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YouTube Videos 

• This lecture series is based on numerous papers of T. 
Yamakami. He gave conference talks (in English) and 
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.  

• Use the following keywords to find a playlist of those 
videos.  

• YouTube search keywords: 
    Tomoyuki Yamakami  conference  invited talk playlist 
 

Conference talk video 
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Worst-Case and Average-Case Analysis 

• There are a few reasons that we usually concentrate on 
finding only the worst-case running time, that is, the 
longest running time for any input of size n. 

– The worst-case running time of an algorithm is an upper 
bound on the running time for any input.  

– For some algorithms, the worst case occurs fairly often. 
• In some particular cases, we shall be interested in the 

average-case (or expected) running time of an algorithm. 
• For average-case analysis, we need to discuss 

distributional problems whose inputs occur according to 
certain probability distributions.   



Distributions and Density Functions  I 

• Let Σ = { 0, 1 }. 
• We use the lexicographic order over {0,1}*, defined as 
            λ < 0 < 1 < 00 < 01 < 10 < 11 < 000 < 001 < ... 
• Here, “polynomials” are to have integer coefficients. 

 
• A semi-distribution µ is an increasing function from Σ* to 

R≥0  (i.e., set of nonnegative real numbers).  

• A distribution µ is a semi-distribution that satisfies    
 
 

where “x→∞” means that x is becoming “larger” according 
to the lexicographic order, described above. 
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Distributions and Density Functions  II 

• In other words, a distribution µ is an increasing function 
from Σ* to [0,1] such that   

 
•  A (probability) density function µ* is defined by  

 
 
 

• A probability density function is also called a probability 
distribution. 
 

• (Claim)  µ(x) = Σz≤xµ*(z) holds, where ≤  is the lexicographic 
ordering. 

lim ( ) 1
x

xµ
→∞

=

* ( )               if  ,  
( )

( ) ( )  otherwise
x

x
x x

µ λ λ
µ

µ µ −

=
=  −



Notational Remarks 

• We use an appropriate encoding 〈x,0i〉 of pair x and 0i.  
• Our algorithm (or a machine) M takes inputs of the form  

〈x,0i〉 and eventually enters either accepting or rejecting 
states. 

• Although we actually use encoded strings 〈x,0i〉, for the 
sake of convenience, we write M(x,0i) instead of M(〈x,0i〉) 
for an algorithm (or a machine) M.   

 



Standard Distribution on {0,1}*  I 

• Let llog(n) = log2(n+1). 

• llog(0)=0,  llog(1)=1,  llog(2)=1,  llog(3)=2, .... 

 

• Here is the standard density function on {0,1}*. 

 

• This means that we pick a natural number at random and 
pick a string of length n at random. 

* | | 2 (| |) 1
stand ( ) 2 2x llog xxν − − −= ⋅

*
stand2 | | 2 | |

1 1( )
8(| | 1) 2 2(| | 1) 2x xx

x x
ν≤ ≤

+ +



Standard Distribution on {0,1}*  II 

• Its distribution is shown as 

 

 

    when x is the k-th string. 

• Recall the lexicographic order: 

         λ < 0 < 1 < 00 < 01 < 10 < 11 < 000 < 001 < ... 

         0    1    2     3      4      5      6       7       8  .... 
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Standard Distribution on {0}* 

• A string over a single alphabet is called tally. 

• Here is the standard density function on {0}*. 

 

 

 

• This means that we pick a natural number at random. 

• Its distribution is shown as 
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Polynomial-Time Computable Distributions 

• Let µ: Σ*→ [0,1] be any 
distribution.  

• µ is polynomial-time computable 
⇔ there is a polynomial-time 
deterministic Turing machine 
(DTM) with an output tape such 
that  

         | µ(x) – M(x,0i) | ≤ 2-i   
    for any x∈Σ* and i∈N. 
• Let P-comp be the collection of 

all polynomial-time computable 
distributions. 

x 0i 

y 

DTM  M 

( ) 2 ix yµ −− ≤

input 〈x,0i〉  

output 

y is an approximate 
value of µ(x).  



