
15th Week 

Synopsis.  
• Quantum Optimization Problems 
• Quantum Interactive Proofs 
• Quantum Zero-Knowledge Proofs 
• Arthur-Merlin/Merlin-Arthur Games 
• Multi-Prover QIP 

Quantum Interactive Proofs and 
Quantum Optimization 

July 12, 2018. 23:59 



Course Schedule: 16 Weeks 

• Week 1:  Basic Computation Models 
• Week 2:  NP-Completeness, Probabilistic and Counting Complexity Classes  
• Week 3:  Space Complexity and the Linear Space Hypothesis 
• Week 4:  Relativizations and Hierarchies 
• Week 5:  Structural Properties by Finite Automata 
• Week 6:  Stype-2 Computability, Multi-Valued Functions, and State Complexity 
• Week 7:  Cryptographic Concepts for  Finite Automata 
• Week 8:  Constraint Satisfaction Problems 
• Week 9:  Combinatorial Optimization Problems 
• Week 10:  Average-Case Complexity 
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YouTube Videos 

• This lecture series is based on numerous papers of T. 
Yamakami. He gave conference talks (in English) and 
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.  

• Use the following keywords to find a playlist of those 
videos.  

• YouTube search keywords: 
    Tomoyuki Yamakami  conference  invited talk playlist 
 

Conference talk video 



Main References by T. Yamakami  I 

✎T. Yamakami. Quantum optimization problems. In  Proc. of 
UMC 2002, LNCS, Vol.2509, pp.300-314 (2002) 

✎T. Yamakami. Multiple quantum zero-knowledge proofs 
with constant space verifiers. An oracle presentation at   
CEQIP 2007 (2007).   

✎H. Kobayashi, K. Matsumoto, and T. Yamakami. Quantum 
Merlin-Arthur proof systems: are multiple Merlins more 
helpful to Arthur? Chicago Journal of Theoretical Computer 
Science, Vol. 2009, Article 3 (2009)  

✎H. Nishimura and T. Yamakami. An application of quantum 
finite automata to interactive proof systems. Journal of 
Computer and System Sciences 75, 255-269 (2009) 

(To be continued) 



Main References by T. Yamakami  II 

✎M. Villagra and T. Yamakami. Quantum and reversible 
verification of proofs using constant space. In Proc. of 
TPNC 2014, LNCS, Vol. 8890,  pp.144-156 (2014) 

✎T. Yamakami. Constant-space quantum interactive proof 
systems against multiple provers. Information Processing 
Letters 114, 611-619 (2014)  

✎H. Nishimura and T. Yamakami. Interactive proofs with 
quantum finite automata. Theoretical Computer Science 
568, 1-18 (2015) 



1. Interactive Proof Systems 
2. A Quantum Model of Nishimura and Yamakami 
3. Single-Prover Quantum Interactive Proofs 
4. Properties of QIPs 

I. Quantum Interactive Proofs 



Interactive Proof Systems  I (revisited) 

• We have already discussed a classical case of 
interactive proof systems in Week 7. 
 

• A language L has an IP system ⇔ there exists a verifier 
V that satisfies the following two conditions: for a certain 
constant ε∈[0,1/2),  
1. For every x∈L, there exists a honest prover P such 

that V accepts a proof from P with probability at least 
1/2+ε; and 

2. For every x∉L, V rejects any proof from any (possibly 
malicious) prover with probability at least 1/2+ε. 

A proof is a piece of information. 



Interactive Proof Systems  II (revisited) 

• A language L has an IP system ⇔ there exists a verifier V that 
satisfies the following two conditions: for a certain ε∈[0,1/2),  

1. For every x∈L, there exists a honest prover P such that V 
accepts a proof from P with probability at least 1/2+ε; and 

2. For every x∉L, V rejects any proof from any (possibly 
malicious) prover with probability at least 1/2+ε. 

Accepts with probability ≥ 1/2+ε 

Rejects with probability ≥ 1/2+ε prover verifier 

Believe me. This is 
a correct proof. 

