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YouTube Videos 

• This lecture series is based on numerous papers of T. 
Yamakami. He gave conference talks (in English) and 
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.  

• Use the following keywords to find a playlist of those 
videos.  

• YouTube search keywords: 
    Tomoyuki Yamakami  conference  invited talk playlist 
 

Conference talk video 
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I. Quantum Advice 



Classical Advice (revisited) 

• Recall the notion of advice from Weeks 3 & 5. 
• In those weeks, we have considered two types of advice: 

1. deterministic advice, and  
2. randomized advice. 

• For clarity, we call such advice classical advice. 
 



Non-Uniform Class P/poly (revisited) 

• Recall from Week 3 the non-uniform complexity class 
P/poly, which is defined by polynomial-time DTMs 
equipped with advice tapes. 
 
 
 
 
 
 

• Recall that non-uniform families of polynomial-size 
circuits also characterize P/poly (in Week 3). 
 

input/work tape 

advice tape 



Non-Uniform Complexity Class BQP/poly  I 

• Recall the quantum polynomial-time complexity class 
BQP from Week 12. 

• Nishimura and Yamakami (2004) defined complexity 
class BQP/poly, which is a quantum analogue of P/poly. 
 

• A language L is in BQP/poly  ⇔  there are a positive 
polynomial p, an advice function h, and a QTM M 
equipped with an  advice tape such that, for any input x,  
 |h(|x|)| ≤ p(|x|) and  
 x∈L  ↔  M accepts (x,h(|x|)) with probability ≥ 2/3. 

 



Non-Uniform Complexity Class BQP/poly  II 

• Nishimura and Yamakami (2004) proved the following 
nice characterization of BQP/poly in terms of polynomial-
size quantum circuits. 

• Theorem:  [Nishimura-Yamakami (2004)] 
L ∈ BQP/poly  ⇔  L has a non-uniform family of 
polynomial-size quantum circuits Cn with error probability 
at most 1/3. 

|x〉 

|0m〉 

|1〉 measurement 
x∈L 

Cn 

n=|x| 

|x〉 

|0m〉 

|0〉 measurement 
x∉L 

Cn 

probability ≥ 2/3 

probability ≥ 2/3 



Generalization to BQP/F 

• By taking a different set F of functions, we can define a 
non-uniform complexity class BQP/F as a generalization 
of BQP/poly. 

• Let F be a set of functions from N → N. 

• A language L over alphabet Σ is in BQP/F ⇔ there are a 
function f ∈ F, an advice alphabet Γ, an advice function 
h: N → Γ*, and a polynomial-time QTM M equipped with 
an advice tape such that, for all input x∈Σ*, 
 |h(|x|)| ≤ f(|x|) and  
 x∈L  ↔  M accepts (x,h(|x|)) with probability ≥ 2/3. 



Properties of BQP/F 

• Nishimura and Yamakami (2004) presented the following 
properties of BQP/F for various class F of functions. 
 

• Theorem: 
1. BQP/poly = BQPTALLY 

2. ESPACE ⊈  BQP/poly 
3. BQPC  ⊆  BQP/log3 

4. BQP/1 ⊈ BQPC 

 
log3 means the set of 
functions of the form 
clog3(n)+d for 
constants c,d > 0. 

ESPACE consists of all 
languages recognized by 
DTMs using 2O(n) space. 



Computation with Quantum Advice 

• Nishimura and Yamakami (2004) first considered 
quantum advice for polynomial-time quantum 
computation. 

• We run a machine that takes two inputs, which are a 
standard input and advice. 

quantum advice 

standard input 

quantum 
computation 

a family { |ϕn〉 }n∈N  of 
quantum states 

x 

|ϕn〉 

( n=|x| ) 



BQP/Qpoly  I 

• With the use of quantum advice, Nishimura and 
Yamakami (2004) defined complexity class BQP/Qpoly. 

• A language L is in BQP/Qpoly  ⇔  there are a positive 
polynomial p, a family { |ϕn〉 }n∈N  of quantum states, and 
a QTM M with an advice tape such that, for any input x 
of length n,  
 |ϕn〉 is a quantum state of dimension 2p(n),  
 x ∈ L  →  M accepts (x,|ϕn〉) with probability ≥ 2/3, 
 x ∉ L  →  M rejects (x,|ϕn〉) with probability ≥ 2/3. 

• In the next slide, we will see another characterization of 
BQP/Qpoly. 



BQP/Qpoly  II 

• Here is another characterization of BQP/Qpoly using 
quantum circuits. 

• Recall the characteristic function χL of a language L. 
 