Approximation of Distributions 
• How to approximate a distribution 

As we increase k, M(x,0k) is approaching to µ(x) 

µ(x) 



Distributions Versus Density Functions 

• We have defined the polynomial-time computable 
distributions and we will use them as a basis of our 
polynomial-time computability in average-case complexity 
theory. 

• It could be possible to introduce polynomial-time 
computable density functions and develop average-case 
complexity theory. However, we did not use density 
functions in place of distributions. 

• This is because: 
 If P ≠ NP (as many researchers believe), there exists a 

density function that is computable in polynomial time 
but its associated distribution is not polynomial-time 
computable. 



Distributional Decision Problems 

• A distributional decision problem is a pair (D,µ), where D 
is a language and µ is a distribution. 

• Recall P (deterministic polynomial-time class) and NP 
(nondeterministic polynomial-time class) from Week 1. 
 

• Let F be a class of distributions. 

• Dist(P,F) consists of all distributional decision problem 
(D,µ) such that D∈P and µ∈F. 

• Dist(NP,F) consists of all distributional problems (D,µ) 
with D∈NP and µ∈F. 



DistNP 

• In the definition of Dist(NP,F), if we choose F = all 
distributions, we write Dist(NP,*) for { (D,µ) | D∈NP,µ: 
arbitrary }. 

• Thus, Dist(NP,F) ⊆ Dist(NP,*)  holds for any set F. 
 

• Dist(NP,P-comp) is the collection of all distributional 
decision problem (D,µ) such that D∈NP and µ∈P-comp. 

• In this case, we write DistNP instead of Dist(NP,P-comp). 



t  on  µ-Average 
• Let R+ = { r∈R | r ≥ 0 } and R+∞ = R ∪ {∞}.  
• Schapire (1990) considered the following. Let t: R+ → R+.  

• A function g: Σ*→ R+∞  is  t on µ-average  
    ⇔  for any positive real number r,  
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Polynomial on Average 

• From the previous definition, we obtain: 

• (Claim)  If g is t on µ-average, then  
                     g(x) ≤  t(|x|/µ*(x))  
    holds for all x with µ*(x)>0. 

• Let T be a set of functions from R+ to R+. 

• A function g: Σ*→ R+∞  is  T on µ-average  
    ⇔  for any t ∈ T, g is t on µ-average.   

• In particular, if T = all positive polynomials, we obtain the 
notion of “polynomial on µ-average.”  
 



Levin’s Definition 

• Levin (1984) took the following definition.  

• A function g: Σ*→ R+∞ is polynomial on µ-average 
    ⇔ there exists a real number k ≥ 1 such that 
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Equivalence Between Two Definitions 

• By Schapire (1990) and Impagliazzo (1995), we obtain 
the following equivalence between the previous two 
definition on “polynomial on µ-average.” 
 

• (Claim)  The following two definitions are logically 
equivalent. 
1. g is polynomial on µ-average. 
2. There exists a real number k ≥ 1 such that 
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Polynomial-Time on Average 
• For a deterministic Turing machine (DTM) M and an 

input x, time(M,x) means the running time of M on input x. 
• Let D be a language over alphabet Σ. 
• We say that M recognizes D in polynomial-time on µ-

average if (i) M recognizes D and (ii) the function 
time(M,•) is polynomial on µ-average. 
 

time(M,x) 

x 

…. …. 

length 2 length n 

…. 

p(|x|r) 



Average P 

• Let F be a class of distributions. 

• Average(P,F) consists of all distributional decision 
problems (D,µ) such that (i) µ ∈ F and (ii) a certain DTM 
M recognizes D in polynomial-time on µ-average. 

• If F is the set of all distributions, we write Average(P,*). 
• When F = P-comp, we obtain Average(P,P-comp). This 

class is often written as Average-P. 