Let me judge the 
correctness of your proof. 

x∈L 

x∉L 



An Illustration of IP System  (revisited) 

• Dwork-Stockmeyer IP system, based on probabilistic 
finite automata (pfa’s), is illustrated as follows. 

¢ $ x1x2x3…..xn 

An infinite private tape 

¢ $ x1x2x3…..xn 

A communication cell 

An input tape 

A finite control unit 

A pfa verifier A prover 

An input tape 

A tape 
head 

A communication 
alphabet Γ 

An alphabet ∆ 

A tape 
alphabet Σ 



Constant-Space Interactive Proofs (revisited) 

• Dwork and Stockmeyer (1992) considered interactive proof 
(IP) systems with 2-way probabilistic finite automata 
(2pfa’s). 

• Major advantages: we can prove certain separation results 
that are impossible (at least at present) to obtain for 
polynomial-time or logarithmic-space bounded IP systems. 

• Finite automata can be viewed as constant-space Turing 
machines with read-only input tapes and work tapes. 

• IP(〈restrictions〉) = the class of all languages that have IP 
systems satisfying the restrictions given in 〈restrictions〉. 
 IP(2pfa,poly-time) = the class of all languages that have 

IP systems with 2pfa verifiers running in expected 
polynomial time. 



Private Coins vs. Public Coins (revisited) 

• In an IP system, a verifier is considered to choose the 
next transition probabilistically by flipping coins.  

• When the outcomes of such coin flips are hidden from a 
prover, we say that the verifier uses private coins.  

• By contrast, if the verifier reveals the outcomes, the 
verifier is said to use public coins. 

• A public-coin version of IP systems are called Arthur-
Merlin proof systems or Arthur-Merlin games. 

• AM(〈restrictions〉) = the class of all languages that have 
public-coin IP systems satisfying the restrictions given in 
〈restrictions〉 
AM(2pfa) = the class of all languages that have 

public-coin IP systems with 2pfa verifiers 



A Quantum Model of Nishimura and Yamakami 

• Nishimura and Yamakami (2009) presented a quantum 
analogue of IP(2pfa) and IP(2pfa,poly-time) by replacing 
probabilistic finite automata (pfa’s) with Kondacs-
Watrous quantum finite automata (qfa’s). 

• Moreover, Nishimura and Yamakami used quantum 
provers in place of classical provers. 

• What if quantum computation is used for IP systems? 



Single-Prover Quantum Interactive Proofs 

• Nishimura and Yamakami (2009) introduced the notation 
QIP(〈restrictions〉) in a way similar to define 
IP(〈restrictions〉). 
 

• QIP(〈restrictions〉) = the class of all languages that have 
single-prover QIP systems between quantum provers 
and quantum verifiers with restrictions given in 
〈restrictions〉.  
 QIP(1qfa) = a quantum analogue of IP(1pfa) with 

1pfa verifiers 
 QIP(2qfa,poly-time) = similar with 2qa verifiers 

running in expected polynomial time 



Examples of QIP Systems  I 

• Let us construct a simple QIP system for the marked 
even-length palindromes: 

                    Pal# = { x#xR | x {0,1}* }. 
 

 
A verifier works as follows. 



Examples of QIP Systems  II 

• (P,V) protocol for Pal# 

 Let ε∈(0,1/2) be any constant and let d = log2(1/ε). 
 Let s = λ (empty string) and start with q0,s.  
 Repeat the following process  d times. 
 Consider an input x = y#zR 

# 

a 

P (prover) sends yR bit by bit.  

