
12th Week

Synopsis.
• Quantum Turing Machines
• Quantum Finite Automata
• BQP, NQP, FBQP, and #QP
• Quantum NP

BQP, NQP, Quantum NP, and
Quantum Finite Automata

June 25, 2018. 23:59

Course Schedule: 16 Weeks

• Week 1: Basic Computation Models
• Week 2: NP-Completeness, Probabilistic and Counting Complexity Classes
• Week 3: Space Complexity and the Linear Space Hypothesis
• Week 4: Relativizations and Hierarchies
• Week 5: Structural Properties by Finite Automata
• Week 6: Stype-2 Computability, Multi-Valued Functions, and State Complexity
• Week 7: Cryptographic Concepts for Finite Automata
• Week 8: Constraint Satisfaction Problems
• Week 9: Combinatorial Optimization Problems
• Week 10: Average-Case Complexity
• Week 11: Basics of Quantum Information
• Week 12: BQP, NQP, Quantum NP, and Quantum Finite Automata
• Week 13: Quantum State Complexity and Advice
• Week 14: Quantum Cryptographic Systems
• Week 15: Quantum Interactive Proofs
• Week 16: Final Evaluation Day (no lecture)

Subject to Change

YouTube Videos

• This lecture series is based on numerous papers of T.
Yamakami. He gave conference talks (in English) and
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.

• Use the following keywords to find a playlist of those
videos.

• YouTube search keywords:
 Tomoyuki Yamakami conference invited talk playlist

Conference talk video

Main References by T. Yamakami I

✎T. Yamakami. A foundation of programming a multi-tape
quantum Turing machine. In Proc. of MFCS 1999, LNCS,
Vol.1672, pp.430-441 (1999)

✎T. Yamakami and A. C. Yao. NQPC=co-C=P. Information
Processing Letters 71, 63-69 (1999)

✎T. Yamakami. Quantum NP and a quantum hierarchy. In
Proc. of IFIP TCS 2002, Kluwer Academic Press, Vol.96
(Track 1), pp.323-336 (2002)

✎T. Yamakami. Analysis of quantum functions. International
Journal of Foundations of Computer Science 14, 815-852
(2003)

(To be continued)

Main References by T. Yamakami II

✎H. Nishimura and T. Yamakami. An application of quantum
finite automata to interactive proof systems. Journal of
Computer and System Sciences 75, 255-269 (2009)

✎Tomoyuki Yamakami. One-way reversible and quantum
finite automata with advice. Information and Computation
239, 122-148 (2014)

✎Tomoyuki Yamakami. Complexity bounds of constant-
space quantum computation. In Proc. of DLT 2015,
Lecture Notes in Computer Science, vol. 9168, pp.426-438
(2015)

1. Single-Tape Quantum Turing Machines
2. Projection Measurement
3. Quantum Computation
4. Universal Quantum Turing Machines
5. Quantum Polynomial Time
6. Complexity Classes BQP and EQP
7. Function Class FBQP
8. Quantum Function Class #QP

I. Quantum Polynomial-Time Computation

Turing Machine (revisited)
• A Turing machine consists of tape, head, and CPU.
• An input is written on the tape.
• The machine scans a symbol on the tape, follows a program,

rewrites the tape symbol and the inner state of the CPU, and
then moves the head.

input/work tape
head

p

tape cell

σ

q

τ

CPU

A head is scanning
symbol σ in state p.

Instruction: (p,σ) → (q,τ,+1)

ν

(p,σ) → (q,τ,+1)

…
…

program

The Notion of Quantum Turing Machines

• The notion of quantum Turing machine has developed
by many researchers.

• Benioff (1980) first considered a quantum analogue of
Turing machine.

• Deutsch (1985) and Yao (1993) further developed a
model of quantum Turing machines (or QTMs).

• Bernstein and Vazirani (1997) gave a modern definition
to a single-tape QTMs.

• Yamakami (1999) studied multi-tape model of QTMs and
presented the well-formedness condition.

• Nishimura and Ozawa (2000,2002) studied properties of
multi-tape QTMs.

Single-Tape Quantum Turing Machines

• Similar to classical Turing machines, a quantum Turing
machine (QTM) consists of tape, tape head, and CPU.

• An input is written on the tape between two endmarkers.
• The QTM scans a classical symbol on the tape, follows a

classical program, rewrites the tape symbol and the inner
state of the CPU, and then moves the head in
superpositions.

• A quantum transition function

induces a time-evolution matrix Uδ, which must be unitary.

• NOTE: Hereafter, we use only QTMs whose time-evolution
matrices are unitary.

: Q Q D Cδ ×Σ× ×Σ× →

Configurations

• Given a QTM M, its configuration is of the form (q,h,s),
which means that M is in inner state q, scanning the h-th
tape cell, and the content of the tape is s.

• E denotes the configuration space of M on input x, which
is a vector space spanned by all configurations of M on x.

ȼ $ x B B

q0

0 -1 n+2 1

....

q

0 -1 h 1

initial configuration

a configuration

s

Decomposing a Configuration Space

• Recall that the configuration spaces of M on input x is:
E = span{ c | c is any configuration of M on input x }

• E can be decomposed of three vector spaces:
 E = Eacc ⊕ Erej ⊕ Enon, where

1. Eacc = span{ c | c is an accepting configuration of M on x}

2. Erej = span{ c | c is a rejecting configuration of M on x}

3. Enon = span{ c | c is a non-halting configuration of M on x}

Formal Definition of Single-Tape QTMs

A QTM M = (Q,Σ,{ȼ,$},Γ,δ,q0,Qacc,Qrej) has an input tape and a
quantum transition function δ:

• Time-evolution matrix (or operator) Uδ: E→ E

• Unitary Requirement: is a unitary matrix.