• (Claim)  For any set F of distributions with νtally ∈ F, 
Average(P,F) ⊄ Dist(NP,*).  [Wang-Belanger (1995)] 

 



Average NP 

• Let F be a class of distributions. 

• Average(NP,F) consists of all distributional decision 
problems (D,µ) such that (i) µ ∈ F and (ii) certain NTM M 
recognizes D in polynomial-time on µ-average. 

• When F = P-comp, we obtain Average(NP,P-comp). This 
class is often written as Average-NP. 

• (Claim)  Dist(NP) ⊆ Average(NP,P-comp) 

• Theorem:  [Schuler-Yamakami (1992)] 
    Average(P,*) ≠ Average(NP,*) 



Average BPP 

• Let F be a class of distributions. 

• Average(BPP,F) consists of all distributional decision 
problems (D,µ) such that (i) µ ∈ F and (ii) certain PTM M 
recognizes D with bounded-error probability in 
polynomial-time on µ-average. 

• When F = P-comp, we obtain Average(BPP,P-comp). 
This class is often written as Average-BPP. 

• Claim: 
1. If P ≠ BPP, then Average(P,*) ≠ Average(BPP,*). 
2. If P = PP, then Average(P,F) = Average(BPP,F) for 

any set F of distributions 



Open Problems 

• At this moment,  we do not know whether all 
distributional problems in DistNP can be solved 
deterministically in average polynomial time.  

• In other words, 

• (Open Question)  Is DistNP ⊆ Average-P? 
 

• More generally, we can ask the following question. 

• (Open Question) 
 Prove or disprove that Dist(NP,F) ⊆ Average(P,F) for 

each choice of natural distribution class F. 



1. Domination Relations 
2. Average Domination 
3. Equivalence Relations 
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p  
6. Average Polynomial-Time Many-One Reductions 
7. Hard Problems and Complete Problems 
8. (RBTB,µRBTB) is Complete for Dist(NP,P-comp) 

II. Complete Distributional Problems 



Domination Relations  I 

• We introduce a notion of “domination.” 

• A function f : {0,1}* → R≥0 is polynomially bounded (or p-
bounded)  ⇔  there exists a polynomial p such that, for 
all x ∈ {0,1}*,  f(x) ≤ p(|x|).  

• Let µ,ν be distributions and let t : {0,1}* → R≥0.  
• We say that ν t-dominates µ if, for all x,  
                          t(x)ν*(x) ≥ µ*(x). 

• We say that ν polynomially dominates (or p-dominates) µ 
(µ ≤p ν) if there is a certain polynomially-bounded 
function t  and ν t-dominates µ . 
 



Domination Relations  II 

• Let µ,ν be distributions. 
 

• (Claim)  If µ1 ≤p µ2  and  µ2 ≤p µ3, then  µ1 ≤p µ3. 
• (Claim)  If µ1 ≤avp µ2  and  µ2 ≤avp µ3, then  µ1 ≤avp µ3. 

 
 

• (Claim) Assume that ν p-dominates µ. If an algorithm A 
requires polynomial time on ν-average, then A also 
requires polynomial time on µ-average. 



Average Domination 
• Let µ,ν be distributions and let t : {0,1}* → R≥0.  

 
• We say that  ν average t-dominates µ  if there exists a 

function f : {0,1}* → R≥0  such that f is t on µ-average and 
ν f-dominates µ. 

• We say that  ν average polynomially dominates (or avp-
dominates)  µ  (µ ≤avp ν) if there exists a polynomial t 
such that ν average t-dominates µ. 
 

• (Claim) Assume that ν avp-dominates µ. If an algorithm 
A requires polynomial time on ν-average, then A also 
needs polynomial time on µ-average. 

 
 



Equivalence Relations 

• Let µ,ν be two distributions. 
 

• We say that µ p-equivalent to ν (ν ≈p µ) if µ p-dominates 
ν and ν p-dominates µ. 
 

• We say that µ average p-equivalent to ν (ν ≈avp µ) if µ 
avp-dominates ν and ν avp-dominates µ. 
 
