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Course Schedule: 16 Weeks 

• Week 1:  Basic Computation Models 
• Week 2:  NP-Completeness, Probabilistic and Counting Complexity Classes  
• Week 3:  Space Complexity and the Linear Space Hypothesis 
• Week 4:  Relativizations and Hierarchies 
• Week 5:  Structural Properties by Finite Automata 
• Week 6:  Stype-2 Computability, Multi-Valued Functions, and State Complexity 
• Week 7:  Cryptographic Concepts for  Finite Automata 
• Week 8:  Constraint Satisfaction Problems 
• Week 9:  Combinatorial Optimization Problems 
• Week 10:  Average-Case Complexity 
• Week 11:  Basics of Quantum Information 
• Week 12:  BQP, NQP, Quantum NP, and Quantum Finite Automata 
• Week 13:  Quantum State Complexity and Advice 
• Week 14:  Quantum Cryptographic Systems 
• Week 15:  Quantum Interactive Proofs 
• Week 16:  Final Evaluation Day (no lecture) 

Subject to Change 



YouTube Videos 

• This lecture series is based on numerous papers of T. 
Yamakami. He gave conference talks (in English) and 
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.  

• Use the following keywords to find a playlist of those 
videos.  

• YouTube search keywords: 
    Tomoyuki Yamakami  conference  invited talk playlist 
 

Conference talk video 
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I. Quantum Polynomial-Time Computation 



Turing Machine (revisited) 
• A Turing machine consists of tape, head, and CPU. 
• An input is written on the tape. 
• The machine scans a symbol on the tape, follows a program, 

rewrites the tape symbol and the inner state of the CPU, and 
then moves the head.  

input/work tape 
head 

p 

tape cell 

σ 

q 

τ 

CPU 

A head is scanning 
symbol σ in state p. 

Instruction: (p,σ) → (q,τ,+1) 

ν 

(p,σ) → (q,τ,+1) 

…
…

 

program 



The Notion of Quantum Turing Machines 

• The notion of quantum Turing machine has developed 
by many researchers. 

• Benioff (1980) first considered a quantum analogue of 
Turing machine. 

• Deutsch (1985) and Yao (1993) further developed a 
model of quantum Turing machines (or QTMs). 

• Bernstein and Vazirani (1997) gave a modern definition 
to a single-tape QTMs. 

• Yamakami (1999) studied multi-tape model of QTMs and 
presented the well-formedness condition. 

• Nishimura and Ozawa (2000,2002) studied properties of  
multi-tape QTMs. 



Single-Tape Quantum Turing Machines 

• Similar to classical Turing machines, a quantum Turing 
machine (QTM) consists of tape, tape head, and CPU. 

• An input is written on the tape between two endmarkers. 
• The QTM scans a classical symbol on the tape, follows a 

classical program, rewrites the tape symbol and the inner 
state of the CPU, and then moves the head in 
superpositions. 

• A quantum transition function  
 
induces a time-evolution matrix Uδ, which must be unitary. 

• NOTE: Hereafter, we use only QTMs whose time-evolution 
matrices are unitary. 

: Q Q D Cδ ×Σ× ×Σ× →
 



Configurations 

• Given a QTM M, its configuration is of the form (q,h,s), 
which means that M is in inner state q, scanning the h-th 
tape cell, and the content of the tape is s.   

• E denotes the configuration space of M on input x, which 
is a vector space spanned by all configurations of M on x.  

ȼ $ x B  .....    ....  B 

q0 

0 -1 n+2 1 

....   

q 

0 -1 h 1 

  ..........    

initial configuration 

a configuration 

s 



Decomposing a Configuration Space 

• Recall that the configuration spaces of M on input x is:  
E = span{ c | c is any configuration of M on input x } 

 
• E can be decomposed of three vector spaces: 
     E = Eacc ⊕ Erej ⊕ Enon, where  

1. Eacc = span{ c | c is an accepting configuration of M on x} 

2. Erej = span{ c | c is a rejecting configuration of M on x} 

3. Enon = span{ c | c is a non-halting configuration of M on x} 

 



Formal Definition of Single-Tape QTMs 

A QTM M = (Q,Σ,{ȼ,$},Γ,δ,q0,Qacc,Qrej) has an input tape and a 
quantum transition function δ: 

 
 
 
 
 

• Time-evolution matrix (or operator)  Uδ: E→ E 
 
 

• Unitary Requirement:         is a unitary matrix.  

: Q Q D Cδ ×Γ× ×Γ× →

s’ is obtained from s by changing 
symbol sh to s′h. 

D = { -1, 0, +1 } 

'
( , )

, , ( , , , ) , , 'h hp d
U q h s q s p s d p h d sδ δ= +∑

Uδ

ȼ,$∈Γ 



Projection Measurement 

• Measurement makes quantum configuration to collapse, 
losing quantum information and to halt. 

• Here, we consider only the following types of projection 
measurements. 

1. Pacc = projection operator that projects onto the 
accepting configuration space Eacc 

2. Prej = projection operator that projects onto the 
rejecting  configuration space Erej 

3. Pnon = projection operator that projects onto the non-
halting  configuration space Enon 

 



Quantum Computation 

• A QTM M = (Q, Σ, {ȼ,$}, Γ, δ, q0, Qacc, Qrej)  
• A QTM works as follows. 