• Theorem:  [Nishimura-Yamakami (2004)] 
L ∈ BQP/Qpoly  ⇔  there exist a positive polynomial p, a 
non-uniform family { Cn }n∈N  of polynomial-size quantum 
circuits, and a series { Un }n∈N of unitary operators acting 
on p(n) qubits such that, for any length n and any input x 
of length n,  
 ( )( ) 2Prob , 0 ( )
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p n
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Generalization to BQP/Q(F) 

• Similarly to BQP/F, we can generalize BQP/Qpoly to 
BQP/Q(F) by taking a different set F of functions. 

• Let F be a set of functions from N → N. 

• A language L over alphabet Σ is in BQP/Q(F) ⇔ there 
are a function f ∈ F, a family { |ϕn〉 }n∈N  of quantum 
states, and a polynomial-time QTM M equipped with an 
advice tape such that, for all input x∈Σn, 
 |ϕn〉 is a quantum state of dimension 2f(n),   
 x ∈ L  →  M accepts (x,|ϕn〉) with probability ≥ 2/3,  
 x ∉ L  →  M rejects (x,|ϕn〉) with probability ≥ 2/3. 

• For example, we can obtain BQP/Qlog and BQP/Q(1). 



Properties of BQP/Q(f) 

• Concerning quantum advice, Nishimura and Yamakami 
(2004) proved the following properties. 
 

• Theorem: 
1. BQP/Qlog  ⊆ BQP/poly 
2. BQP/log  ≠ BQP/Qlog  ≠  BQP/poly 
3. P/log2  ⊈ BQP/Qlog 
4. EESPACE  ⊈  BQP/Qpoly 
 EESPACE consists of all 

languages recognized by 
DTMs using space 
 

( )22
O n



Open Problems 

• Here is a short list of open problems associated with 
BQP/poly and BQP/Qpoly. 

1. Is  BQP/poly = BQP/Qpoly? 
2. Is  BQP  ⊆  EQP/Qpoly? 
3. Is  PSPACE  ⊈  BQP/poly? 
 

• In the above list, EQP/Qpoly denotes the non-uniform 
complexity class defined by EQP and polynomial-size 
quantum advice, similarly to BQP/Qpoly. 



1. Classical Advice for Finite Automata 
2. Advised Language Families 
3. Reversible Finite Automata 
4. Power of Advice 
5. Characterization of 1RFA/n 

II. Reversible Automata with Advice 



Track Notation for Advice (revisited) 

• More precisely, we use the following two-track representation 
of  [Tadaki-Yamakami-Lin04].  
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Each of them 
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When written on an input tape: 



Classical Advice for Finite Automata (revisited) 

• Let Γ be any advice alphabet. 
• Let t(n) be a length function. 
• In the case of deterministic advice, an advice string is 

given for each length t(n). 
• In the case of randomized advice, for each length n, all 

possible strings of length n are given according to an  
advice probability distribution  Dn over Γ t(n). 

X  
¢ $ 

y 

Advice string y is given in the lower track of the tape. 

x ∈Σn  is an input and 
Dn generates an advice 
string y ∈Γ t(n) with 
probability Dn(y). 



Advised Language Families (revisited) 

• Let L be any language over an alphabet Σ.  

• L∈REG/n   ⇔ ∃M:1dfa  ∃Γ:advice alphabet  ∃h:N→Γ*  
1. ∀n∈N [ |h(n)| = n ]. 
2. ∀x∈Σn [ x∈L ↔ M accepts [x h(|x|)]T ]. 

• L∈CFL/n    ⇔ ∃M:1npda  ∃Γ:advice alphabet  ∃h:N→Γ*  
1. ∀n∈N [ |h(n)| = n ]. 
2. ∀x∈Σn [ x∈L ↔ M accepts [x h(|x|)]T ]. 

• L∈REG/Rn 
       ⇔ ∃M:1dfa  ∃ε∈[0,½) ∃Γ ∃{Dn}n: advice prob. distribution  

1. ∀n∈N [ Dn generates advice strings y∈Γn ]. 
2. ∀x∈Σn [ x∈L → M accepts [x Dn]T with prob. ≥ 1-ε ].  
3. ∀x∈Σn [ x∉L → M rejects [x Dn]T with prob. ≥ 1-ε ]. 



Inclusions and Separations (revisited) 

1-DLIN/lin 
= REG/n 

1-BPLIN/Rlin 
= REG/Rn 

1-C=LIN/lin 

1-PLIN/lin 

1-C=LIN/Rlin = 1-PLIN/Rlin = ALL  

co-1-C=LIN/lin 

CFL/n 

proper inclusion 
no inclusion 

CFL/Rn 

• The following figure shows known class 
separations among advised language families.  