: Q Q D Cδ ×Γ× ×Γ× →

s’ is obtained from s by changing
symbol sh to s′h.

D = { -1, 0, +1 }

'
(,)

, , (, , ,) , , 'h hp d
U q h s q s p s d p h d sδ δ= +∑

Uδ

ȼ,$∈Γ

Projection Measurement

• Measurement makes quantum configuration to collapse,
losing quantum information and to halt.

• Here, we consider only the following types of projection
measurements.

1. Pacc = projection operator that projects onto the
accepting configuration space Eacc

2. Prej = projection operator that projects onto the
rejecting configuration space Erej

3. Pnon = projection operator that projects onto the non-
halting configuration space Enon

Quantum Computation

• A QTM M = (Q, Σ, {ȼ,$}, Γ, δ, q0, Qacc, Qrej)
• A QTM works as follows.

• Uδ is a time-evolution operator
• Pacc, Prej, Pnon are (projection) measurement operators.
• Tδ = PnonUδ is a transition operator.

initial configuration

|Ψx,0〉
|Ψx,1′〉 =

Uδ
(x) |Ψx,0〉

|Φx,1′〉 =
Pacc |Ψx,1′〉

Uδ

|Φx,1″〉 =
Prej |Ψx,1′〉

|Ψx,1〉 =
Pnon |Ψx,1′〉

Accept with prob.
|||Φx,1′〉|| 2

measurement

Reject with prob.
|||Φx,1″〉|| 2

Uδ

input x

1 step

Postponing Measurement

• It is possible to postpone the measurement to the end of
computation by remembering all potentially-lost information
by measurement.

• Hence, we can adjust the timing of entering halting states.
• In particular, we can make all computation paths terminate

at once (at the end of the whole computation).

|Ψx,0〉
|Ψx,p(n)〉 =

(Uδ
(x))p(n)|Ψx,0〉

 Pacc |Ψx,p(n)〉

Uδ

 Prej |Ψx,p(n)〉

Accept with
prob. |||Φx,1′〉|| 2

first
measurement

Reject with
prob. |||Φx,1″〉|| 2

input x

Uδ

p(n) steps with no
measurement

...

halts

Universal Quantum Turing Machines

• Based on a classical model of Turing machine, we have
discussed universal Turing machines in Week 2.

• Similarly to the fact that there is a finite set of universal
gates, it is possible to restrict the use of amplitudes by
QTMs.

• This helps us enumerate all QTMs with those restricted
amplitudes. Such an enumerate makes us construct a
so-called universal QTM.

• We say that a QTM U is universal if, for any QTM M and
any input x∈{0,1}*, U takes 〈M,x,1t〉 as input and
approximates the acceptance probability generated by
M on input x within t steps.

Quantum Polynomial Time

• We say that a QTM M runs in polynomial time if there is
a polynomial p such that, for all inputs x, M takes x as an
input and halts in at most p(|x|) steps.

• A QTM M recognizes a language L in polynomial time if
M recognizes L and M runs in polynomial time.

x

runtime
≤ p(|x|)

accept reject

M’s
computation

Complexity Class BQP

• Bernstein and Vazirani (1997) introduced the complexity
class BQP (quantum polynomial time).

• Let K be any amplitude set.

• A language L is in BQPK if there is a K-amplitude
polynomial-time QTM M such that, for any input x,
 If x∈L, then M accepts x with probability ≥ 2/3,
 If x∉L, then M rejects x with probability ≥ 2/3.

• When K = PC, we write BQP.

• (Claim) BPP ⊆ BQP ⊆ PSPACE
bounded-error probability

Here, “PC” denotes the set of polynomial-time approximable
complex numbers

Complexity Class EQP

• Adleman, DeMarrais, and Huang (1997) introduced the
complexity class EQP (exact or error-free quantum
polynomial time).

• A language L is in EQPK if there is a polynomial-time K-
amplitude QTM M such that, for any input x,
 If x∈L, then M accepts x with probability 1,
 If x∉L, then M rejects x with probability 1.

• (Claim) P ⊆ EQPK ⊆ BQPK

• When K = PC, we omit K and write EQP instead of
EQPPC.

error-free

Power of Amplitudes

• Adleman, DeMarrais, and Huang (1997) proved the
following statements.

• (Claim) BQPQ = BQPPC.
• (Claim) BQPC contains non-recursive languages.
• (Claim) BQPPC ≠ BQPC. (From the above results.)

• (Claim) EQPC = EQPPC.
• (Claim) EQPC ≠ BQPC. (From the above result.)

Function Class FBQP I

• Recall from Week 1 the function class FP, each element
of which can be computed by a certain DTM with a write-
only output tape in polynomial time.

• Similarly, to compute functions, we equip each QTM with
a write-only output tape.

• Let K be any amplitude set.

• A function f : Σ* → Σ* (where Σ is an alphabet) is in
FBQPK ⇔ there are a polynomial p and a K-amplitude
QTM M that, on each input x ∈Σ*, M produces f(x) on its
output tape and halts with probability ≥ 3/4 in time at
most p(|x|).

• When K = PC, we omit K and write FBQP.

Function Class FBQP II

• Recall FPSPACE from Week 3.

• (Claim) FP ⊆ FBQP ⊆ FPSPACE

• Proposition: [Yamakami (2002)]
 FBQP = FPBQP.