• Uδ  is a time-evolution operator 
• Pacc, Prej, Pnon are (projection) measurement operators. 
• Tδ = PnonUδ  is a transition operator.  

initial configuration 

|Ψx,0〉 
|Ψx,1′〉  = 

Uδ
(x) |Ψx,0〉  

|Φx,1′〉 = 
Pacc |Ψx,1′〉  

Uδ
 

|Φx,1″〉 = 
Prej |Ψx,1′〉   

|Ψx,1〉 = 
Pnon |Ψx,1′〉  

Accept with prob. 
|||Φx,1′〉|| 2 

measurement 

Reject with prob. 
|||Φx,1″〉|| 2 

Uδ
 

input x 

1 step 



Postponing Measurement 

• It is possible to postpone the measurement to the end of 
computation by remembering all potentially-lost information 
by measurement.  

• Hence, we can adjust the timing of entering halting states. 
• In particular, we can make all computation paths terminate 

at once (at the end of the whole computation). 

|Ψx,0〉 
|Ψx,p(n)〉  = 

(Uδ
(x))p(n)|Ψx,0〉  

 Pacc |Ψx,p(n)〉  

Uδ
 

 Prej |Ψx,p(n)〉   

Accept with 
prob. |||Φx,1′〉|| 2 

first 
measurement 

Reject with  
prob. |||Φx,1″〉|| 2 

input x 

Uδ
 

p(n) steps with no 
measurement 

... 

halts 



Universal Quantum Turing Machines 

• Based on a classical model of Turing machine, we have 
discussed universal Turing machines in Week 2. 

• Similarly to the fact that there is a finite set of universal 
gates, it is possible to restrict the use of amplitudes by  
QTMs.  

• This helps us enumerate all QTMs with those restricted 
amplitudes. Such an enumerate makes us construct a 
so-called universal QTM. 

• We say that a QTM U is universal if, for any QTM M and 
any input x∈{0,1}*, U takes 〈M,x,1t〉 as input and 
approximates the acceptance probability generated by  
M on input x within t steps.  
 
 



Quantum Polynomial Time 

• We say that a QTM M runs in polynomial time if there is 
a polynomial p such that, for all inputs x, M takes x as an 
input and halts in at most p(|x|) steps. 

• A QTM M recognizes a language L in polynomial time if 
M recognizes L and M runs in polynomial time. 

x 

runtime 
≤ p(|x|) 

accept reject 

M’s 
computation 



Complexity Class BQP 

• Bernstein and Vazirani (1997) introduced the complexity 
class BQP (quantum polynomial time). 

• Let K be any amplitude set. 

• A language L is in BQPK if there is a K-amplitude 
polynomial-time QTM M such that, for any input x, 
 If x∈L, then M accepts x with probability ≥ 2/3, 
 If x∉L, then M rejects x with probability ≥ 2/3. 

• When K = PC, we write BQP. 

• (Claim)  BPP ⊆ BQP ⊆ PSPACE 
bounded-error probability 

Here, “PC” denotes the set of polynomial-time approximable 
complex numbers  



Complexity Class EQP 

• Adleman, DeMarrais, and Huang (1997) introduced the 
complexity class EQP (exact or error-free quantum 
polynomial time). 
 

• A language L is in EQPK if there is a polynomial-time K-
amplitude QTM M such that, for any input x, 
 If x∈L, then M accepts x with probability 1, 
 If x∉L, then M rejects x with probability 1. 
 

• (Claim)  P ⊆ EQPK ⊆ BQPK 

• When K = PC, we omit K and write EQP instead of 
EQPPC. 

error-free 



Power of Amplitudes 

• Adleman, DeMarrais, and Huang (1997) proved the 
following statements.  
 

• (Claim)  BQPQ = BQPPC. 
• (Claim)  BQPC  contains non-recursive languages. 
• (Claim)  BQPPC ≠ BQPC. (From the above results.) 

 
• (Claim)  EQPC = EQPPC.  
• (Claim)  EQPC ≠ BQPC. (From the above result.) 



Function Class FBQP  I 

• Recall from Week 1 the function class FP, each element 
of which can be computed by a certain DTM with a write-
only output tape in polynomial time. 

• Similarly, to compute functions, we equip each QTM with 
a write-only output tape. 

• Let K be any amplitude set. 

• A function f : Σ* → Σ* (where Σ is an alphabet) is in 
FBQPK  ⇔  there are a polynomial p and a K-amplitude 
QTM M that, on each input x ∈Σ*, M produces f(x) on its 
output tape and halts with probability ≥ 3/4 in time at 
most p(|x|). 

• When K = PC, we omit K and write FBQP. 



Function Class FBQP  II 

• Recall  FPSPACE  from Week 3. 

• (Claim)  FP ⊆ FBQP ⊆ FPSPACE 
 

• Proposition:  [Yamakami (2002)] 
    FBQP = FPBQP. 

 



Quantum Function Class #QP  I 

• Yamakami (2003) studied special quantum functions, 
which output acceptance probabilities of QTMs. 

• Let K be any amplitude set. 

• A function f : Σ* → R (where Σ is an alphabet) is in #QPK  
⇔  there exits a K-amplitude polynomial-time QTM M 
that, on each input x ∈Σ*, M accepts x with probability 
exactly f(x). 

• When K = PC, we write #QP instead of #QPPC. 
 

• NOTE: This notion of “quantum function” is quite 
different from the one that we will discuss in Week 14. 