 



A Useful Condition on Domination 
• Let η be a distribution and f : Σ*→ Σ* be a function. 
• Define ηf-1  as ηf-1*(x) = η({ z | f(z) = x }) for all strings x ∈ Σ*.  

• We say that ν* majorizes µ*  (denoted ν* ≥ η*)  if ν*(x) ≥ 
µ*(x) holds for all x∈{0,1}*. 
 

• (Claim)  The following statements are logically 
equivalent. 
1. There exists a semi-distribution η s.t.  µ ≤p η  and    

ν* ≥ ηf-1*. 
2. There exists a p-bounded positive function p : {0,1}* 

→ R≥0 s.t., for all y,   
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Polynomial-Time Many-One Reductions 

• Let (A,µ), (B,ν) be any distributional decision problems. 

• (A,µ) is polynomial-time many-one reducible (or p-m-
reducible) to (B,ν) iff there exists a function f such that 
 (Efficiency)  f ∈ FP, 
 (Validity) for every x, x ∈ A ↔ f(x) ∈ B 
 (Domination) for a certain semi-distribution η, µ ≤p η and 

ν* ≥ ηf-1*. 

• In this case, we write (A,µ) ≤m
p (B,ν).  

A 
B 

f f(x)=y 
f-1(y) 

µ ≤p η 
ν* ≥ ηf-1* 



Properties of  ≤m
p  

• The following properties hold. 

 

• (Reflexive)  (A,µ) ≤m
p (A,µ)  

• (Transitive)  If (A,µ) ≤m
p (B,ν) and (B,ν) ≤m

p (C,η), then (A,µ) 
≤m

p (C,η). 

 

• Hence,  ≤m
p  forms a partial order. 



Average Polynomial-Time Many-One Reductions 

• Let (A,µ), (B,ν) be any distributional decision problems. 
 

• (A,µ) is average polynomial-time many-one reducible (or 
avp-m-reducible) to (B,ν)  ⇔ there exists a function f : 
{0,1}* → {0,1}* such that 
 (Efficiency) (f,µ) ∈ Average(FP,*), 
 (Validity) for every x, x ∈ A ↔ f(x) ∈ B 
 (Domination) for a certain η, µ ≤avp η and ν* ≥ ηf″*. 

• In this case, we write (A,µ) ≤m
avp (B,ν).  

 
• (Claim)  (A,µ) ≤m

p (B,ν)  implies  (A,µ) ≤m
avp (B,ν).  



Properties 

• Let (A,µ), (B,ν) be any distributional decision problems. 
 

• (Claim) For any C ∈ {P,NP,BPP,PSPACE}, Average(C,*) 
is closed (downward) under ≤m

avp-reductions. 
Namely,  if  (A,µ) ≤m

avp (B,ν)  and (B,ν) ∈ Average(C,*), 
then we obtain (A,µ) ∈ Average(C,*). 
 



Hard Problems and Complete Problems 

• Let (A,µ), (B,ν) be any distributional 
decision problems. 

• Let C be a class of distributional 
problems. 
 

• (A,µ) is  ≤m
p -hard for C if every 

distributional problem in C is p-m-
reducible to (A,µ). 

• (A,µ) is  ≤m
p -complete for C if (A,µ) is 

in C and it is ≤m
p -hard for C.  

 

≤m
p -hard  

≤m
p -complete  

C 



Decision Problems vs. Distributional Problems 

• We can ask whether all NP-complete decision problems 
are also DistNP-complete distributional problems. 
 

• Unfortunately, this statement may not be true, because: 
 3COL is NP-complete. 
 Wilf (1985) showed that (3COL,µ3COL) ∈ Average(P,*). 
 

• In the next slide, we will explain (3COL,µ3COL).  



Randomized 3-Colorability Problem 

• Randomized 3-Colorability Problem (3COL) 
 3COL = { 〈G〉 | G is a graph that is 3-colorable }  
 µ3COL*(〈G〉 ) = νtally*(1|V|)2-(n choose 2) 

 (Choose the number of vertices at ransom and then 
choose edges between pairs of distinct vertices at 
random.) 
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Randomized 3-Satisfiability Problem 

• Recall that 3SAT is NP-complete. 