Quantum Function Class #QP I

• Yamakami (2003) studied special quantum functions,
which output acceptance probabilities of QTMs.

• Let K be any amplitude set.

• A function f : Σ* → R (where Σ is an alphabet) is in #QPK
⇔ there exits a K-amplitude polynomial-time QTM M
that, on each input x ∈Σ*, M accepts x with probability
exactly f(x).

• When K = PC, we write #QP instead of #QPPC.

• NOTE: This notion of “quantum function” is quite
different from the one that we will discuss in Week 14.

Quantum Function Class #QP II

• In other words,
 f ∈ #QP ⇔ ∃ M: polynomial-time QTM ∀ x

 f(x) = the probability that M accepts x
 = ProbM[M(x) = 1]

x

polynomial
runtime

accept reject

M’s
computation

probability f(x) probability 1-f(x)

1. Nondeterministic Quantum Complexity Class
2. C=P and co-C=P
3. NQPC = co-C=P
4. Separation between BQPC and NQPC

5. Proof Sketch

II. Characterization of NQP

Nondeterministic Quantum Complexity Class I
• The quantum complexity class NQP, which is a natural

extension of NP, was introduced by Adleman, DeMarrais,
and Huang (1997).

• Let K ⊆ C be an amplitude set.

• A language L is in NQPK if there is a polynomial-time K-
amplitude QTM M such that, for every input x,
 If x∈L, then M accepts x with probability >0, and
 If x∉L, then M accepts x with probability =0.

x∈L

accept reject

M’s
computation

reject

x∉L

Nondeterministic Quantum Complexity Class II

• There is another way to define NQPK using #QPK, .
• Here, we re-define NQPK as follows.

• (Claim) L ∈ NQPK ⇔ there exits a function f ∈ #QPK
s.t., for any x, x ∈ L ↔ f(x) > 0.

• (Claim) NQPQ ⊆ NQPA ⊆ NQPC (since Q ⊆ A ⊆ C)

• (Claim) NP ⊆ NQPQ ⊆ PSPACE [Adleman-DeMarrais-
Huang (1997)].

In Week 15, NQP
will appear again.

C=P and co-C=P (revisited)

• Recall from Week 2 the counting complexity class C=P
and its complement class co-C=P.

• A language L is in C=P if there exists a polynomial-time
probabilistic Turing machine M such that, for every x,
 If x∈L, then M accepts x with probability = 1/2,
 If x∉L, then M accepts x with probability ≠ 1/2.

• co-C=P = { Lc | L is in C=P }

• (Claim) P ⊆ C=P∩co-C=P and NP ⊆ co-C=P ⊆ PP

NQPC = co-C=P

• What is the computational complexity of NQPK?

• (Claim) NQPA ⊆ PP [Adleman- DeMarrais-Huang (1997)]

• (Claim) NQPQ ⊆ co-C=P [Fortnow-Rogers (1998)]

• (Claim) NQPA = co-C=P [Fenner-Green-Homer-Pruim
(1998)]

• This last result was significantly improved as follows.

• Theorem: [Yamakami-Yao (1999)]
 NQPK = co-C=P for any set K with Q ⊆ K ⊆ C.

• This theorem intuitively indicates that nondeterministic
quantum computation can be simulated by classical
counting computation.

• Corollary: [Yamakami-Yao (1999)]
 BQPC ≠ NQPC.

 Proof: As seen before, Adleman et. al. (1997)
demonstrated that BQPC contains non-recursive
languages. By contrast, NQPC is recursive.

• For the theorem, it suffices to show the following.

• (Claim) co-C=P ⊆ NQPT

• (Claim) NQPC ⊆ co-C=P

• (*) In the next slides, we will give a sketch of the proof of
co-C=P ⊆ NQPT.

Separation between BQPC and NQPC

T = { 0, ±3/5, ±4/5, ±1 }

 Proof Sketch for co-C=P ⊆ NQPT:
• Let S∈co-C=P. Take an f∈GapP s.t. for all x, x∈S ↔ f(x)

≠ 0. Choose a poly-time computable predicate R and a
polynomial p s.t., for all x,

• For a,b∈{0,1,2,3}, we define a new operator H[a,b|α] as

• For simplicity, we define H = H[0,1|4/5], J = H[0,1|3/5],
and K= H[0,2|3/5] + H[1,3|4/5].

Proof Sketch I

{ } { }* *() {0,1} | (,) 1 {0,1} | (,) 0f x y R x y y R x y= ∈ = − ∈ =

[] [] []

{ , } { , }

[, |] (1) (1)y u b y z y u

y a b u a b
H a b α α α= = = ≠

∈ ∈

= − −∑ ∑

• Consider the following QTM M:

1. Take an input x (|x|=n).
2. Generate |ϕ0〉 = |0p(n)〉|0〉.
3. Apply Hp(n)⊗I to |ϕ0〉.
4. Change the last qubit |0〉 to |R(x,y)〉.
5. Apply Jp(n)⊗(JK) and obtain |ϕ〉.
6. Apply observable |ϕ1〉=|0p(n)〉|1〉 and we obtain
 〈ϕ1|ϕ〉 = − εp(n)+1 f(x).

• It is easy to see that this QTM M satisfies:
 x ∈ S ↔ M accepts x with probability > 0.
• Thus, S is in NQPT.

Proof Sketch II

QED

• Prove or disprove the following statements.