Quantum Function Class #QP  II 

• In other words,  
 f ∈ #QP  ⇔  ∃ M: polynomial-time QTM   ∀ x 

               f(x) = the probability that M accepts x 
                     = ProbM[M(x) = 1] 

x 

polynomial 
runtime  

accept reject 

M’s 
computation 

probability f(x) probability 1-f(x) 



1. Nondeterministic Quantum Complexity Class 
2. C=P and co-C=P 
3. NQPC = co-C=P 
4. Separation between BQPC and NQPC 

5. Proof Sketch 

II. Characterization of NQP 



Nondeterministic Quantum Complexity Class I 
• The quantum complexity class NQP, which is a natural 

extension of NP, was introduced by Adleman, DeMarrais, 
and Huang (1997). 

• Let K ⊆ C be an amplitude set. 

• A language L is in NQPK if there is a polynomial-time K-
amplitude QTM M such that, for every input x,  
 If x∈L, then M accepts x with probability >0, and 
 If x∉L, then M accepts x with probability =0. 

x∈L 

accept reject 

M’s 
computation 

reject 

x∉L 



Nondeterministic Quantum Complexity Class II 

• There is another way to define NQPK using #QPK, . 
• Here, we re-define NQPK as follows. 

• (Claim)  L ∈ NQPK  ⇔  there exits a function f ∈ #QPK 
s.t., for any x,  x ∈ L  ↔  f(x) > 0.  
 

• (Claim)  NQPQ ⊆ NQPA ⊆ NQPC  (since Q ⊆ A ⊆ C) 

• (Claim)  NP ⊆ NQPQ ⊆ PSPACE  [Adleman-DeMarrais-
Huang (1997)]. 

In Week 15, NQP 
will appear again. 



C=P and co-C=P (revisited) 

• Recall from Week 2 the counting complexity class  C=P 
and its complement class  co-C=P.  

• A language L is in C=P if there exists a polynomial-time 
probabilistic Turing machine M such that, for every x, 
 If x∈L, then M accepts x with probability = 1/2, 
 If x∉L, then M accepts x with probability ≠ 1/2. 

• co-C=P = { Lc | L is in C=P } 
 

• (Claim)  P ⊆ C=P∩co-C=P  and  NP ⊆ co-C=P ⊆ PP 



NQPC = co-C=P 

• What is the computational complexity of NQPK? 

• (Claim)  NQPA ⊆ PP [Adleman- DeMarrais-Huang (1997)] 

• (Claim)  NQPQ ⊆ co-C=P  [Fortnow-Rogers (1998)] 

• (Claim)  NQPA = co-C=P  [Fenner-Green-Homer-Pruim 
(1998)] 

• This last result was significantly improved as follows. 

• Theorem:  [Yamakami-Yao (1999)] 
         NQPK = co-C=P for any set K with Q ⊆ K ⊆ C. 

• This theorem intuitively indicates that nondeterministic 
quantum computation can be simulated by classical 
counting computation.  



• Corollary:  [Yamakami-Yao (1999)] 
    BQPC  ≠  NQPC. 

 Proof: As seen before, Adleman et. al. (1997) 
demonstrated that BQPC contains non-recursive 
languages. By contrast, NQPC is recursive.  

  
• For the theorem, it suffices to show the following. 

• (Claim)  co-C=P ⊆ NQPT 

• (Claim)  NQPC ⊆ co-C=P 

• (*) In the next slides, we will give a sketch of the proof of  
co-C=P ⊆ NQPT. 

Separation between BQPC and NQPC 

T = { 0, ±3/5, ±4/5, ±1 } 



 Proof Sketch for co-C=P ⊆ NQPT: 
• Let S∈co-C=P. Take an f∈GapP s.t. for all x,  x∈S ↔ f(x) 

≠ 0. Choose a poly-time computable predicate R and a 
polynomial p s.t., for all x,  
 
 

• For a,b∈{0,1,2,3}, we define a new operator H[a,b|α] as 
 
 

• For simplicity, we define  H = H[0,1|4/5],  J = H[0,1|3/5],  
and K= H[0,2|3/5] + H[1,3|4/5]. 

Proof Sketch  I 

{ } { }* *( ) {0,1} | ( , ) 1 {0,1} | ( , ) 0f x y R x y y R x y= ∈ = − ∈ =

[ ] [ ] [ ]

{ , } { , }

[ , | ] ( 1) (1 )y u b y z y u

y a b u a b
H a b α α α= = = ≠

∈ ∈

= − −∑ ∑



• Consider the following QTM M: 

1. Take an input x (|x|=n). 
2. Generate  |ϕ0〉 = |0p(n)〉|0〉.  
3. Apply  Hp(n)⊗I to  |ϕ0〉.  
4. Change the last qubit |0〉 to |R(x,y)〉. 
5. Apply Jp(n)⊗(JK) and obtain |ϕ〉. 
6. Apply observable |ϕ1〉=|0p(n)〉|1〉 and we obtain  
            〈ϕ1|ϕ〉 = − εp(n)+1 f(x). 

• It is easy to see that this QTM M satisfies: 
         x ∈ S  ↔  M accepts x with probability > 0.  
• Thus, S is in NQPT.  

Proof Sketch  II 

QED 



• Prove or disprove the following statements. 

