 

• There are a number of cases where products of objective 
values have been used.   

• Linear multiplicative programming 
• This minimizes the product of two positive linear cost 

functions, subject to linear constraints. 
• Geometric programming 

• A certain type of product objective function can be 
reduced to additive one if function values are all 
positive. 

• MAX-PROD-KNAPSACK 
• Marchetti-Spaccamela and Romano (1985) proved that 

a maximization problem whose maximization is 
measured by the product of objective values. 

• We call such a measure a multiplicative measure.  



Example: MAX-PROD-KNAPSACK 

• MAX-PROD-KNAPSACK 
 instance: a finite set X of items, value pi∈N+ and size 

ai∈N+ for each item xi∈X, and a number b∈N+ 

solution:  a set Y⊆ X such that Σxi∈Y ai ≤ b 
measure:  multiplicative value Πxi∈Y pi 

 
• (Claim)  MAX-PROD-KNAPSACK has an FPTAS. 

[Marchetti-Spaccamela and Romano (1985)]  
 

• In comparison: 
• (Fact)  MAX-KNAPSACK (with additive measure) has 

an FPTAS. [Ibarra-Kim (1975)] 



Example: MAX-PROD-IS 

• We see an example with a multiplicative measure. 

• MAX-PROD-IS (maximum product 
independent set) 
• Instance:  
 An undirected graph G = (V,E) 
 A series { wx }x∈V of vertex 

weights with wx∈R≥0 

• Solution: 
 An independent set A on G  

• Measure: 
 The maximum product weight  

∏x∈A wx  

3 

4 

4 

1 

0 

5 

A 

product weight = 60 

An independent set A is a subset of V 
s.t. each edge in E is incident on at most 
one vertex in A. 



Example: MAX-PROD-BIS 

• Another example is a restricted form of MAX-PROD-IS. 

• MAX-PROD-BIS (bipartite independent set) 
• In MAX-PROD-IS, all input graphs are limited to 

bipartite graphs. 
 
 
 
 
 
 

3 

2 

5 
2 

0 

3 

4 
A 

A 

G  =  ( V1|V2, E ) 

A: an independent set 

product weight = 60 

V1 V2 



Example: MAX-PROD-FLOW 

• MAX-PROD-FLOW (maximum product flow) 
 Instance:  

• A directed graph G = (V,E), a series {ρe}e∈E of 
flow rates with ρe ≥ 1, and a series {wz}z∈V of 
influx rates with wx ≥ 0  

Solution: 
• A Boolean assignment σ of V  

Measure: 
• The product   

( )( )( , )( , ) , ( ) ( ) , ( ) 1x y zx y E x y z V z
w

σ σ σ
ρ

∈ ≥ ∈ =∏ ∏



Definition of MAX-PROD-CSPs 
• We want to conduct a general study about optimization 

CSPs whose maximization is taken by multiplicative 
measures.  

• Let F be any set of constraints. 
• Maximization Product CSP: MAX-PROD-CSP(F) 
 Instance:  

• A finite set of elements of the form 〈h,(xi1,xi2,...,xik)〉 
on Boolean variables xi1,xi2,...,xik, where h∈F, 
{i1,i2,...,ik} ⊆ [n]. 

Solution: 
• A truth assignment σ to x1,x2,...,xn.  

Measure: 
• The product  ∏ h(σ(xi1),σ(xi2), ..., σ(xik)), where the 

product is taken over all 〈h,(xi1,xi2,...,xik)〉 ∈ H.  

This is an 
multiplicative  
measure. 



Unary Constraints are Free of Charge 

• For our results, we allow any unary constraint to use for free.  
• Simple examples of unary constraints are ∆0, and ∆1. 
• Let U be the set of all unary constraints. 
• Such a use of free unary constraints has been made 

elsewhere. 
• Feder (2001) for Boolean CSPs 
• Dalmau-Ford (2003) for Boolean CSPs 
• Cai-Huang-Lu (2010) for Holant problems 
• Cai-Lu-Xia (2009) for Holant problems 
• Dyer-Goldberg-Jalsenius-Richerby (2010) for bounded-degree 

#CSPs 
• Yamakami (2010) for bounded-degree #CSPs 

• Notational convention: 
• MAX-PROD-CSP*(F)  =def  MAX-PROD-CSP(F,U) 

∆0(x) = False(x)   
∆1(x) = True(x)  

Reminder 



1. Randomized Approximation Schemes 
2. Approximation-Preserving Turing Reductions 
3. exp-APXPNPO 

4. Important Sets of Constraints 
5. Classification Theorem 

VII. Approximation Schemes 



Randomized Approximation Schemes 

• We explain what type of approximation to use. 
 