• Randomized 3-Satisfiability Problem (3SAT) 
 3SAT = { 〈(p1,q1,r1),...,(pn,qn,rn)〉 | formula ∧i=1

n(pi∨qi∨ri) 
is satisfiable }  

 µ3SAT*(〈(p1,q1,r1),...,(pn,qn,rn)〉)  
                   = νtally*(1n)Σi=1

n2-(|pi|+|qi|+|ri|) 

 (Pick up n at random and pick up n triples of  
variables at random.) 

• A formula ∧i=1
n(pi∨qi∨ri) is satisfiable ⇔  ∃σ:truth 

assignment s.t. ∧i=1
n(σ(pi)∨ σ(qi)∨σ(ri)) equals 1 



Tiles and Tilings  I 

• A tile is a quadruple [u,v,x,w] of strings, where u is “left”, 
v is “top”, x is “right”, and w is “bottom”. 

• We write left[u,v,x,w] for u, top[u,v,x,w] for v, 
right[u,v,x,w] for x, and bottom[u,v,x,w] for w.  

• Let Sn be the n×n square {1,…,n}×{1,…,n}. 
• Let T be a set of tiles. 
• A function f: Sn → T is a T-tiling of Sn if left[f(i+1,j)] = 

right[f(i,j)] and bottom[f(i,j+1)] = top[f(i,j)] for all i,j with 1≤ 
i,j ≤ n. 

• A sequence <t1,t2,…,tk> is a T-row of length k if ti ∈ T for 
all i with 1≤ i ≤ n and left[tj+1] = right[tj] for all j with 1≤ j ≤ 
n. 



Tiles and Tilings  II 

• T-tiling f: Sn → T  
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Tiling Problem 
• Levin (1984) discussed the distributional problem 

(RBTP,µRBTP). 

• Randomized Bounded Tiling Problem (RBTP) 
 instance: a set T of tiling, size n, a T-row <t1,t2,…,tk> 

of length k with 1≤ k ≤ n 
 question: is there a T-tiling f of Sn such that f(1,i) = ti  

for any i with 1≤ i ≤ n? 
• Distribution µRBTP (with a fixed positive µ∈P-comp) 

 
 
 

     where Ti = { t ∈T | left[t] = right[ti] }. 
• Condition A: 1≤ k ≤ n and Ti ≠∅ for all i with 1≤ i ≤ k 
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(RBTB,µRBTB) is Complete for Dist(NP,P-comp) 

• Levin (1984) demonstrated the following completeness 
result.  
 

• (Claim) Distributional Problem (RBTP,µRBTP)  is ≤m
p-

complete for Dist(NP,P-comp).  [Levin (1984)] 
 

• Note that the tiling problem is NP-complete. 
 



Randomized Bounded Halting Problem 

• We show another complete distributional problem. 
 
• Randomized Bounded Halting Problem (RBHP) 
 BHP = { 〈si,x,1n〉 | Mi accepts x in less than n steps }  
 µBHP*(si,x,1n) = νst*(si)νst*(x)νtally*(1n) 
 (Pick up string si at random, pick up x at random, and 

pick up 1n at random.) 
 

• (Claim)  (RBHP,µBHP) is ≤m
p-complete for Dist(NP,P-

comp). [Gurevich-Shelah (1987)] 



Open Problems 

• There are numerous problems that have not yet solved. 
 

1. Find natural distributional problems that are complete 
for Dist(NP,P-comp). 

2. Similarly, find natural distributional problems that are 
complete for Dist(NP,P-samp). 

 
• P-samp will be discussed in the next section. 
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P-Computable Distributions (revisited) 

• Let µ: Σ*→ [0,1] be a distribution. 
 

• Recall that µ is polynomial-time computable ⇔ there is a 
polynomial-time deterministic Turing machine (DTM) 
with an output tape such that | µ(x) – M(x,0i) | ≤ 2-i. for 
any x∈Σ* and i∈N. 
 