1. BQP = NQP. 

2. NP = NQP. 

3. NQP = co-NQP. 

 

Open Problems 



1. Tuples of Quantum Strings 
2. Partial Decision Problems 
3. *#QP and *BQP 
4. *∃- and *∀-Operators 
5. *∃Q- and *∀Q-Operators 
6. Quantum NP 
7. The Quantum Polynomial Hierarchy 

III. Quantum NP 



Tuples of Quantum Strings 

• Let n be any number in N. 
• Recall from Week 11 the space: 
       Hn = Hilbert space of dimension n 

 
 

• Consider a tuple |ϕvec〉 = (|ϕ1〉,|ϕ2〉,...,|ϕm〉) of qustrings. 
• Let  ℓ(|ϕ1〉,|ϕ2〉,...,|ϕm〉) = Σi=1

m ℓ(|ϕi〉). (total length) 
• Φm

n = the set of all m-tuples |ϕvec〉 = (|ϕ1〉,|ϕ2〉,...,|ϕm〉) of 
qustrings of length n 
 

2
1

n

n

H H∞
≥

=


*

1 1

  and   m m m
n

n m
∞ ∞ ∞

≥ ≥

Φ = Φ Φ = Φ
 



• We introduce the notion of partial decision problems.  
• A partial decision problem is a pair (A,B) of sets with A ∩ 

B = ∅. Intuitively speaking, A consists of YES instances 
and B consists of NO instances. This problem is also 
called a promise problem. 

• When A ∪ B = Σ*, we call (A,B) total. In this case, we 
obtain B = Σ* − A.  
 

Partial Decision Problems 



• Earlier, we have discussed #QP as the class of all real-
valued functions computing acceptance probabilities of 
polynomial-time QTMs. 

• We want to extend this function class #QP as follows. 

• Let f be a quantum function from ∈Φ∞* to [0,1]. 

• f ∈ *#QP  ⇔  there is a polynomial-time QTM M s.t., for 
all |ϕvec〉 = (|ϕ1〉,|ϕ2〉,...,|ϕm〉) ∈Φ∞*,  M starts with input 
|ϕvec〉 on ℓ(|ϕvec〉)-tapes and accepts with probability 
exactly f(|ϕvec〉). 
 

*#QP 



• We have already discussed NQP, which was introduced 
as nondeterministic quantum polynomial-time complexity 
class. 

• From a different approach, we define a quantum 
analogue of NP, called quantum NP. 

• Let a and b be two functions from N to [0,1] such that 
a(n)+b(n)=1 for all n∈N. 

• (A,B) ∈ *BQP(a,b)  ⇔  there is a function f ∈*#QP s.t., 
for all |ϕvec〉 = (|ϕ1〉,|ϕ2〉,...,|ϕm〉) ∈Φ∞*,  
 |ϕvec〉 ∈ A  →  f(|ϕvec〉) ≥ a(ℓ(|ϕvec〉)), and 
 |ϕvec〉 ∈ B  →  f(|ϕvec〉) ≤ b(ℓ(|ϕvec〉)). 

• We simply write *BQP for *BQP(3/4,1/4). 

*BQP 



• Let *C be any class of partial decision problems.  
• Let (A,B) be any partial decision problem. 

• (A,B) ∈ *∃ ⋅ *C  ⇔  there is a partial decision problem 
(C,D) ∈*C s.t., for all |ϕvec〉 = (|ϕ1〉,|ϕ2〉,...,|ϕm〉) ∈Φ∞*,  
 |ϕvec〉 ∈ A  →  ∃x∈Σp(ℓ(|ϕvec〉)) [ (|x〉,|ϕvec〉) ∈C ], and 
 |ϕvec〉 ∈ B  →  ∀x∈Σp(ℓ(|ϕvec〉)) [ (|x〉,|ϕvec〉) ∈D ].  

• (A,B) ∈ *∀ ⋅ *C  ⇔  there is a partial decision problem 
(C,D) ∈*C s.t., for all |ϕvec〉 = (|ϕ1〉,|ϕ2〉,...,|ϕm〉) ∈Φ∞*,  
 |ϕvec〉 ∈ A  →  ∀x∈Σp(ℓ(|ϕvec〉)) [ (|x〉,|ϕvec〉) ∈C ], and 
 |ϕvec〉 ∈ B  →  ∃x∈Σp(ℓ(|ϕvec〉)) [ (|x〉,|ϕvec〉) ∈D ].  

 

*∃- and *∀-Operators 



• Let *C be any class of partial decision problems.  
• Let (A,B) be any partial decision problem. 

• (A,B) ∈ *∃Q ⋅ *C  ⇔  there is a partial decision problem 
(C,D) ∈*C s.t., for all |ϕvec〉∈Φ∞*,  
 |ϕvec〉 ∈ A  →  ∃|ψ〉∈ Φp(ℓ(|ϕvec〉))* [ (|ψ〉,|ϕvec〉) ∈C ], and 
 |ϕvec〉 ∈ B  →  ∀|ψ〉∈ Φp(ℓ(|ϕvec〉))* [ (|ψ〉,|ϕvec〉) ∈C ].  

• (A,B) ∈ *∀Q ⋅ *C  ⇔  there is a partial decision problem 
(C,D) ∈*C s.t., for all |ϕvec〉∈Φ∞*,  
 |ϕvec〉 ∈ A  →  ∀|ψ〉∈ Φp(ℓ(|ϕvec〉))* [ (|ψ〉,|ϕvec〉) ∈C ], and 
 |ϕvec〉 ∈ B  →  ∃|ψ〉∈ Φp(ℓ(|ϕvec〉))* [ (|ψ〉,|ϕvec〉) ∈C ].  

*∃Q- and *∀Q-Operators 



• Using *BQP(a,b) and *BQP, we define “quantum NP”, 
denoted by *Σ1

QP(a,b) and *Σ1
QP as follows. 

 

 

 

 

• NOTE: The “Quantum NP” makes it possible to introduce 
a hierarchy, similar to the polynomial(-time) hierarchy 
given in Week 4. 