ALL = the class fo all languages 



Reversible (Finite) Automata  I 

• A one-way deterministic reversible (finite) automaton (1rfa) 
M = (Q,Σ,{ȼ,$},δ,q0,Qacc,Qrej)  is a restricted version of a 
1dfa, which satisfies the following reversibility condition. 

• Reversibility condition: for every inner state q∈Q and every 
symbol σ∈Σ, there exists at most one inner state p∈Q s.t. 
δ(p,σ)=q.  

p 

q 

p’ 

prohibited 
σ 

σ p 

q 

p’ 

allowed 
σ’ 

σ 

p ≠ p’ 
p ≠ p’ 
σ ≠ σ’ 



Reversible (Finite) Automata  II 

• Reversible finite automata are considered as the error-
free version of quantum finite automata. 

• Because reversible finite automata are reversible and so 
are quantum finite automata. 



1RFA/n and 1RFA/Rn 

• Similarly to REG/n and REG/Rn, we define the following. 

Computation with deterministic advice   

• L∈1RFA/n  ⇔  ∃ M: 1rfa ∃ h: advice function  s.t. 
1. ∀n [ |h(n)| = n ]  and  
2. ∀x∈Σ* [ M([x h(|x|)]T) = χL(x) ]. 

Computation with randomized advice  

• L∈1RFA/Rn  ⇔  ∃ M: 1rfa ∃ ε∈[0,½) ∃ Γ ∃{Dn}n:advice prob. 
dist.  s.t. 
1.∀n∈N [ every advice string y∈Γn is generated with prob. 

Dn(y) ]. 
2.∀x∈Σn [ x∈L → M accepts [x Dn]T with probability ≥ 1-ε ].  
3.∀x∈Σn [ x∉L → M rejects [x Dn]T with probability ≥ 1-ε ]. 



• Consider the context-free language:  

               Pal# = { w#wR | w∈{0,1}* }.  (marked palindrome) 

 (Known)  Pal# ∉ REG/n. 

 (Claim)  Pal#  is in 1RFA/Rn. [Yamakami (2014)] 
 

• Consider the context-sensitive language:  

               Dup = { ww | w∈{0,1}* }.  (duplicated words) 

 (Known)  Dup ∉ CFL/n.  

 (Claim)  Dup  is in 1RFA/Rn. [Yamakami (2014)] 

Power of Advice 



Proof of the First Claim 

• Consider a language: 
                   Pal# = { x#xR | x∈{ 0,1 }* } (∈DCFL) 
• Fact: Pal#∉REG/n  [Yamakami08]. 
• We claim that Pal#∈1RFA/Rn. 

( )
1 / 2   if  2  and #           

1         if  2 1 and #       
0        otherwise.                             
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x z 

y yR 

• Let our randomized advice 
Dn be s.t. 

• Let our 1rfa be s.t. 
Compute x•y and z•yR. 
Accept x#z iff x•y ≡2 z•yR. 

• We run this procedure twice independently to reduce the 
error probability to ¼. 

Dn 

# 

# 

if |x|=|z| 



Separation Results 

• 1RFA/Rn is quite powerful, compared with REG/n. 
• Lemma:  [Yamakami (2014)] 
    DCFL∩1RFA/Rn ⊈ REG/n. 

 

• Yamakami (2014) further obtained the following class 
separations among the aforementioned advised 
language families.  

 1RFA/Rn ⊈ CFL/n 
 1RFA/n ≠ 1RFA/Rn 

 
 



Characterization of 1RFA/n 

• Here is a machine-independent characterization of 
languages in 1RFA/n given by Yamakami (2014). 

• Theorem: Let S be any language over Σ. The following 
two statements are logically equivalent. 
1. S is in 1RFA/n. 
2. There is an equivalence relation ≡S over ∆ s.t. 
 the set ∆/≡S is finite, where ∆ =  { (x,n) | |x| ≤ n }, and 
 for any length parameter n, any symbol σ∈Σ, and any 

two strings x,y∈Σ* with |x| = |y| ≤n, the following holds: 
 when |xσ| ≤ n, (xσ,n) ≡S (yσ,n) iff (x,n) ≡S (y,n), and  
 if (x,n) ≡S(y,n), then S(xz) = S(yz) for all strings z with 

|xz| = n. 

• This is an analogue of Myhill-Nerode theorem for REG. 