# 

a’ 

# 

a’’ 

# 

a’’ 

1/√2 

1/√2 

q1,s 

q2,s 

Move the head 

Split into two 
configurations 



Examples of QIP Systems  III 

# 

a’ 

# 

a’ 

# 

a 

# 

a 

q1,s 

q2,s 

¢ 

$ 

# 

# 

¢ 

¢ 

The head jumps from $ to ¢ 
because the tape is circular. 

q0,s0 

q0,s1 

Move the head in opposite directions 



Examples of QIP Systems  III 

• Consider the case where x is of the form y#yR. 
 When honest P provides yR to V, V correctly checks x 

is of the from y#yR with probability 1. 
 

• Consider the case where x is of the from y#zR with y ≠ z. 
 No matter what a dishonest P* provides, V mistakenly 

rejects with probability at least 1/2.  
 Since we repeat the process d times, the total 

rejection probability is at most ∑i=1
d 2-i = 1- 2-d ≥ 1- ε.   



Properties of QIPs  I 

• Single-prover QIP systems with 1-qfa verifiers. 

• Theorem:  [Nishimura-Yamakami (2009)] 
     1QFA ⊆ QIP(1qfa) = REG. 

• Since 1QFA ≠ REG, we obtain  1QFA ≠ QIP(1qfa). 

 Proof Sketch: 
• It suffices to show that  QIP(1qfa) = REG. 
• REG ⊆QIP(1qfa) is shown by using the honest prover as 

an eraser to guarantee the reversibility of verifiers. 
• QIP(1qfa)⊆REG requires a notion of 1-tiling complexity. 

QED 



Properties of QIPs  II 

• Single-prover QIP systems with 2-qfa verifiers. 
 

• Theorem:  [Nishimura-Yamakami (2009)] 
1. REG ⊆ QIP(2qfa,poly-time) ⊆ NP. 
2. QIP(2qfa,poly-time) ⊈ AM(2pfa). 

 
 Proof Sketch: 
• (1)  The last inclusion follows from a direct simulation. 
• (2)  This comes from the fact that Pal# ∈ QIP(2qfa,poly-

time) but Pal# ∉ AM(2pfa) [Dwork-Stockmeyer (1992)] 

QED 



Properties of QIPs  III 

• In our single-prover QIP systems, provers behave 
quantumly. 

• When those provers behave classically (i.e., they use 
classical deterministic moves), we use the term “c-
prover”.  

• Let  Center = { x1y | x,y∈{0,1}*, |x|=|y| }. 

• Theorem:  [Nishimura-Yamakami (2015)] 
1. AM(2pfa) ⊆ QIP(2qfa,c-prover). 
2. Center ∈ QIP(2qfa,poly-time,c-prover). 

• (Open Problem)  
    Is it true that Center ∈ QIP(2qfa,poly-time)? 



Open Problems 

• Consider the following issues associated with QIP 
systems. 
 
1. What if we restrict prover’s ability? 
2. Compare between public coins and private coins. 
3. Consider the case of communicating through 

classical channels. 
4. Minimize the number of interactions. 
5. Study the effect of using prior entanglement. 
 



1. Multiple Provers 
2. Multi-Prover Quantum Interactive Proofs 
3. Power of Multi-Provers 
4. Immediate Consequences 
5. Does Shared Entanglement Help? 
6. Polynomially-Shared Entanglement 

II. Multiple-Prover QIP Systems 



Multiple Provers 

• A standard model of IP system uses one single prover 
communicating with a verifier. 

• Instead, Feige and Shamir (1992) considered a multiple-
prover model of weak-verifier IP system. 

• 2IP(2pfa,poly-time) = the language class defined by IP 
systems with 2 provers  

• (Claim) [Feige-Shamir (1992)] 
1. 2IP(2pfa,poly-time) = NEXP  
2. 2IP(2pfa) = RE 

• RE stands for the set of recursively enumerable 
languages. 



Multi-Prover Quantum Interactive Proofs 

• Similar to the classical case, we can consider a QIP 
system with multiple provers who do not communicate 
with each other. 
 