1. BQP = NQP.

2. NP = NQP.

3. NQP = co-NQP.

Open Problems

1. Tuples of Quantum Strings
2. Partial Decision Problems
3. *#QP and *BQP
4. *∃- and *∀-Operators
5. *∃Q- and *∀Q-Operators
6. Quantum NP
7. The Quantum Polynomial Hierarchy

III. Quantum NP

Tuples of Quantum Strings

• Let n be any number in N.
• Recall from Week 11 the space:
 Hn = Hilbert space of dimension n

• Consider a tuple |ϕvec〉 = (|ϕ1〉,|ϕ2〉,...,|ϕm〉) of qustrings.
• Let ℓ(|ϕ1〉,|ϕ2〉,...,|ϕm〉) = Σi=1

m ℓ(|ϕi〉). (total length)
• Φm

n = the set of all m-tuples |ϕvec〉 = (|ϕ1〉,|ϕ2〉,...,|ϕm〉) of
qustrings of length n

2
1

n

n

H H∞
≥

=

*

1 1

 and m m m
n

n m
∞ ∞ ∞

≥ ≥

Φ = Φ Φ = Φ

• We introduce the notion of partial decision problems.
• A partial decision problem is a pair (A,B) of sets with A ∩

B = ∅. Intuitively speaking, A consists of YES instances
and B consists of NO instances. This problem is also
called a promise problem.

• When A ∪ B = Σ*, we call (A,B) total. In this case, we
obtain B = Σ* − A.

Partial Decision Problems

• Earlier, we have discussed #QP as the class of all real-
valued functions computing acceptance probabilities of
polynomial-time QTMs.

• We want to extend this function class #QP as follows.

• Let f be a quantum function from ∈Φ∞* to [0,1].

• f ∈ *#QP ⇔ there is a polynomial-time QTM M s.t., for
all |ϕvec〉 = (|ϕ1〉,|ϕ2〉,...,|ϕm〉) ∈Φ∞*, M starts with input
|ϕvec〉 on ℓ(|ϕvec〉)-tapes and accepts with probability
exactly f(|ϕvec〉).

*#QP

• We have already discussed NQP, which was introduced
as nondeterministic quantum polynomial-time complexity
class.

• From a different approach, we define a quantum
analogue of NP, called quantum NP.

• Let a and b be two functions from N to [0,1] such that
a(n)+b(n)=1 for all n∈N.

• (A,B) ∈ *BQP(a,b) ⇔ there is a function f ∈*#QP s.t.,
for all |ϕvec〉 = (|ϕ1〉,|ϕ2〉,...,|ϕm〉) ∈Φ∞*,
 |ϕvec〉 ∈ A → f(|ϕvec〉) ≥ a(ℓ(|ϕvec〉)), and
 |ϕvec〉 ∈ B → f(|ϕvec〉) ≤ b(ℓ(|ϕvec〉)).

• We simply write *BQP for *BQP(3/4,1/4).

*BQP

• Let *C be any class of partial decision problems.
• Let (A,B) be any partial decision problem.

• (A,B) ∈ *∃ ⋅ *C ⇔ there is a partial decision problem
(C,D) ∈*C s.t., for all |ϕvec〉 = (|ϕ1〉,|ϕ2〉,...,|ϕm〉) ∈Φ∞*,
 |ϕvec〉 ∈ A → ∃x∈Σp(ℓ(|ϕvec〉)) [(|x〉,|ϕvec〉) ∈C], and
 |ϕvec〉 ∈ B → ∀x∈Σp(ℓ(|ϕvec〉)) [(|x〉,|ϕvec〉) ∈D].

• (A,B) ∈ *∀ ⋅ *C ⇔ there is a partial decision problem
(C,D) ∈*C s.t., for all |ϕvec〉 = (|ϕ1〉,|ϕ2〉,...,|ϕm〉) ∈Φ∞*,
 |ϕvec〉 ∈ A → ∀x∈Σp(ℓ(|ϕvec〉)) [(|x〉,|ϕvec〉) ∈C], and
 |ϕvec〉 ∈ B → ∃x∈Σp(ℓ(|ϕvec〉)) [(|x〉,|ϕvec〉) ∈D].

*∃- and *∀-Operators

• Let *C be any class of partial decision problems.
• Let (A,B) be any partial decision problem.

• (A,B) ∈ *∃Q ⋅ *C ⇔ there is a partial decision problem
(C,D) ∈*C s.t., for all |ϕvec〉∈Φ∞*,
 |ϕvec〉 ∈ A → ∃|ψ〉∈ Φp(ℓ(|ϕvec〉))* [(|ψ〉,|ϕvec〉) ∈C], and
 |ϕvec〉 ∈ B → ∀|ψ〉∈ Φp(ℓ(|ϕvec〉))* [(|ψ〉,|ϕvec〉) ∈C].

• (A,B) ∈ *∀Q ⋅ *C ⇔ there is a partial decision problem
(C,D) ∈*C s.t., for all |ϕvec〉∈Φ∞*,
 |ϕvec〉 ∈ A → ∀|ψ〉∈ Φp(ℓ(|ϕvec〉))* [(|ψ〉,|ϕvec〉) ∈C], and
 |ϕvec〉 ∈ B → ∃|ψ〉∈ Φp(ℓ(|ϕvec〉))* [(|ψ〉,|ϕvec〉) ∈C].

*∃Q- and *∀Q-Operators

• Using *BQP(a,b) and *BQP, we define “quantum NP”,
denoted by *Σ1

QP(a,b) and *Σ1
QP as follows.