Open Problems 

• There is few literature, which covers reversible finite 
automata with advice. 

• Answer the following general questions.  

1. Find much simpler characterizations of languages in 
1REF/n and 1RFA/Rn. 

2. Explore natural properties of 1RFA/n and 1RFA/Rn. 
 



1. QFAs with Deterministic Advice 
2. Inclusions and Separations 
3. Power of Advice 
4. Limitations of Advice 

III. Quantum Finite Automata with Advice 



Language Families (revisited) 

 
 

• Recall the following notation. 
 1qfa = one-way quantum finite automaton 
 1QFA = collection of all languages recognized by 

1qfa’s with bounded error (i.e., error bound < ½ - ε) 
 

• (NOTE) In Week 12, the above 1QFA was written as 
1BQFA .  
 

• (Claim) 1RFA ⊆ 1QFA ⊆ REG [Kondacs-Watrous (1997)] 



QFAs with Deterministic Advice  I 

• To run a 1-way quantum finite automaton (1qfa) with 
deterministic advice, we first provide an advice string to 
the lower track of an input tape. 
M = (Q,Σ,{ȼ,$},δ,q0,Qacc,Qrej):  1qfa 
Γ:  advice alphabet 
h: N → Γ*  :  advice function with |h(n)| = n 

 

 

ȼ $ 
h(|x|) 

x 

x: standard input string 
h(n): advice string one way 



QFAs with Deterministic Advice  II 

• By adding deterministic advice to 1qfa’s, we immediately 
obtain the advised complexity class 1QFA/n. 

• Let L be any language over an alphabet Σ.  

• L∈1QFA/n 
       ⇔ ∃M:1qfa ∃ ε∈[0,½)  ∃Γ:advice alphabet  ∃h:N→Γ*  

1. ∀n∈N [ |h(n)| = n ]. 
2. ∀x∈Σn [ x∈L ↔ M accepts [x h(|x|)]T with prob ≥ 

1-ε ]. 

• Recall that reversible automata are considered as an 
error-free version of quantum automata. Thus, 1RFA/n ⊆ 
1QFA/n holds. 



Relationships between 1RFA/n and 1QFA/n 

• Yamakami (2014) proved the following statements. 

• The non-advice relations 1RFA ⊆ 1QFA ⊆ REG can 
transfer to the advice case. 

• Lemma:  1RFA/n ⊆ 1QFA/n ⊆ REG/n. 

• There is a limitation of 1RFA/n. 
• Proposition:  1QFA ⊈ 1RFA/n.  

• The above proposition immediately yields the following 
class separation. 

• Corollary:  1QFA/n ≠ 1RFA/n. 



Limitation of 1QFA/n 

There is a limitation of 1QFA/n. 

• Theorem: REG ⊈ 1QFA/n.  [Yamakami (2014)] 
• Corollary: 1QFA/n ≠ REG/n.  [Yamakami (2014)] 

 
• This result extends Kodacs-Watrous (1997)’s result of 

1QFA ≠ REG. However, we employ a totally different 
proof technique, because their argument does not work. 
 
 

• Kondacs-Watrous (1997) used L0 ={ x0 | x∈{0,1}* }, 
which separates 1QFA from REG. But, L0 is already in 
1QFA/n and it is no use to separate REG from 1QFA/n. 

Why? 



Necessary Condition for 1QFA/n 
• Here is a machine-independent condition that is necessary for a 

language to be in 1QFA/n given by Yamakami (2014).  

• Theorem:  If S is in 1QFA/n, then the following condition holds: 
There are two constants c,d > 0, an equivalence relation ≡S over ∆, 
a partial order ≤S over ∆, and a closeness relation ≈ over ∆ that 
satisfy the following. Let (x,n),(y,n)∈ ∆, z∈Σ*, and σ∈Σ with |x| = 
|y|, where ∆ =  { (x,n) | |x| ≤ n }. Define (x,n) =S (y,m) ⇔ (x,n) ≤S 
(y,m) and (x,n) ≤S (y,m). 

1. The set ∆/≡S is finite. 
2. If (x,n) ≈ (y,n), then (x,n) ≡S (y,n).  
3. If |xσ| ≤ n, then (xσ,n) ≤S (x,n). 
4. If |xz| ≤ n, (x,n) =S (xz,n), (y,n) =S (yz,n), and (xz,n) ≈ (yz,n), 

then (x,n) ≡S (y,n).   
5. If (x,n) ≡S(y,n) iff S(xz) = S(yz) for all z with |xz| = n. 
6. Any strictly descending chain (w.r.t. ≤S ) in ∆ has length ≤ c. 
7. Any ≈-discrepancy subset of ∆ has cardinality ≤ d. 