Quantum NP 
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• The quantum polynomial hierarchy (or QP hierarchy) 
consists of partial decision problems such that 

The Quantum Polynomial Hierarchy  I 
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• The total classical parts of  *Σk
QP(a,b), *Πk

QP(a,b), and 
*QPH(a,b) are denoted by  
 
 

• Let Σk
exp be th k-th level of the exponential hierarchy, 

defined similarly to the polynomial hierarchy, using 
“exponential time” instead of “polynomial time.”  
 

• Proposition:  [Yamakami (2002)] 
For any k≥1,  Σk

p ⊆ *Σk
QP ⊆ Σk

exp and  PH ⊆ QPH ⊆ 
EXPH.  

The Quantum Polynomial Hierarchy  II 

( , ),   ( , ),   QPH( , )QP QP
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1. 1-Way Reversible Finite Automata 
2. Various Models of Quantum Finite Automata 
3. Quantum Finite Automata 
4. Quantum Computation 
5. Bounded-Error Criteria for 1qfa’s 
6. 2-Way Quantum Finite Automata 
7. Complexity Classes 1BQFA and 2BQFA 

IV. Basics of Quantum Finite Automata 



1-Way Reversible Finite Automata  I 

• A 1-way (deterministic) reversible finite automaton (1rfa) 
has a read-only input tape and a transition function. 

¢ $ σ 

q 

Infinite read-only input tape 

Inner state q ∈ Q 

…... ….. 

M = (Q,Σ, { ₵, $}, δ,q0,Qacc,Qrej) Σ = input alphabet 
Qhalt = Qacc ⋃ Qrej ⊆ Q 

δ : a transition function  

Head direction: 1-way 

:  or : {0,1}Q Q Q Qδ δ×Σ→ ×Σ× →
 

Σ =


Σ ∪ { ₵, $ } 



1-Way Reversible Finite Automata  II 

• Each 1rfa must satisfy the reversibility condition 

M = (Q,Σ,δ,q0,Qacc,Qrej) Σ = input alphabet 

Reversibility condition:  
            ∀q∈Q ∀σ∈Σ  ∃ at most one q’∈Q s.t. δ(q’,σ) = q.  

q’ 

q 

q” 

σ 

σ 

Property: If there is a computation 
path from q0 to q∈Qacc (or Qrej), 
such a path should be unique. 

unique path 

Σ =


Σ ∪ { ₵, $ } 



• Moore and Crutchfield (2000) introduced measure-once 1-
way quantum finite automata, which conduct measurement 
only at the end of computations. 

• Kondacs and Watrous (1997) studied (measure-many) 1-way 
quantum finite automata and 2-way quantum finite automata, 
in which machines make measurements at every step. 
(KWQFAs) 

• Ambainis, Beaudry, Golovkins, Ķikusts, Mercer, and Thérien 
(2006) proposed a Latvian quantum finite automata. 
(LaQFAs)  

• Nayak (1999) combined KWQFAs and LaQFAs. 
• Hirvensalo (2010) and Yakaryılmaz and Say (2011) 

considered general quantum finite automata.  

Various Models of Quantum Finite Automata 



Quantum Finite Automata 

• Hereafter, we will use the models of (measure-many) 1-
way quantum finite automata (1qfa) and 2-way quantum 
finite automata (2qfa). 

• 1qfa’s and 2qfa’s are considered as constant-space 
quantum machines. 

• A configuration of a qfa is a superposition of all possible 
classical information about state, head position, and tape 
content. 

input 

CPU 2-way move 
A model of constant-pace 
computation 



1-Way Quantum Finite Automata 

 
 

• A (measure-many) one-way quantum finite 
automaton (or 1qfa) M: 

¢ $ σ 

q 

Head direction 

End-marker End-marker An infinite read-only tape 

M = (Q,Σ,{₵,$},δ,q0,Qacc,Qrej) Σ = input alphabet 
Time-evolution operator  Uσ: a unitary matrix over EQ = span{ |q〉 | q∈Q} 

Inner state 

… …… 

Pacc : a projection onto space Eacc = span{ |q〉 | q∈Qacc}  
Prej : a projection onto  space Erej = span{ |q〉 | q∈Qrej} 

Transition operator  Tσ = PnonUσ ,  where  Pnon = I – (Pacc + Prej) 



Quantum Transition Functions 

A 1qfa M = (Q,Σ,{₵,$},δ,q0,Qacc,Qrej) has a read-only input tape 
and a special quantum transition function δ: 

 
 
 

• Time-evolution matrix:  
 
 

• Unitary Requirement:         is a unitary matrix.  

: Q Q Cδ ×Σ× →


U is unitary ⇔ U(U*)T = (U*)TU = I  

Σ =


Σ ∪ { ₵, $ } 

( , , )
p Q

U q q p pσ δ σ
∈

= ∑
( )xUδ



• In the case of 1qfa’s, a configuration is just an inner 
state. 

• Therefore, instead of using δ, we can use a set of time-
evolution operator Uσ (σ∈Σ ∪ { ₵, $ }), where  
 
 

    to express the transition of 1qfa’s. 
• This makes us define a 1qfa M as  
                  M = (Q,Σ,{Uσ}σ,q0,Qacc,Qrej). 