• NOTE: The “Quantum NP” makes it possible to introduce
a hierarchy, similar to the polynomial(-time) hierarchy
given in Week 4.

Quantum NP

()

* * *
1,

* *
1 1,

1
* *

1 1

(,) (,)

(,) (,)

3 4,1 4

QP Q
m m

QP QP
m

m
QP QP

a b BQP a b

a b a b
≥

Σ = ∃ ⋅

Σ = Σ

Σ = Σ

• The quantum polynomial hierarchy (or QP hierarchy)
consists of partial decision problems such that

The Quantum Polynomial Hierarchy I

* * *
0, 0,

* * *
1, ,

* * *
1, ,

* *
,

1
* *

,
1

(,) (,) (,)

(,) (,)

(,) (,)

(,) (,)

(,) (,)

QP QP
m m

QP Q QP
k m m k m

QP Q QP
k m m k m

QP QP
k k m

m
QP QP
k k m

m

a b a b BQP a b

a b a b

a b a b

a b a b

a b a b

+

+

≥

≥

Σ = Π =

Σ = ∃ ⋅ Π

Π = ∀ ⋅ Σ

Σ = Σ

Π = Π

()* * *
, ,

0
* *

0

(,) (,) (,)

(,) (,)

QP QP
m k m k m

k

m
k

QPH a b a b a b

QPH a b QPH a b
≥

≥

= Σ ∪ Π

=

()
()
()

* *

* *

* *

3 1,4 4
3 1,4 4

3 1,4 4

QP QP
k k

QP QP
k k

QPH QPH

Σ = Σ

Π = Π

=

• The total classical parts of *Σk
QP(a,b), *Πk

QP(a,b), and
*QPH(a,b) are denoted by

• Let Σk
exp be th k-th level of the exponential hierarchy,

defined similarly to the polynomial hierarchy, using
“exponential time” instead of “polynomial time.”

• Proposition: [Yamakami (2002)]
For any k≥1, Σk

p ⊆ *Σk
QP ⊆ Σk

exp and PH ⊆ QPH ⊆
EXPH.

The Quantum Polynomial Hierarchy II

(,), (,), QPH(,)QP QP
k ka b a b a bΣ Π

1. 1-Way Reversible Finite Automata
2. Various Models of Quantum Finite Automata
3. Quantum Finite Automata
4. Quantum Computation
5. Bounded-Error Criteria for 1qfa’s
6. 2-Way Quantum Finite Automata
7. Complexity Classes 1BQFA and 2BQFA

IV. Basics of Quantum Finite Automata

1-Way Reversible Finite Automata I

• A 1-way (deterministic) reversible finite automaton (1rfa)
has a read-only input tape and a transition function.

¢ $ σ

q

Infinite read-only input tape

Inner state q ∈ Q

…... …..

M = (Q,Σ, { ₵, $}, δ,q0,Qacc,Qrej) Σ = input alphabet
Qhalt = Qacc ⋃ Qrej ⊆ Q

δ : a transition function

Head direction: 1-way

: or : {0,1}Q Q Q Qδ δ×Σ→ ×Σ× →

Σ =

Σ ∪ { ₵, $ }

1-Way Reversible Finite Automata II

• Each 1rfa must satisfy the reversibility condition

M = (Q,Σ,δ,q0,Qacc,Qrej) Σ = input alphabet

Reversibility condition:
 ∀q∈Q ∀σ∈Σ ∃ at most one q’∈Q s.t. δ(q’,σ) = q.

q’

q

q”

σ

σ

Property: If there is a computation
path from q0 to q∈Qacc (or Qrej),
such a path should be unique.

unique path

Σ =

Σ ∪ { ₵, $ }

• Moore and Crutchfield (2000) introduced measure-once 1-
way quantum finite automata, which conduct measurement
only at the end of computations.

• Kondacs and Watrous (1997) studied (measure-many) 1-way
quantum finite automata and 2-way quantum finite automata,
in which machines make measurements at every step.
(KWQFAs)

• Ambainis, Beaudry, Golovkins, Ķikusts, Mercer, and Thérien
(2006) proposed a Latvian quantum finite automata.
(LaQFAs)

• Nayak (1999) combined KWQFAs and LaQFAs.
• Hirvensalo (2010) and Yakaryılmaz and Say (2011)

considered general quantum finite automata.

Various Models of Quantum Finite Automata

Quantum Finite Automata

• Hereafter, we will use the models of (measure-many) 1-
way quantum finite automata (1qfa) and 2-way quantum
finite automata (2qfa).

• 1qfa’s and 2qfa’s are considered as constant-space
quantum machines.

• A configuration of a qfa is a superposition of all possible
classical information about state, head position, and tape
content.

input

CPU 2-way move
A model of constant-pace
computation

1-Way Quantum Finite Automata

• A (measure-many) one-way quantum finite
automaton (or 1qfa) M:

¢ $ σ

q

Head direction

End-marker End-marker An infinite read-only tape

M = (Q,Σ,{₵,$},δ,q0,Qacc,Qrej) Σ = input alphabet
Time-evolution operator Uσ: a unitary matrix over EQ = span{ |q〉 | q∈Q}

Inner state

… ……

Pacc : a projection onto space Eacc = span{ |q〉 | q∈Qacc}
Prej : a projection onto space Erej = span{ |q〉 | q∈Qrej}

Transition operator Tσ = PnonUσ , where Pnon = I – (Pacc + Prej)

Quantum Transition Functions

A 1qfa M = (Q,Σ,{₵,$},δ,q0,Qacc,Qrej) has a read-only input tape
and a special quantum transition function δ:

• Time-evolution matrix:

• Unitary Requirement: is a unitary matrix.