• QMIP(〈restrictions〉) = similar to QIP but with multiple 
provers and restrictions given in 〈restrictions〉.  
QMIP(2qfa,poly-time) = the language class defined by 

QIP systems with multiple provers and a verifier 
running in expected polynomial time 



• We can show the following statements.  
• In what follows, all amplitudes are limited to polynomial-

time approximable amplitudes. 
 

• Theorem:  [Yamakami (2014)] 
1. CFL ⊆ QMIP(1qfa) ⊆ NE 
2. QMIP(2qfa) = RE 
3. QMIP(2qfa,poly-time) = NEXP. 

 
• In the following slides, we will give the proof sketches of 

this theorem. 

Power of Multi-Provers 



• We want to show that QMIP(2qfa) = RE. 
 
• Lemma: 

1. QMIP(2qfa) ⊆ RE. 
2. QMIP(2qfa,poly-time) ⊆ NEXP. 

 
 Proof Sketch:  
• Note that quantum provers can use any amount of 

quantum memory in their computation.  
• The claim follows from the fact that the quantum-prover’s 

private memory can be reduced to polynomial size. 
 

Proof Ideas  I 

QED 



• Next, we want to show that QMIP(2qfa,poly-time) = 
NEXP. 

 
• Lemma: 

1. 2IP(2pfa) ⊆ 2QIP(2qfa). 
2. 2IP(2pfa,poly-time) ⊆ 2QIP(2qfa,poly-time). 

 
 Proof Sketch: 
• By an “almost” straightforward simulation except for the 

use of one prover as an eraser who stores all the 
information discarded from the other provers and the 
verifier.  
 

Proof Ideas  II 

QED 



• The previous theorem leads to the following 
consequences. 

 
• Theorem:  [Yamakami (2014)] 

1. QIP(2qfa,poly-time) ≠ QMIP(2qfa,poly-time). 
2. QIP(1pfa) ≠  QMIP(1qfa). 

 
 Proof Ideas: 
• Recall that QIP(2qfa,poly-time) ⊆ NP. 
• Note that QIP(1qfa) = REG. 

 

Immediate Consequences 

QED 



Does Shared Entanglement Help? 

• Entanglement is an essence of quantum computation. 
• What if multiple provers share entangled qubits?  
• In a one-way communication model, such entanglement 

does not help. How about two-way communication 
model? 

entanglement 

Prover 1 Prover 2 Prover 3 Prover 4 



• With a polynomial amount of shared entanglement, we 
expand our multiple-prover QIP. 

• We use the new restriction: 
• poly-shared = certain polynomially-many entangled 

qubits being shared among multiple provers  

• QMIP(2qfa,poly-shared,poly-time) = the language class 
by expected-polynomial-time QMIP systems whose 
provers share polynomially-many entangled qubits 

• There is an unsettling question of how useful shared 
entanglement really is in a various setting of quantum 
computation. 

• (Open Problem)  Does QMIP(2qfa,poly-time) coincide 
with QMIP(2qfa,poly-shared,poly-time)? 

Polynomially Shared Entanglement 



1. Intuitive Explanation 
2. Returning to Formalism 
3. Basic Concepts and Notation 
4. Zero-Knowledge Proofs 
5. Quantum Zero-Knowledge Proofs 
6. Shared Entanglement 

III. Zero-Knowledge Proofs 

(*) This section is based on an oracle presentation at CEQIP 2007. 



Intuitive Explanation 

• Roughly, a zero-knowledge property is about a technical way to 
convince people that your claim is true without telling it. 

• Is this a magic or hoax? What do ordinary people say? 

Actually, I 
found its 
proof last 

night. 

I cannot 
believe you. 

Show me 
your proof. 

I’d really like 
to check it. 

I don’t want to 
show my proof. 
Are you stealing 

it or not? 

Of course not! 
How dare you 
are! How can I 

believe you if you 
don’t show me 

your proof? 

Do you know 
the famous 

open problem 
called the 

P=NP problem? 