• Let P = ( I, sol, m, goal ) be any optimization problem.  
 

• A randomized approximation scheme (or RAS) for F is a 
probabilistic algorithm that 
• takes (x,ε)∈ I×R≥0 as an input, and 
• outputs a solution y ∈ sol(x) such that 
• m*(x) is approximated by m(x,y) with relative error of 2ε 

     with high probability. 
 

• A fully polynomial-time randomized approximation scheme 
(or FPRAS) is a RAS that runs in time polynomial in (|x|,1/ε). 

NOTE: in this model, even if 
α and β are approximated, 
α+β may not be 
approximated properly for 
real numbers α, β. 

( , )2 2
*( )

m x y
m x

ε ε− ≤ ≤



Approximation-Preserving Turing Reductions 

• Dyer, Goldberg, Greenhill, and Jerrum (2003) introduced a 
notion of approximation-preserving (Turing) reduction for 
counting CSPs.  

• Yamakami (2011) introduced a similar reduction for 
optimization CSPs 

• Let P=(I,sol,m,goal) and Q=(I’,sol’,m’) be any two 
optimization problems. 

• P is APT-reducible to Q by a reduction M  ⇔   
1. M is an oracle PTM working on input (x,ε) with an oracle, 
2. M is a RAS for F and the oracle is also a RAS for G, 
3. every oracle call made by M is of the form (w,δ) with 1/δ 

≤ poly(|x|,1/ε), 
4. the running time of M is bounded by a polynomial in 

(|x|,1/ε). 
 

Notational conventions: 
P ≤APT Q ⇔ P is APT-reducible to Q. 
P ≡APT Q  ⇔  P ≤APT Q and Q ≤APT P. 



exp-APXPNPO 

• Recall that APXPNPO (or APX) consists of all NPO 
problems, each of which is polynomial-time γ-
approximable for a certain constant γ>0. 

• A function f : N → N is called exponentially bounded if 
there is a positive polynomial p such that 1 ≤ f(n) ≤ 2p(n) 
for every n∈N.  

• exp-APXPNPO consists of all NPO problems P such that 
there are an exponentially-bounded function r and a 
polynomial-time r-approximate algorithm for P.  
 



Lemmas 

• We can prove the following lemmas. 
 

• Lemma  [Yamakami (2011)] 
    For any set F of constraints,  
MAX-PROD-CSP(F) ≤APT exp-APXPNPO  

 
• Lemma  [Yamakami (2011)] 
MAX-PROD-IS  ≤APT  MAX-PROD-CSP*(OR) 
MAX-PROD-BIS  ≤APT  MAX-PROD-CSP*(Implies) 



Important Sets of Constraints 

• We introduce several important sets of constraints. 
 

• DG = the set of degenerate constraints (that is, 
products of unary constraints) 

• ED = the set of constraints which are products of unary 
constraints, EQ2, and XOR 

• AF = the set of affine-like constraints 

• IMopt = the set of constraints which are products of 
unary constraints, (1,1,λ,1) with 0≤λ<1. 



Classification Theorem  I 

• Let F be any set of constraints. 

• Theorem   [Yamakami (2011)] 
1. If either F⊆AF or F⊆ED, then 

MAX-PROD-CSP*(F) is in PO. 
2. Otherwise, if F⊆IMopt, then  
    MAX-PROD-BIS ≤APT MAX-

PROD-CSP*(F) ≤APT MAX-
PROD-FLOw. 

3. Otherwise, MAX-PROD-IS ≤APT 
MAX-PROD-CSP*(F). 

 
PO 

NPO 

MAX-PROD-IS 

MAX-PROD-BIS 



Classification Theorem  II 

• A key is the following proposition about single 
constraints  f. 

• Proposition  [Yamakami (2011)] 
• Assume that f ∉ AF∪ED. Let F be any signature set. 
1. If f ∈IMopt, then MAX-PROD-CSP*(Implies,F) ≤APT 

MAX-PROD-CSP*( f, F).  
2. If f ∉IMopt, then there exists a constraint g∈{ OR, 

NAND } such that MAX-PROD-CSP*(g,F) ≤APT MAX-
PROD-CSP*( f, F). 





Q & A 
I’m happy to take your question! 



 
 

                                 END 
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