: Q Q Cδ ×Σ× →

U is unitary ⇔ U(U*)T = (U*)TU = I

Σ =

Σ ∪ { ₵, $ }

(, ,)
p Q

U q q p pσ δ σ
∈

= ∑
()xUδ

• In the case of 1qfa’s, a configuration is just an inner
state.

• Therefore, instead of using δ, we can use a set of time-
evolution operator Uσ (σ∈Σ ∪ { ₵, $ }), where

 to express the transition of 1qfa’s.
• This makes us define a 1qfa M as
 M = (Q,Σ,{Uσ}σ,q0,Qacc,Qrej).

Another Way to Describe 1qfa’s

(, ,)
p Q

U q q p pσ δ σ
∈

= ∑

Time-evolution operators

Quantum Computation I

• A 1qfa works as follows.
• Let M = (Q, Σ, {Uσ}σ, q0, Qacc, Qrej) be a 1qfa with
 Uσ is a time-evolution operator
 Pacc, Prej, Pnon are (projection) measurement operators.
 Tσ = PnonUσ is a transition operator.
 Tx = Tσn Tσ(n-1) Tσ2 Tσ1 if x = σ1σ2….σn

initial quantum state

|Ψ0〉
|Ψ1〉 =

Uσ1 |Ψ0〉

|Ψ1’〉 =
Pacc |Ψ1〉

Uσ1

|Ψ1’’〉 =
Prej |Ψ1〉

|Ψ1’’’〉 =
Pnon |Ψ1〉 Uσ2

Accept with
prob. |||Ψ1’〉||

measurement

Reject with
prob. |||Ψ1’’〉||

Extended transition operator T¢xi = Tσi......Tσ3Tσ2Tσ1T¢

x = σ1σ2σ3.... σn (∈Σn) : input of length n

Acceptance probability at step i+1 pacc(i+1) = the squared norm of PaccUσiT¢xi-1 |q0〉

Rejection probability at step i+1 prej(i+1) = the squared norm of PrejUσiT¢xi-1|q0〉

xi = σ1σ2σ3.... σi : the first i symbols of x

• A computation of a 1qfa M is defined as follows.

M = (Q,Σ,{Uσ}σ,q0,Qacc,Qrej): 1qfa Σ = input alphabet

|q0〉 |φ1〉 |φ2〉 |φn+1〉
T¢ Tσ1 Tσ2 Tσn

|φn+2〉
U$

Pacc(1)
Prej(1)

Pacc(2)
Prej(2)

Pacc(3)
Prej(3)

Pacc(n+1)
Prej(n+1)

Pacc(n+2)
Prej(n+2)

Quantum Computation II

Quantum Computation III

Acceptance probability of x : pacc(x) = pacc(1) + pacc(2) + + pacc(n+2)

Rejection probability of x : prej(x) = prej(1) + prej(2) + + prej(n+2)

|q0〉 |φ1〉 |φ2〉 |φn+1〉
T¢ Tσ1 Tσ2 Tσn

|φn+2〉
U$

Pacc(1)
Prej(1)

Pacc(2)
Prej(2)

Pacc(3)
Prej(3)

Pacc(n+1)
Prej(n+1)

Pacc(n+2)
Prej(n+2)

Pacc(x)
Prej(x)

• The probability of accepting/rejecting input x by
M is defined as the sum of all probabilities at
any step.

That is,

Bounded Error Criteria for 1qfa’s

• Let M be a 1qfa, let η∈[0,1], and L⊆Σ*.

pM,acc(x) = acceptance probability of M on input x

pM,rej(x) = rejection probability of M on input x

• A 1qfa recognizes language L with bounded error
probability ⇔ There is a constant ε∈[0,1/2) s.t.,

1. for all x∈L, pM,acc(x) ≥ 1-ε
2. for all x∈Σ*-L, pM,rej(x) ≥ 1-ε

 These criteria are similar to the isolated cut-point criteria
of Rabin (1963).

Complexity Class 1BQFA

• L : language over alphabet Σ, K : amplitude set ⊆ C

• L ∈ 1BQFAK ⇔

 ∃M : 1qfa ∃ε∈[0,1/2) s.t.
1. M has K-amplitudes
2. ∀x∈L [M accepts x with prob. ≥ 1-ε]
3. ∀x∈Σ* - L [M rejects x with prob. ≥ 1-ε]

• We omit K if K = C.

• (Claim) 1BQFA ⊆ REG [Kondacs-Watrous (1997)]

2-Way Quantum Finite Automata

• A 2-way quantum finite automaton (2qfa) is similar to a
2pfa with a read-only input tape but with a quantum
transition function.

¢ $ σ

q

Infinite read-only input tape

Inner state q ∈ Q

…... …..

M = (Q,Σ,{ȼ,$},δ,q0,Qacc,Qrej)
Σ = input alphabet
Qhalt = Qacc ⋃ Qrej ⊆ Q

δ : a quantum transition function

Head direction: 2-way

 For simplicity, the input tape is assumed to be circular.

Σ =

Σ ∪ { ₵, $ }

Formal Definition of 2qfa’s

A 2qfa M = (Q,Σ,{ȼ,$},δ,q0,Qacc,Qrej) has a read-only input tape
and a special quantum transition function δ:

• Time-evolution matrix (or operator):

• Unitary Requirement: is a unitary matrix.