• Let P-comp be the collection of all polynomial-time 
computable distributions. 



Polynomial-Time Samplable Distributions 

• We introduce another type of 
distribution. 

• A distribution µ is polynomial-
time samplable (or P-samplable) 
⇔  there are a polynomial p and 
a probabilistic Turing machine 
(PTM) that take input 0i and 
produces strings satisfying, for 
every x,   
| µ*(x) – ProbM[ M(0i) produces x 
within time p(|x|,i) ] | ≤ 1/2i.   
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P-Samp  I 

• Let P-samp denote the collection of all polynomial-time 
samplable distributions. 

P-samp 

P-comp 

Many believe in this way 

• (Claim)  P-comp ⊆ P-samp. 
• (Claim)  P ≠ NP ⇒ P-comp ≠ P-samp. 

[Ben-David-Chor-Goldreich-Luby 
(1992)] 

• (Claim)  P = PP ⇔ P-comp = P-samp. 
[Milterson (1993)] 



P-Samp  II 

• Recall the notion of (strong) one-way function from Week 
7. 

 

• (Claim) Assume that every distribution in P-samp is p-
dominated by certain distributions in P-comp. Then, 
there is no strong one-way function [Ben-David-Chor-
Goldreich-Lubby (1992)]   



Complete Problem for Dist(NP,P-samp) 

• We show the existence of complete distributional 
problem for Dist(NP,P-samp). 

• Randomized Bounded halting Problem (RBHP) 
 BHP = { 〈si,x,1n〉 | Mi accepts x in less than n steps }  

• Distribution µU  

 Let { ηi }i∈N be an effective enumeration of all O(n)-
time samplable distributions.  

 µU*(z) = Σi=0
∞ 2-2llog(i)-1 ηi*(z) 

 (Pick up i at random and pick up z according to ηi*.) 

• (Claim)  (RBHP,µU) is ≤m
p-complete for Dist(NP,P-samp). 

[Ben-David-Chor-Goldreich-Luby (1992)] 



Θ2
p-Samplable Distributions 

• A P-samplable distribution is approximated by running a 
certain PTM starting with input 0i and produces strings x 
within time p(|x|,i).  

• A distribution µ is Θ2
p-samplable if there exist a 

polynomial p, a constant c>0, a language A ∈ NP, and 
an oracle PTM M such that (1) M starts with no input and 
A as an oracle and (2) for every x,  
| µ*(x) – ProbM[ MA(0i) produces x within time p(|x|,i), 
making at most clog|x|+c queries to A ] | ≤ 1/2i.   

• Let Θ2
p-samp to denote the class of all Θ2

p-samplable  
distributions. 



Invertibly P-Samplable Distributions 

• Recall that ηf-1  is defined as ηf-1*(x) = η({ z | f(z) = x }) for 
all strings x ∈ Σ*.  

• A distribution µ is invertibly polynomial-time samplale (or 
invertible P-samplable) if there exists a distribution ν ∈ 
P-comp and a p-honest function f ∈ FP such that µ = νf-1. 

• Let IP-samp to denote the class of all invertibly P-
samplable distributions  

• Let IP1-samp = {νf-1 | ν∈P-comp, f is one-one } 

• (Claim)  P-comp ⊆ IP1-samp ⊆ IP-samp 



#P-Computable Distributions 

• Recall that we always identify {0,1}* with N. 
• A distribution µ is #P- computable ⇔ there is a function 

f : {0,1}* × N → N  in #P such that, for all pairs (x,i), 
 

*
(| |, )

( ,0 )( ) 2
2

i
i

p x i
f xxµ −− ≤

• Let #P-comp be the collection of 
all #P-computable distributions. 
 

• (Claim)   
    P-comp ⊆ P-samp ⊆ #P-comp 

#P-comp 

P-comp 

Many believe in this way 

P-samp 



E-Computable Distributions 

• Let µ: Σ*→ [0,1] be a distribution. 
 