Separation Results 

• Yamakami (2014) presented the following 
separation results. 
 1QFA ⊈ 1RFA/n. 
 1RFA/n ≠ 1QFA/n. 
 REG ⊈ 1QFA/n. 
 1QFA/n ≠ REG/n. 



A Quick Overview 

• Here is a quick overview of inclusions and 
separations. 

1QFA/n 

1QFA/Rn 

1QFA/Qn 

1-DLIN/lin 
= REG/n 

1-BPLIN/Rlin 
= REG/Rn 

1QFA(1/2,1/2)/Qn = 1QFA(1/2,1/2)/Rn = 1-PLIN/Rlin = ALL  

CFL/n 

proper inclusion 

no inclusion 

CFL/Rn 

1RFA/n 

1RFA/Rn 

1-BQLIN/Qlin 

simple inclusion 



Power of 1QFA/Rn 

• We exhibit another example of the power of randomized 
advice. 
 

• Proposition:  [Yamakami (2014)] 
    1QFA(1/2,1/2)/Rn = ALL. 

 
• In other words, the advised language family 

1QFA(1/2,1/2)/Rn consists of all languages.  
 

• In the next slide, we will give a quick explanation. 
 



Why 1QFA(1/2,1/2)/Rn = ALL? 

 Proof Sketch 
• Let L be any language over Σ. For simplicity, assume 

L∩Σn ≠ Σn. Let our randomized advice Dn be  
         Dn(y) = 1/|Σn-L| if y∈Σn-L;   Dn(y) = 0 if y∈L∩Σn. 
     
 
     
• Let our 1qfa M be s.t.     
           if x=y, then reject x;  
           if x≠y, then accept/reject with equal probability ½.  
• It is easy to check that x∈L ↔ Prob[ M([x Dn]T) = 1 ]=1/2. 
• Hence, L∈1QFA(1/2,1/2)/Rn.      

x 

y 
Input string 

Dn generates 

QED 



1QFA/Rn vs. REG/n 

• Proposition:  [Yamakami (2014)] 
    1QFA/Rn ⊆ REG/Rn. 

 
• NOTE: This inclusion is not immediate from 1QFA ⊆ 

REG [KW97], because “advice” does not automatically 
commute the inclusion relationship between two 
language families. 
 

 Proof Idea: This is done by a direct simulation of a 1qfa 
on a 1qfa together with a careful treatment of a given 
advice probability ensemble.  

QED 



Power of 1QFA/Rn 

• Randomized advice may give more power than 
deterministic advice does.  

• Recall that DCFL∩1RFA/Rn ⊈ REG/n. 
• Moreover, we can show the following. 

• Proposition:  [Yamakami (2014)] 
    1QFA/n ≠ 1QFA/Rn.  

 Proof Sketch  
• Assume that 1QFA/n = 1QFA/Rn.  
• From the above claim, it follows that 1RFA/Rn ⊈ REG/n.  
• Since 1RFA/Rn ⊆ 1QFA/Rn, we obtain 1QFA/Rn ⊈ 

REG/n, and thus 1QFA/n ⊈ REG/n.  
• This contradicts the fact that 1QFA/n ⊆ REG/n. 

 QED 



Open Problems 

• In quantum automata theory, there are still a lot of 
interesting open problems to solve. 
 

• Give a complete characterization of 1QFA/n. 
• Prove or disprove each of the following statements. 

1. 1QFA/Rn ≠ REG/Rn 
2. 1RFA/Rn ≠ 1QFA/Rn 



1. How to Define Quantum Advice 
2. Read-Only Advice Tracks 
3. Rewritable Advice Tracks 
4. Advised Language Families 
5. Power of 1QFA/Qn 
6. Limitation of 1QFA/Qn 

IV. Quantum Advice for QFAs 



How to Define Quantum Advice 

• We extend random advice to quantum advice by 
replacing probability distributions with quantum states. 
 

• Advice alphabet  Γ 
• HΓn = Hilbert space spanned by { |s〉 | s∈Γn } 
• A quantum advice state |φn〉 = a unit vector in HΓn  
• That is,  

 
     where α∈C and  
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Illustration: Quantum Advice 

• A quantum advice state                       is given to the 
lower track of an input tape in parallel to a standard input 
string x∈Σn. 
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A Possible Candidate of 1QFA/Qn 

• In analogy to 1QFA/n, we may possibly define 1QFA/Qn 
in the following way. 
 