 

Another Way to Describe 1qfa’s 

( , , )
p Q

U q q p pσ δ σ
∈

= ∑

Time-evolution operators 



Quantum Computation  I 

• A 1qfa works as follows. 
• Let M = (Q, Σ, {Uσ}σ, q0, Qacc, Qrej) be a 1qfa with 
 Uσ  is a time-evolution operator 
 Pacc, Prej, Pnon are (projection) measurement operators. 
 Tσ = PnonUσ  is a transition operator.  
 Tx = Tσn Tσ(n-1) ....... Tσ2 Tσ1   if   x = σ1σ2….σn 

initial quantum state 

|Ψ0〉 
|Ψ1〉 = 

Uσ1 |Ψ0〉  

|Ψ1’〉 = 
Pacc |Ψ1〉  

Uσ1 

|Ψ1’’〉 = 
Prej |Ψ1〉  

|Ψ1’’’〉 = 
Pnon |Ψ1〉  Uσ2 

Accept with 
prob. |||Ψ1’〉||  

measurement 

Reject with 
prob. |||Ψ1’’〉||  



Extended transition operator  T¢xi = Tσi......Tσ3Tσ2Tσ1T¢ 

x = σ1σ2σ3.... σn (∈Σn) : input of length n 

Acceptance probability at step i+1 pacc(i+1) = the squared norm of  PaccUσiT¢xi-1 |q0〉 

Rejection probability at step i+1 prej(i+1) = the squared norm of PrejUσiT¢xi-1|q0〉 

xi = σ1σ2σ3.... σi : the first i symbols of x 

• A computation of a 1qfa M is defined as follows. 

M = (Q,Σ,{Uσ}σ,q0,Qacc,Qrej): 1qfa  Σ = input alphabet 

|q0〉 |φ1〉 |φ2〉 |φn+1〉 .... 
T¢ Tσ1 Tσ2 Tσn 

|φn+2〉 
U$ 

Pacc(1) 
Prej(1) 

Pacc(2) 
Prej(2) 

Pacc(3) 
Prej(3) 

Pacc(n+1) 
Prej(n+1) 

Pacc(n+2) 
Prej(n+2) 

Quantum Computation  II 



Quantum Computation  III 

Acceptance probability of x :  pacc(x) = pacc(1) + pacc(2) + ..... + pacc(n+2) 

Rejection probability of x :  prej(x) = prej(1) + prej(2) + ..... + prej(n+2) 

|q0〉 |φ1〉 |φ2〉 |φn+1〉 .... 
T¢ Tσ1 Tσ2 Tσn 

|φn+2〉 
U$ 

Pacc(1) 
Prej(1) 

Pacc(2) 
Prej(2) 

Pacc(3) 
Prej(3) 

Pacc(n+1) 
Prej(n+1) 

Pacc(n+2) 
Prej(n+2) 

Pacc(x) 
Prej(x) 

• The probability of accepting/rejecting input x by 
M is defined as the sum of all probabilities at 
any step. 

That is, 



Bounded Error Criteria for 1qfa’s 

• Let M be a 1qfa, let η∈[0,1], and L⊆Σ*. 

pM,acc(x) = acceptance probability of M on input x 

pM,rej(x) = rejection probability of M on input x 

• A 1qfa recognizes language L with bounded error 
probability  ⇔  There is a constant ε∈[0,1/2) s.t.,  

1. for all x∈L,  pM,acc(x) ≥ 1-ε  
2. for all x∈Σ*-L,  pM,rej(x) ≥ 1-ε  

 

 These criteria are similar to the isolated cut-point criteria 
of Rabin (1963).  

 



Complexity Class 1BQFA 

• L : language over alphabet Σ,   K : amplitude set ⊆ C 

• L ∈ 1BQFAK   ⇔     

           ∃M : 1qfa  ∃ε∈[0,1/2)  s.t. 
1. M has K-amplitudes 
2. ∀x∈L [ M accepts x with prob. ≥ 1-ε ] 
3. ∀x∈Σ* - L [ M rejects x with prob. ≥ 1-ε ] 

 

• We omit K if K = C. 

• (Claim)  1BQFA ⊆ REG  [Kondacs-Watrous (1997)] 



2-Way Quantum Finite Automata 

• A 2-way quantum finite automaton (2qfa) is similar to a 
2pfa with a read-only input tape but with a quantum 
transition function. 

¢ $ σ 

q 

Infinite read-only input tape 

Inner state q ∈ Q 

…... ….. 

M = (Q,Σ,{ȼ,$},δ,q0,Qacc,Qrej) 
Σ = input alphabet 
Qhalt = Qacc ⋃ Qrej ⊆ Q 

δ : a quantum transition function  

Head direction: 2-way 

 For simplicity, the input tape is assumed to be circular. 

Σ =


Σ ∪ { ₵, $ } 



Formal Definition of 2qfa’s 

A 2qfa M = (Q,Σ,{ȼ,$},δ,q0,Qacc,Qrej) has a read-only input tape 
and a special quantum transition function δ: 

 
 
 
 

• Time-evolution matrix (or operator):  
 
 

• Unitary Requirement:         is a unitary matrix.  