Yes. It has been 
open for thirty 

years or so. If you 
solve it, you can 

claim a prize 
money.  

Why don’t we 
use a ZKP 
protocol? 



Returning to Formalism 

• Let’s go back to the formal definition of zero-knowledge 
proofs. 

• We are focused on a restricted model with constant-
space verifiers.  

• A core framework of our zero-knowledge proof system is 
the same as our interactive proof system. 
 

• How can we formulate the zero-knowledge property 
using finite automata? 

• Apparently, we cannot take a standard definition of zero-
knowledge property for polynomial-time verifiers. 



Basic Concepts and Notation 

• A partial problem is a pair (A,B) of sets over a common 
alphabet such that A∩B=∅. 

• A MIP protocol or a machine M recognizes (A,B) with 
error probability ε  ⇔  for any input x,  

1. if x∈A, M accepts x with probability ≥ 1 - ε, and 
2. if x∈B, M rejects x with probability ≥ 1 - ε.  

A B Σ* 

M accepts  M rejects  



Zero-Knowledge Proofs 

• Dwork and Stockmeyer (1992, in another paper) defined 
weak-verifier zero-knowledge proof (ZKP) systems.  

• Zero-knowledge property: any (untrusted) verifier can learn 
nothing more than the validity of the outcome from the 
interaction with a honest prover. 

• Dwork and Stockmeyer used the (recognition) zero-
knowledge property, explained below.  

• Recognition zero-knowledge property: 
A k-IP system (P1,P2,…,Pk,V) satisfies the (recognition) 
zero-knowledge for language L over class C of verifiers  ⇔ 
for every partial problem (A,B) with A∪B⊆L, every verifier 
V*∈C, and every constant ε<1/2, if (P1,P2,…,Pk,V*) 
recognizes (A,B) with error probability at most ε, then there 
exists a constant ε’<1/2 and a 2pfa M such that M 
recognizes (A,B) with error probability at most ε’. 



Recognition Zero-Knowledge Property 

L 

A B 

(P1,P2,V*) recognizes (A,B) 
with error probability < ε, 
where V* is a cheater. 

A B 

A 2pfa M recognizes (A,B) 
with error probability < ε’ 
without any help of (P1,P2). 

M accepts A. M rejects B. 

Σ* 

Every information V* can 
obtain from (P1,P2) can be 
obtained without (P1,P2). 

V* accepts A with 
help of (P1,P2). 

V* rejects B with 
help of (P1,P2). 

Assuming that provers 
are all honest and 
helping a verifier. 



(Classical) ZKP Notation 

• In the classical case, Dwork and Stockmeyer (1992) 
introduced the following notation. 

• ZKP(〈restrictions〉) = the class of all languages that have 
IP systems satisfying the recognition zero-knowledge 
property for a verifier and a prover with restrictions given 
in 〈restrictions〉. 

• For example: 
ZKP(2pfa,poly-time) = the class of all languages that 

have ZKP systems with 2pfa verifiers running in 
expected polynomial time. 



Quantum Zero-Knowledge Proofs 

• Earlier, Watrous (2002) and Kobayashi (2003) studied 
polynomial-time quantum zero-knowledge proof (QZKP) 
systems. 

• Here, we discuss a quantum analogue of automata-
based ZKP(2pfa,poly-time) with multiple provers. 

multiple provers a verifier 



QMZKP Notation 

• QMZKP(〈restrictions〉) = the class of all languages that 
have QZKP (〈restrictions〉) systems with the restrictions 
given in 〈restrictions〉. 
 

• For example: 
QMZKP(2qfa,poly-time) = the language class by 

QMIP(2qfa,poly-time) systems that satisfy the 
recognition zero-knowledge property. 

QMZKP(2qfa,poly-shared,poly-time) = the language 
class by QMIP(2qfa,poly-shared,poly-time) systems 
with polynomially-many shared entangled qubits 



QMIP vs. QMZKP 

• Yamakami (2007) obtained the following statement. 
 