• 1QFA/Qn may consist of all languages L for which 
 ∃ M: 1qfa with read-only input tape ∃ Γ: advice 

alphabet ∃ ε∈[0,1/2) ∃ { |φn〉 }n: quantum advice states 
s.t. ∀n∈N ∀ x∈Σn  Prob[M([x φn]T) = A(x)] ≥ 1-ε. 

 



Weakness of Read-Only Advice Tracks 

• Unfortunately, the previous definition does not provide 
any extra power to the underlying 1qfa’s. 

• Lemma:  [Yamakami (2014)] 
Let A be any language over Σ. The following two 
statements are equivalent. 

1. A∈1QFA/Rn. 
2. ∃ M: 1qfa with read-only input tape ∃ Γ: advice 

alphabet ∃ ε∈[0,1/2) ∃ { |φn〉 }n: quantum advice 
states s.t.  

            ∀n∈N ∀ x∈Σn  Prob[M([x φn]T) = A(x)] ≥ 1-ε. 

• In other words, quantum advice is reduced to random 
advice as far as we use read-only advice tracks. 



Rewritable Advice Tracks 

• To make use of quantum advice, we need a certain 
modification of 1qfa’s. 

• We allow a 1qfa to alter the content of an advice track. 
• However, a tape head cannot move back or stay still. 
• Moreover, input strings must be unchanged. 
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• “Rewritable track” is used as a “garbage tape,” into which 
unwanted information can be dumped 

quantum transition 



Advised Class 1QFA/Qn 

• A rewritable 1qfa means a 1qfa eqipped with a rewritable 
advice track. 

• We formally define 1QFA/Qn as the collection of all 
languages recognized by rewritable 1qfa’s with bounded 
error probability. 

• NOTE: In a 1dfa case, rewritable tracks do not increase 
the computational power of 1dfa’s, because it is known 
that  

      1-DLIN/lin = REG/n     [Tadaki-Yamakami-Lin (2004)]. 
 

2-way 1DTMs 
with rewritable 
tapes 

1-way dfa’s 
with read-only 
tapes 



Power of 1QFA/Qn 

 
 • Surprisingly, the rewritability of the lower tracks of input 
tapes increases the computational power of 1qfa’s. 
 

• Proposition:   [Yamakami (2014)] 
    REG/Rn ⊆ 1QFA/Qn ⊆ 1-BQLIN/Qlin. 

 

• For comparison, recall that 1QFA ⊊ REG [Kndacs-
Watrous (1997)]. 



Closure Properties of 1QFA/Qn 

 
 

• We consider closure properties of 1QFA and 1QFA/Qn.  

• (Claim)  1QFA is not closed under union or intersection. 
[Ambainis-Ķikusts-Valdats (2001)] 

• By contrast, 1QFA/Qn enjoys the following closure 
properties. 

• Proposition:  [Yamakami (2014)] 
1QFA/Qn is closed under Boolean operations (i.e., 
complementation, union, and intersection). 

• NOTE: Such closure properties (except for 
complementation) are not known for 1QFA. 



A Quick Review (again) 

• Here is a quick review of inclusions and 
separations that we have already discussed. 

1QFA/n 

1QFA/Rn 

1QFA/Qn 

1-DLIN/lin 
= REG/n 

1-BPLIN/Rlin 
= REG/Rn 

1QFA(1/2,1/2)/Qn = 1QFA(1/2,1/2)/Rn = 1-PLIN/Rlin = ALL  

CFL/n 

proper inclusion 

no inclusion 

simple inclusion 

CFL/Rn 

1RFA/n 

1RFA/Rn 

1-BQLIN/Qlin 



Open Problems 

• In quantum automata theory, there are still many  
interesting open problems to solve. 
 

• Prove or disprove each of the following statements. 

1. 1QFA/Qn ≠ REG/Rn 
2. 1QFA/Qn ⊈ 1-PLIN/lin 
3. CFL/n ⊈ 1QFA/Qn 
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V. Quantum State Complexity 



Conservative State Complexity 

• Conservative (or traditional) state complexity concerns 
 the minimum number of inner states of M working on all 

inputs x∈Σ* 

• Such conservative state complexity of quantum finite 
automata has been studied for many years. 