: Q Q D Cδ ×Σ× × →


U is unitary ⇔ U(U*)T = (U*)TU = I  

Σ =


Σ ∪ { ₵, $ } D = { -1, 0, +1 } 

( )
( , )

, ( , , , ) , (mod 1)x
hp d

U q h q x p d p h d nδ δ= + +∑
( )xUδ



Quantum Computation of 2qfa’s 

• A 2qfa works as follows. 
• A 2qfa M = (Q, Σ, {ȼ,$}, δ, q0, Qacc, Qrej)  
 Uδ

(x)
  is a time-evolution operator 

 Pacc, Prej, Pnon are (projection) measurement operators. 
 Tδ

(x) = PnonUδ
(x)

  is a transition operator.  

initial configuration 

|Ψx,0〉 
|Ψx,1’〉  = 

Uδ
(x) |Ψx,0〉  

|Φx,1’〉 = 
Pacc |Ψx,1’〉  

Uδ
(x) 

|Φx,1’’〉 = 
Prej |Ψx,1’〉   

|Ψx,1〉 = 
Pnon |Ψx,1’〉  

Accept with prob. 
|||Φx,1’〉|| 2 

measurement 

Reject with prob. 
|||Φx,1’’〉|| 2 

Uδ
(x) 

input x 



Bounded Error Criteria for 2qfa’s 

• Let M be a 2qfa, let η∈[0,1], and let L⊆Σ*. 

pM,acc(x) = acceptance probability of M on input x 

pM,rej(x) = rejection probability of M on input x 

• A 2qfa M recognizes language L with bounded error 
probability  ⇔  There is a constant ε∈[0,1/2)  s.t.,  

1. for all x∈L,  pM,acc(x) ≥ 1-ε  
2. for all x∈Σ*-L,  pM,rej(x) ≥ 1-ε  

 

 These criteria are similar to the isolated-cut-point criteria 
of Rabin (1963).  



Complexity Class: 2BQFA 

• L : language over alphabet Σ,   K : amplitude set ⊆ C 

• L ∈ 2BQFAK   ⇔    L is recognized by K-amplitude 2qfa’s  
        with bounded error probability; namely, 

           ∃M : 2qfa  ∃ε∈[0,1/2)  s.t. 
1. M has K-amplitudes 
2. ∀x∈L [ M accepts x with prob. ≥ 1-ε(n) ] 
3. ∀x∈Σ* - L [ M rejects x with prob. ≥ 1-ε(n) ] 

 

 

• (Claim)   1BQFA ⊆ REG ⊆ 2BQFA   [Kondacs-Watrous 
(1997)] 

 

bounded-error probability 



2EQFA, 2RQFA, 2C=QFA, 2PQFA 

• Let L ⊆ Σ* and K ⊆ C 

• L ∈ 2C=QFAK   ⇔     

        ∃M : 2qfa  s.t. 
1. M has K-amplitudes 
2. ∀x∈Σ* [ x∈L ↔ pM,acc(x) = 1/2 ] 

• Similarly, define: 
 2EQFA …. error-free 2qfa’s (i.e., error prob. = 0) 
 2PQFA …. unbounded-error 2qfa’s (i.e., >1/2) 
 2RQFA …. one-sided error 2qfa’s 
 2NQFA …. 2qfa’s with cut point 0 



1. Absolutely Halting 2qfa’s 
2. Worst-case Linear Time 
3. Time-Bounded 2qfa’s 
4. Relationships to 2qfa’s 

V. Absolutely Halting QFAs 



Absolutely Halting 2qfa’s 

• A 2qfa is said to halt absolutely ⇔ all computation paths 
(both accepting and rejecting ones) of M on all inputs 
terminate within a finite number of steps. 

• 2EQFAK(abs-halt) = class of languages recognized by K-
amplitude error-free 2qfa’s that halt absolutely.   

• Similarly, define 2RQFAK(abs-halt), 2BQFAK(abs-halt), 
etc. 

• Proposition:  [Yamakami (2015)] 

 REG 2EQFA (abs-halt) 2RQFA (abs-halt)Q Q⊆ ⊆



Worst-Case Linear Time 
• 2qfa halts in worst-case linear time ⇔ all computation 

paths of M on each input x halt within a|x|+b steps, where 
a,b are constants independent of x. 

• 2BQFAK[lin-time] = class of languages recognized by K-
amplitude bounded-error 2qfa’s that halt in worst-case 
linear time. 

• Similarly, define 2EQFAK[lin-time], 2RQFAK[lin-time], 
2C=QFAK[lin-time], and 2PQFAK[lin-time]. 

• Theorem:  [Yamakami (2015)] 
 2BQFAK(abs-halt) = 2BQFAK[lin-time]. 
 The same equality holds for 2EQFA, 2RQFA, 

2C=QFA, and 2PQFA. 



Time-Bounded 2qfa’s 

• A t(n) time-bounded 2qfa M is obtained from a 2qfa by 
cropping its computation paths after exactly t(n) steps. 
Cropped paths are considered as “unhalting”.  

input  x 2qfa 

quantum 
computation 

t(|x|) 

input  x t(n) time-
bounded 2qfa 

t(|x|) 

Treated as 
“unhalting” 

cropped 



Relationships to 2qfa’s 

• Nice relationships hold between 2qfa’s and time-
bounded 2qfa’s. 
All languages recognized by t(n) time-bounded 2qfa’s 

with (un)bounded-error probability are also 
recognized by 2qfa’s with (un)bounded-error 
probability. 

The converse also holds. 

• Theorem:  [Yamakami (2015)] 
Any language L in 2BQFAA can be recognized by a 
certain 2O(n) time-bounded 2qfa with bounded-error 
probability.  



1. Multi-Head 2pfa’s 
2. Classical Simulations 
3. Class Separation 

VI. Classical Simulation of 2QFAs 



Multi-Head 2pfa’s 

• A k-head 2pfa is a variant of a 2pfa that uses k tape 
heads moving separately on a read-only input tape. 

• 2PPFAK(k-head)[poly-time] = class of languages 
recognized with “cut points” in K∩[0,1] by k-head-2pfa’s 
in worst-case polynomial-time.   

q q 

1 tape head k tape heads 



Probabilistic Transition Functions 

• A 2-head probabilistic transition function δ is of the form 

 

 

• “δ(q,σ1,σ2,p,d1,d2)=γ” means that, when M is in inner 
state q, scanning (σ1,σ2), M changes q to p and moves 
its tape heads in direction (d1,d2) with probability γ.   