: Q Q D Cδ ×Σ× × →

U is unitary ⇔ U(U*)T = (U*)TU = I

Σ =

Σ ∪ { ₵, $ } D = { -1, 0, +1 }

()
(,)

, (, , ,) , (mod 1)x
hp d

U q h q x p d p h d nδ δ= + +∑
()xUδ

Quantum Computation of 2qfa’s

• A 2qfa works as follows.
• A 2qfa M = (Q, Σ, {ȼ,$}, δ, q0, Qacc, Qrej)
 Uδ

(x)
 is a time-evolution operator

 Pacc, Prej, Pnon are (projection) measurement operators.
 Tδ

(x) = PnonUδ
(x)

 is a transition operator.

initial configuration

|Ψx,0〉
|Ψx,1’〉 =

Uδ
(x) |Ψx,0〉

|Φx,1’〉 =
Pacc |Ψx,1’〉

Uδ
(x)

|Φx,1’’〉 =
Prej |Ψx,1’〉

|Ψx,1〉 =
Pnon |Ψx,1’〉

Accept with prob.
|||Φx,1’〉|| 2

measurement

Reject with prob.
|||Φx,1’’〉|| 2

Uδ
(x)

input x

Bounded Error Criteria for 2qfa’s

• Let M be a 2qfa, let η∈[0,1], and let L⊆Σ*.

pM,acc(x) = acceptance probability of M on input x

pM,rej(x) = rejection probability of M on input x

• A 2qfa M recognizes language L with bounded error
probability ⇔ There is a constant ε∈[0,1/2) s.t.,

1. for all x∈L, pM,acc(x) ≥ 1-ε
2. for all x∈Σ*-L, pM,rej(x) ≥ 1-ε

 These criteria are similar to the isolated-cut-point criteria
of Rabin (1963).

Complexity Class: 2BQFA

• L : language over alphabet Σ, K : amplitude set ⊆ C

• L ∈ 2BQFAK ⇔ L is recognized by K-amplitude 2qfa’s
 with bounded error probability; namely,

 ∃M : 2qfa ∃ε∈[0,1/2) s.t.
1. M has K-amplitudes
2. ∀x∈L [M accepts x with prob. ≥ 1-ε(n)]
3. ∀x∈Σ* - L [M rejects x with prob. ≥ 1-ε(n)]

• (Claim) 1BQFA ⊆ REG ⊆ 2BQFA [Kondacs-Watrous
(1997)]

bounded-error probability

2EQFA, 2RQFA, 2C=QFA, 2PQFA

• Let L ⊆ Σ* and K ⊆ C

• L ∈ 2C=QFAK ⇔

 ∃M : 2qfa s.t.
1. M has K-amplitudes
2. ∀x∈Σ* [x∈L ↔ pM,acc(x) = 1/2]

• Similarly, define:
 2EQFA …. error-free 2qfa’s (i.e., error prob. = 0)
 2PQFA …. unbounded-error 2qfa’s (i.e., >1/2)
 2RQFA …. one-sided error 2qfa’s
 2NQFA …. 2qfa’s with cut point 0

1. Absolutely Halting 2qfa’s
2. Worst-case Linear Time
3. Time-Bounded 2qfa’s
4. Relationships to 2qfa’s

V. Absolutely Halting QFAs

Absolutely Halting 2qfa’s

• A 2qfa is said to halt absolutely ⇔ all computation paths
(both accepting and rejecting ones) of M on all inputs
terminate within a finite number of steps.

• 2EQFAK(abs-halt) = class of languages recognized by K-
amplitude error-free 2qfa’s that halt absolutely.

• Similarly, define 2RQFAK(abs-halt), 2BQFAK(abs-halt),
etc.

• Proposition: [Yamakami (2015)]

 REG 2EQFA (abs-halt) 2RQFA (abs-halt)Q Q⊆ ⊆

Worst-Case Linear Time
• 2qfa halts in worst-case linear time ⇔ all computation

paths of M on each input x halt within a|x|+b steps, where
a,b are constants independent of x.

• 2BQFAK[lin-time] = class of languages recognized by K-
amplitude bounded-error 2qfa’s that halt in worst-case
linear time.

• Similarly, define 2EQFAK[lin-time], 2RQFAK[lin-time],
2C=QFAK[lin-time], and 2PQFAK[lin-time].

• Theorem: [Yamakami (2015)]
 2BQFAK(abs-halt) = 2BQFAK[lin-time].
 The same equality holds for 2EQFA, 2RQFA,

2C=QFA, and 2PQFA.

Time-Bounded 2qfa’s

• A t(n) time-bounded 2qfa M is obtained from a 2qfa by
cropping its computation paths after exactly t(n) steps.
Cropped paths are considered as “unhalting”.

input x 2qfa

quantum
computation

t(|x|)

input x t(n) time-
bounded 2qfa

t(|x|)

Treated as
“unhalting”

cropped

Relationships to 2qfa’s

• Nice relationships hold between 2qfa’s and time-
bounded 2qfa’s.
All languages recognized by t(n) time-bounded 2qfa’s

with (un)bounded-error probability are also
recognized by 2qfa’s with (un)bounded-error
probability.

The converse also holds.

• Theorem: [Yamakami (2015)]
Any language L in 2BQFAA can be recognized by a
certain 2O(n) time-bounded 2qfa with bounded-error
probability.

1. Multi-Head 2pfa’s
2. Classical Simulations
3. Class Separation

VI. Classical Simulation of 2QFAs

Multi-Head 2pfa’s

• A k-head 2pfa is a variant of a 2pfa that uses k tape
heads moving separately on a read-only input tape.