• Ambanis and Freivalds (1998) 
 studied Lp = {1n : n|p } for a fixed prime p 
 O(log p) inner states on 1qfa 
 At least p inner states on 1pfa 

• Mereghetti, Palano, and Pighizzini (2001) 
• Freivalds, Ozols, and Mančinska (2009) 
• Yakaryilmaz and Say (2010) 
• Zheng, Gruska, and Qiu (2014) 



Intrinsic State Complexity 

• Intrinsic (or non-traditional) state complexity concerns 
 for each length n∈N, the minimum number of inner 

states of M working on inputs x∈Σn (or x∈Σ≤n )  
 

• Such intrinsic state complexity of quantum finite 
automata has been studied by: 

• Ambainis, Nayak, Ta-Shma, and Vazirani (2002) 
 Each Ln = { w0 | w∈{ 0,1 }*, |w0| ≤ n } (n∈N) requires 
O(n) inner states on 1dfa  
 2Ω(n) inner states on bounded-error 1qfa 



Quantum State Complexity I 

• We define quantum state complexity QSC 
 M = (Q,Σ,δ,q0,Qacc,Qrej) : either 1qfa or 2qfa    
 L : a language over Σ,   n∈N,   Ln = L∩Σn 

 ε : N → [0,1/2)  error bound,  K : amplitude set ⊆C 

• State complexity of M: sc(M) = |Q| (the # of inner states) 

• M recognizes L at n with error ε using K      ⇔ 

1. M has K-amplitudes 
2. ∀x∈Ln [ M accepts x with prob. ≥ 1-ε(n) ] 
3. ∀x∈Σn - Ln [ M rejects x with prob. ≥ 1-ε(n) ] 

 
• No requirement is imposed on the outside of Σn. 



Quantum State Complexity II 

• We define quantum state complexity QSC 
 M = (Q,Σ,δ,q0,Qacc,Qrej) : either 1qfa or 2qfa    
 L : a language over Σ,   n∈N,    
 L≤n = L∩Σ≤n 

• M recognizes L up to n with error ε using K      ⇔ 

1. M has K-amplitudes 
2. ∀x∈L≤n [ M accepts x with prob. ≥ 1-ε(n) ] 
3. ∀x∈Σ≤n - L≤n [ M rejects x with prob. ≥ 1-ε(n) ] 

 
• No requirement is imposed on the outside of Σ≤n. 

L≤n 

n 

L 



Definitions of 1QSC/2QSC 

• Villagra and Yamakami (2015) introduced two state 
complexity measure functions: 1QSCK,ε[L]() and 2QSCK,ε [L](). 

• L : a language over Σ,   n∈N  
• ε : N → [0,1/2)  error bound,  K : amplitude set ⊆C 

 
 

 1QSCK,ε[L](n) = minM { sc(M) : 1qfa M recognizes L at n } 
 2QSCK,ε[L](n) = minM { sc(M) : 2qfa M recognizes L at n } 

 1QSCK,ε[L](≤n) = minM { sc(M) : 1qfa M recognizes L up to n } 
 2QSCK,ε[L](≤n) = minM { sc(M) : 2qfa M recognizes L up to n } 

• Lemma: [Villagra-Yamakami (2015)]  
1QSCK,ε[L](n) ≤ 1QSCK,ε[L](≤n),    2QSCK,ε[L](n) ≤ 2QSCK,ε[L](≤n) 



State Complexity of 2BQFA 

• To emphasize the “bounded error” property, we write 
1BQFA and 2BQFA for 1QFA and 2QFA, respectively. 

• The following properties hold for alphabet Σ with |Σ|≥2. 

• Lemma:  [Villagra-Yamakami (2015)] 
   ∀L∈2BQFA over Σ (|Σ|≥2)  
           ∃ε∈[0,1/2)  s.t.   2QSCC,ε[L](≤n) = O(1) 

 Proof Sketch 
• Since L∈2BQFA implies ∃M:2qfa ∃ε [ M recognizes L 

with prob. ≥1-ε, the traditional state complexity of M 
equals O(1). Therefore, 2QSCC,ε[L](≤n) = O(1). 

QED 



Basic Properties 

• The following properties hold for alphabet Σ with |Σ|≥2. 

• Lemma: [Villagra-Yamakami (2015)] 
1. 1 ≤ 2QSCK,ε[L](n) ≤ |Σ|n + 1 
2. 2QSCK,ε [Lc ](n) = 2QSCK,ε [L](n), where Lc = Σ* − L. 
3. 2QSCC,ε[L](n) ≤ 2QSCR,ε[L](n) ≤ 2×2QSCC,ε[L](n)  

• There is an exponential gap between 1QSCC,ε[L](≤n) and 
1QSCC,ε[L](n). 

• Lemma:  [Villagra-Yamakami (2015)] 
   ∃L∈REG ∀ε∈(0,1/2)  
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Union/Intersection (1QFAs) 

• Recall that 1BQFA is not closed under union or 
intersection. 