1 2: [0,1]Q Q D Dδ ×Σ×Σ× × × →
 

q 
2 tape heads 

d2 d1 

σ1 σ2 



Classical Simulations 

• Given an amplitude set H, Ĥ denotes the minimal set that 
contains H and is closed under multiplication and addition.  

• Theorem:  [Yamakami (2015)] 
 There exists an integer k≥2 s.t. for any H⊆R, the 

following statements hold. 
 2PQFAH ⊆ 2PPFAĤ(k-head)[poly-time]. 
 2C=QFAH ⊆ 2C=PFAĤ(k-head)[poly-time]. 

• Corollary:  [Yamakami (2015)] 
 2EQFAH ⊆ 2C=PFAĤ(k-head)[poly-time] ∩  

    co-2C=PFAĤ(k-head)[poly-time]. 
 2BQFAH ⊆ 2PPFAĤ(k-head)[poly-time] ∩  

    co-2PPFAĤ(k-head)[poly-time]. 



Corollary: Class Separation 

• PL = unbounded-error probabilistic log-space complexity 
class  (unbounded-error probabilistic version of L) 

• Nishimura and Yamakami (2009) stated that 2BQFAA is 
contained within PL (using a result of [Watrous (2003)]).  

• The previous theorem implies the following corollary. 

 
• Corollary:  [Nishimura-Yamakami (2009)] 
 2BQFAQ is properly contained in PL. 

• In particular, 2BQFAQ ≠ PL holds. 



Stochastic Functions vs. Quantum Functions 

• A stochastic function f is of the form pM,acc for a certain 
multi-head 2pfa M. 

• #2PFAK (k-head)[poly-time] = class of all stochastic 
functions defined by k-head 2pfa’s running in worst-case 
polynomial-time 

• As seen before, a quantum function f is of the form pM,acc 
for a certain target machine M 

• #2QFAK = class of all quantum functions defined by 
2qfa’s 



Corollary: Stochastic vs. Quantum Functions 

• The following corollary can be also obtained. 
 

• Corollary:  [Yamakami (2015)] 
 There is an integer k≥2 s.t., ∀ f∈#2QFAH,  

    ∃ g1,g2,h1,h2∈#2PFAĤ(k-head)[poly-time]  ∀ x  
 

 

 

( )1 2 1 2( ) ( ) ( ) ( ) ( )g x g x f x h x h x− = −



• Find the exact complexity of 2BQFA and #2QFA. 
• Characterize those quantum complexity classes in terms 

of classical complexity classes. 
• Find more interesting features of quantum functions. 

Open Problems 





Q & A 
I’m happy to take your question! 



 
 

                                 END 
 
   
                        


	12th Week
	Course Schedule: 16 Weeks
	YouTube Videos
	Main References by T. Yamakami  I
	Main References by T. Yamakami  II
	I. Quantum Polynomial-Time Computation
	Turing Machine (revisited)
	The Notion of Quantum Turing Machines
	Single-Tape Quantum Turing Machines
	Configurations
	Decomposing a Configuration Space
	Formal Definition of Single-Tape QTMs
	Projection Measurement
	Quantum Computation
	Postponing Measurement
	Universal Quantum Turing Machines
	Quantum Polynomial Time
	Complexity Class BQP
	Complexity Class EQP
	Power of Amplitudes
	Function Class FBQP  I
	Function Class FBQP  II
	Quantum Function Class #QP  I
	Quantum Function Class #QP  II
	II. Characterization of NQP
	Nondeterministic Quantum Complexity Class I
	Nondeterministic Quantum Complexity Class II
	C=P and co-C=P (revisited)
	NQPC = co-C=P
	Separation between BQPC and NQPC
	Proof Sketch  I
	Proof Sketch  II
	Open Problems
	III. Quantum NP
	Tuples of Quantum Strings
	Partial Decision Problems
	*#QP
	*BQP
	*- and *-Operators
	*Q- and *Q-Operators
	Quantum NP
	The Quantum Polynomial Hierarchy  I
	The Quantum Polynomial Hierarchy  II
	IV. Basics of Quantum Finite Automata
	1-Way Reversible Finite Automata  I
	1-Way Reversible Finite Automata  II
	Various Models of Quantum Finite Automata
	Quantum Finite Automata
	1-Way Quantum Finite Automata
	Quantum Transition Functions
	Another Way to Describe 1qfa’s
	Quantum Computation  I
	Slide Number 53
	Quantum Computation  III
	Bounded Error Criteria for 1qfa’s
	Complexity Class 1BQFA
	2-Way Quantum Finite Automata
	Formal Definition of 2qfa’s
	Quantum Computation of 2qfa’s
	Bounded Error Criteria for 2qfa’s
	Complexity Class: 2BQFA
	2EQFA, 2RQFA, 2C=QFA, 2PQFA
	V. Absolutely Halting QFAs
	Absolutely Halting 2qfa’s
	Worst-Case Linear Time
	Time-Bounded 2qfa’s
	Relationships to 2qfa’s
	VI. Classical Simulation of 2QFAs
	Multi-Head 2pfa’s
	Probabilistic Transition Functions
	Classical Simulations
	Corollary: Class Separation
	Stochastic Functions vs. Quantum Functions
	Corollary: Stochastic vs. Quantum Functions
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78