• 2PPFAK(k-head)[poly-time] = class of languages
recognized with “cut points” in K∩[0,1] by k-head-2pfa’s
in worst-case polynomial-time.

q q

1 tape head k tape heads

Probabilistic Transition Functions

• A 2-head probabilistic transition function δ is of the form

• “δ(q,σ1,σ2,p,d1,d2)=γ” means that, when M is in inner
state q, scanning (σ1,σ2), M changes q to p and moves
its tape heads in direction (d1,d2) with probability γ.

1 2: [0,1]Q Q D Dδ ×Σ×Σ× × × →

q
2 tape heads

d2 d1

σ1 σ2

Classical Simulations

• Given an amplitude set H, Ĥ denotes the minimal set that
contains H and is closed under multiplication and addition.

• Theorem: [Yamakami (2015)]
 There exists an integer k≥2 s.t. for any H⊆R, the

following statements hold.
 2PQFAH ⊆ 2PPFAĤ(k-head)[poly-time].
 2C=QFAH ⊆ 2C=PFAĤ(k-head)[poly-time].

• Corollary: [Yamakami (2015)]
 2EQFAH ⊆ 2C=PFAĤ(k-head)[poly-time] ∩

 co-2C=PFAĤ(k-head)[poly-time].
 2BQFAH ⊆ 2PPFAĤ(k-head)[poly-time] ∩

 co-2PPFAĤ(k-head)[poly-time].

Corollary: Class Separation

• PL = unbounded-error probabilistic log-space complexity
class (unbounded-error probabilistic version of L)

• Nishimura and Yamakami (2009) stated that 2BQFAA is
contained within PL (using a result of [Watrous (2003)]).

• The previous theorem implies the following corollary.

• Corollary: [Nishimura-Yamakami (2009)]
 2BQFAQ is properly contained in PL.

• In particular, 2BQFAQ ≠ PL holds.

Stochastic Functions vs. Quantum Functions

• A stochastic function f is of the form pM,acc for a certain
multi-head 2pfa M.

• #2PFAK (k-head)[poly-time] = class of all stochastic
functions defined by k-head 2pfa’s running in worst-case
polynomial-time

• As seen before, a quantum function f is of the form pM,acc
for a certain target machine M

• #2QFAK = class of all quantum functions defined by
2qfa’s

Corollary: Stochastic vs. Quantum Functions

• The following corollary can be also obtained.

• Corollary: [Yamakami (2015)]
 There is an integer k≥2 s.t., ∀ f∈#2QFAH,

 ∃ g1,g2,h1,h2∈#2PFAĤ(k-head)[poly-time] ∀ x

()1 2 1 2() () () () ()g x g x f x h x h x− = −

• Find the exact complexity of 2BQFA and #2QFA.
• Characterize those quantum complexity classes in terms

of classical complexity classes.
• Find more interesting features of quantum functions.

Open Problems

Q & A
I’m happy to take your question!

 END

	12th Week
	Course Schedule: 16 Weeks
	YouTube Videos
	Main References by T. Yamakami I
	Main References by T. Yamakami II
	I. Quantum Polynomial-Time Computation
	Turing Machine (revisited)
	The Notion of Quantum Turing Machines
	Single-Tape Quantum Turing Machines
	Configurations
	Decomposing a Configuration Space
	Formal Definition of Single-Tape QTMs
	Projection Measurement
	Quantum Computation
	Postponing Measurement
	Universal Quantum Turing Machines
	Quantum Polynomial Time
	Complexity Class BQP
	Complexity Class EQP
	Power of Amplitudes
	Function Class FBQP I
	Function Class FBQP II
	Quantum Function Class #QP I
	Quantum Function Class #QP II
	II. Characterization of NQP
	Nondeterministic Quantum Complexity Class I
	Nondeterministic Quantum Complexity Class II
	C=P and co-C=P (revisited)
	NQPC = co-C=P
	Separation between BQPC and NQPC
	Proof Sketch I
	Proof Sketch II
	Open Problems
	III. Quantum NP
	Tuples of Quantum Strings
	Partial Decision Problems
	*#QP
	*BQP
	*- and *-Operators
	*Q- and *Q-Operators
	Quantum NP
	The Quantum Polynomial Hierarchy I
	The Quantum Polynomial Hierarchy II
	IV. Basics of Quantum Finite Automata
	1-Way Reversible Finite Automata I
	1-Way Reversible Finite Automata II
	Various Models of Quantum Finite Automata
	Quantum Finite Automata
	1-Way Quantum Finite Automata
	Quantum Transition Functions
	Another Way to Describe 1qfa’s
	Quantum Computation I
	Slide Number 53
	Quantum Computation III
	Bounded Error Criteria for 1qfa’s
	Complexity Class 1BQFA
	2-Way Quantum Finite Automata
	Formal Definition of 2qfa’s
	Quantum Computation of 2qfa’s
	Bounded Error Criteria for 2qfa’s
	Complexity Class: 2BQFA
	2EQFA, 2RQFA, 2C=QFA, 2PQFA
	V. Absolutely Halting QFAs
	Absolutely Halting 2qfa’s
	Worst-Case Linear Time
	Time-Bounded 2qfa’s
	Relationships to 2qfa’s
	VI. Classical Simulation of 2QFAs
	Multi-Head 2pfa’s
	Probabilistic Transition Functions
	Classical Simulations
	Corollary: Class Separation
	Stochastic Functions vs. Quantum Functions
	Corollary: Stochastic vs. Quantum Functions
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78