• µ is E- computable ⇔ there is a DTM M such that, for all 
pairs (x,i), M runs in time 2c(|x|+i) and satisfies  

                      | µ(x) – M(x,0i) | ≤ 2-i. 

• Let E-comp be the collection of 
all E-computable distributions. 
 

• (Claim)  P-comp ⊆ E-comp 
 

E-comp 

P-comp 

Many believe in this way 



Properties of Distribution Classes  I 

• We have known the following properties of and 
relationships among distribution classes. 

• Given a µ, [µ]p denotes the equivalence class { ξ | ξ =p 
µ }.  

• Given two distribution sets F and G, we say that G p-
includes F (denoted by F ⊆p G)  if  F/=p ⊆ G/=p.  
 

• (Claim)  #P-comp ⊆p Θ2
p-samp. [Schuler-Watanabe 

(1995)] 
 



Properties of Distribution Classes  II 

• We can show the following relationships about #P-
computable distributions and various P-samplable 
distributions. 
 

• Theorem:  [Yamakami (1999)]  
    P = PP  ⇔  P-comp = #P-comp  
 
• Theorem: [Yamakami (1999)] 
    P = PP  ⇔  P-comp = IP1-samp ⇔  P-comp = IP-samp  

 



avP-Samplable Distributions 

• A distribution µ is average polynomial-time samplable (or 
avP-samplable) if there exists a DTM with an output tape 
(computing a function f : {0,1}*×{0}* → {0,1}*) s.t.   

     1.   TimeM(x,0i) is polynomial on νst◦νtally-average, and  
     2. 

    where  
 
 
• Let avP-samp denote the set of all avP-samplable 

distributions. 

• (Claim)  P-samp ⊆ avP-samp  

* ( )( ) ( ) 2i i
Mx xµ ξ −− ≤

{ }( )( ) * *
stand( ) {0,1} | ( ,0 )i i
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Open Problems 

• There are numerous problems that have not yet solved. 
 

1. Does #P-comp =p SpanP-comp imply PP=UP? 
2. Does avP-samp ⊆av P-comp imply P-samp ⊆av P-comp?  



1. Real Computability 
2. Complexity Class PF 

3. Properties of PP-comp 

4. Properties of PP-samp 

5. Complexity Class BPPF 

IV. Real Computability 



Real Computability 

• We have discussed what decision problems A are 
solved in average polynomial-time for a reasonable 
distribution µ. 

• In other words, (A,µ) ∈ Average(P,F), where F is a class 
of distribution. 
 

• Let us consider decision problems that are solved in 
average polynomial-time for all distributions µ in F. 

• Such problems are called “real” computable problems. 



Complexity Class PF 

• Let F be a class of distributions. 

• PF = collection of all languages L that are polynomial-
time computable on µ-average for every µ∈F. 

• In other words,  
    L∈PF  ⇔  (L,µ)∈Average(P,F) holds for any µ∈F. 

• By taking P-comp, P-samp, E-comp as F, for example, 
we naturally obtain PP-comp, PP-samp, PE-comp, etc.  
 

• (Claim) 
 P ⊆ PP-samp  ⊆ PP-comp  (since  P-comp ⊆ P-samp).  
 P ⊆ PE-comp  ⊆ PP-comp  (since  P-comp ⊆ E-comp).  
 

 
 



Properties of PP-comp  

• Here is a short list of properties known today. 

1. P = PE-comp [Schuler-Yamakami (1995)] 
2. P ≠ PP-comp [Schuler (1995)] 
3. PP-comp ⊄ P/cn  for any fixed c>0 [Schuler-Yamakami 

(1995)] 
4. NP ⊆ PP-comp  implies P=BPP. [Buhrman-Fortnow-Pavan 

(2005)] 

5. NP ⊆ PP-comp  implies E = NE [Ben-Divid-Chor-Goldreich-
Lubby (1992)] 

6. NP ⊆ PP-comp  implies MA = NP [Köbler-Schuler (2004)] 
7. ∆3

p ⊆ PP-comp  implies Σ3
p ∩ Π3

p ∩ P/poly = P [Köbler-
Schuler (2004)] 



Properties of PP-samp  

• Here is a short list of properties known today. 
 