• Proposition:  [Villagra-Yamakami (2015)] 
∀ L1,L2  ∀ε (0 ≤ ε(n) < (3-√5)/2)  ∀◉∈{ ∩, ∪ }. 
Let 1QSCC,ε[L1](n) = k1(n) and 1QSCC,ε[L2](n) = k2(n). 

       1QSCC,ε[L1◉L2](n) ≤ 8(n+3)k1(n)k2(n), 

where  
 
 Proof Sketch 
• By a direct simulation of minimal 1qfa’s M1 and M2 for L1 

and L2, respectively. 
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Union/Intersection (2QFAs) 

• It is not yet known whether 2BQFA is closed 
under union or intersection. 

• In other words, we do not know that, for L1,L2 
∈2BQFAC,  

          2QSCC,ε[L1◉L2](n) = O(1)  

    where  ◉∈{ ∩, ∪ }. 

 

• Proposition:  [Villagra-Yamakami (2015)] 
    ∀L1,L2 ∈ 2BQFAA over Σ (|Σ|≥2)  
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L2 
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1BQFA/n and 2BQFA/n (revisited) 

• Recall the advised classes 1BQFA/n and 2BQFA/n. 
• Let L be any language over an alphabet Σ.  

• L∈1BQFA/n  ⇔ 
    ∃M:1qfa ∃ ε∈[0,½)  ∃Γ:advice alphabet  ∃h:N→Γ*  

1. ∀n∈N [ |h(n)| = n ]. 
2. ∀x∈Σn [ x∈L → M accepts [x h(|x|)]T with prob. ≥ 1-ε ]. 
3. ∀x∈Σn [ x∉L → M rejects [x h(|x|)]T with prob. ≥ 1-ε ]. 

• L∈2BQFA/n  ⇔ 
    ∃M:2qfa ∃ ε∈[0,½)  ∃Γ:advice alphabet  ∃h:N→Γ*  

1. ∀n∈N [ |h(n)| = n ]. 
2. ∀x∈Σn [ x∈L → M accepts [x h(|x|)]T with prob. ≥ 1-ε ]. 
3. ∀x∈Σn [ x∉L → M rejects [x h(|x|)]T with prob. ≥ 1-ε ]. 



State Complexity vs. Advice 

• Proposition:  [Villagra-Yamakami (2015)]  
    ∀L∈2BQFA/n over Σ (|Σ|≥2) ∃ε∈[0,1/2) 
                s.t. 2QSCC,ε[L](n) = O(n)  
 

 
• This result can be compared to:  
• (Claim)  ∀L∈2BQFA over Σ (|Σ|≥2) ∃ε∈[0,1/2) 
                       s.t. 2QSCC,ε[L](n) = O(1)  
 

A length-n 
advice string 
is somewhat 
equivalent to 
O(n) extra 
inner states.  



Approximate Matrix Rank 

• L⊆Σ* :  a language over alphabet Σ 

• ML: characteristic matrix for L     ⇔  
            ∀x,y∈Σ*     

 
• ML(n) :  a restriction of ML on strings (x,y) with |xy| ≤ n 

• Fix a quantum algorithm A. 
• Pn = (pxy)x,y with |xy| ≤ n : a matrix  
                s.t.   pxy = acceptance probability of A on input xy 

 
• (Claim)  
    Pn ε-approximates ML(n)   ⇔   A recognizes L≤n  
                                                             with error prob. ≤ ε 

 

1  if  
( , )

0  if  L

xy L
M x y

xy L
∈

=  ∉
This means that 
||Pn-ML(n)||∞ ≤ ε 



State Complexity vs. Approximate Rank 

• The following statements hold. 

• Theorem:  [Villagra-Yamakami (2015)]  
     ∀t: function on N  ∀L  ∀ε,ε’ (0<ε’<ε<1/2),  

 

 

     where  t’(n)=t(n)/(ε-ε’),  
 

• Corollary:  [Villagra-Yamakami (2015)] 
     L ⊈ 2BQFA(t-time),  where t(n) = 2n/6/n2. 
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Open Problems 

• In elementary automata theory, there are still a lot of 
interesting open problems to solve. 
 

• Prove or disprove each of the following statements. 

1. For any two languages L1,L2 ∈2BQFAC,  
                     2QSCC,ε[L1◉L2](n) = O(1)  
           where  ◉∈{ ∩, ∪ }. 





Q & A 
I’m happy to take your question! 



 
 

                                 END 
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