1. P ⊆ PP-samp ⊆ E and P ≠ PP-samp ≠ E [Schuler (1995)] 

2. NP ⊆ PP-comp  implies NP ⊆ PP-samp. [Buhrman-Fortnow-
Pavan (2005)] 

3. NP ⊆ PP-samp  implies Θ2
p ⊆ PP-samp [Ben-Divid-Chor-

Goldreich-Lubby (1992), Schuler-Watnabe (1995)] 

 



Complexity Class BPPF 

• Let F be any set of distributions. 

• BPPF is composed of all languages L such that, for every 
µ∈F, there is a probabilistic Turing machine (PTM) M 
that recognizes L with probability at least 2/3 in time 
polynomial on µ-average. 

• (Claim)  BPP ⊆ BPPF ⊆ BPE  if νst∈F. [Yamakami 
(1999)] 

• (Claim)  MA ⊆ BPPP-comp →  MAE ⊆ BPE. [Yamakami 
(1999)] 

• (Claim)  NP ⊆ BPPP-comp →  NE ⊆ BPE. [Schuler-
Yamakami (1992)] 



Open Problems  I 

• Here is a short list of open problems associated with real 
computability. 
 
1. Is PP-comp ⊆ P/poly? 
2. Is PP-comp ⊆ ⊕P? 
3. Does BPP ⊆ PP-comp imply P = BPP? 
4. Does NP ⊆ PP-comp imply P = NP? 
5. Is MA ⊆ BPPP-comp? 
6. Is BPP ≠ BPPP-comp? 
7. Does NP ⊆ PP-comp imply P-samp ≤p P-comp? 
 
 



Open Problems  II 

• Here is a short list of open problems associated with real 
computability. 
 
1. Is MA ⊆ BPPP-comp ? 
2. Is PP-comp ⊆ ⊕P? 
3. Is MA ⊆ PP-comp  equivalent to MA ⊆ PP-samp? 
4. avP-samp Does BPP ⊆ PP-comp imply P = BPP? 
5. Does NP ⊆ PP-comp imply P = NP? 
6. Is MA ⊆ BPPP-comp? 
7. Is BPP ≠ BPPP-comp? 
8. Does NP ⊆ PP-comp imply P-samp ≤p P-comp? 
 
 



1. Nearly BPP Sets 
2. Properties of Nearly-BPP 

V. Nearly BPP 



Nearly-BPP Sets 

• A language A is said to be nearly-BPP if, for every 
polynomial p, there exist a set S and a polynomial-time 
probabilistic Turing machine M such that, for each x, 
1. x ∈ Σ* – S → ProbM[ M(x) ≠ A(x) ] ≤ 1/3, and  
2. Probx∈Σn[ x ∈ S ] < 1/p(n) for almost all n. 
 
 

 
 
 

• Let Nearly-BPP be the class of all nearly-BPP languages.  

S A 
Σ* 



Properties of Nearly-BPP 

• We show several properties of Nearly-BPP.  
• The notation ≠avp is the negation of ≈avp discussed earlier. 

 
• Theorem:  [Yamakami (1999)] 

1. BPPP-comp ⊆ Nearly-BPP. 
2. NP ⊄ Nearly-BPP, then P-comp ≠avp IP1-samp.  
3. If strong one-way function exists, then NP ⊄ Nearly-

BPP.  



Open Problems 

• There are numerous open problems. 
 

1. Does NP ⊆ Nearly-BPP? 
2. Does ∆2

p ⊆ Nearly-BPP? 
3. Does ⊕P ⊆ Nearly-BPP? 
4. Develop a nice theory of complexity classes Nearly-C 

for reasonable class C?  





Q & A 
I’m happy to take your question! 



 
 

                                 END 
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