• Theorem:  [Yamakami (2007)] 
QMIP(2qfa,poly-shared,poly-time) ⊆ QMZKP(2qfa,poly-
shared,poly-time). 



1. Quantum Merlin-Arthur Proof Systems 
2. Polynomial-Time QMA 
3. Power of QMA Systems 

IV. Polynomial-Time QMA Proof Systems 



Quantum Merlin-Arthur Proof Systems 

• Kobayashi, Matsumoto, and Yamakami (2009) studied 
polynomial-time QMA proof systems. 

• Here, we take quantum Turing machines (QTMs) as 
verifiers. 

• A language L has a (k,c,s)-quantum Merlin-Arthur proof 
(QMA) system (P,V)  ⇔  there exists a polynomial-time 
quantum verifier (i.e., QTM) V s.t., for every input x, 
 x∈L →  there exists a set of k(|x|) quantum proofs 

that makes V accept x with prob ≥ c(|x|), and  
 x∉L → for any set of k(|x|) quantum proofs,  V accept 

x with prob ≤ s(|x|). 



Polynomial-Time QMA 

• A language L is in QMA(k,c,s)   ⇔  L has a (k,c,s)-
quantum Merlin-Arthur proof (QMA)  system 
 

• Theorem:  [Kobayashi-Matsumoto-Yamakami (2009)] 
    The following statements are equivalent. 

1. QMA(k,c,s) = QMA(2,2/3,1/3)  for any k ≥2 and any 
two-sided bounded-error completeness-soundness 
pair (c,s). 

2. QMA(2,c,s) = QMA(2,2/3,1/3)  for any two-sided 
bounded-error completeness-soundness pair (c,s). 



Power of QMA Systems 

• Here, we present two results obtained by Kobayashi, 
Matsumoto, and Yamakami (2009). 
 

• Theorem:  [Kobayashi-Matsumoto-Yamakami (2009)] 
For any p-bounded function k and any function c : 
N+→(0,1],  it follows that  QMA(k,c,0) = QMA(1,c,0).  
 

• Theorem:  [Kobayashi-Matsumoto-Yamakami (2009)] 
     NQP = ⋃c QMA(1,c,0),  
     where c : N+→ (0,1]  be any function. 
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V. Proof-Verification Processes 



Proof-Verification for Finite Automata 

¢ $ 

q 

Head direction 

End-marker End-marker A read-only tape 

Inner state 

φ 

x 
φ 

Prover 

• Verifier is now uses one-way finite automata. 
 

• Merlin-Arthur Proof-Verification Condition: 
 x∈L →  ∃ φ:proof [ V accepts [x,φ]T ] 
 x∉L →  ∀ φ:proof [ V rejects [x,φ]T ] 

proof 
Verifier 



Classical Merlin-Arthur Proof Systems 

• Our proof-verification systems are called Merlin-Arthur 
games. 
 

• Notationally, we write: 
MA(fa) = languages L s.t. there is a Merlin-Arthur proof 
system with fa for L 

 
• If we use determinsitic advice, we write 

MA(fa)/n = languages L s.t. there is a Merlin-Arthur 
proof system with fa with advice for L 

 



Correspondence to Nondeterminism 

• Proof-verification process naturally corresponds to 
“nondeterminism.” 

• For example, we can prove that  MA(1dfa) = 1NFA. 
• However, it is known that 1DFA = 1NFA = REG. 
• Therefore, we obtain the following conclusion. 

• (Claim)  MA(1dfa) = REG. 

• Similarly, by adding advice, we can show that 
 MA(1dfa)/n = 1NFA/n. 
 1DFA/n = 1NFA/n = REG/n. 



Reversible Finite Automata (revisited) 

A one-way (deterministic) reversible finite 
automaton (or 1rfa) is defined as follows: 
M = (Q,Σ,δ,q0,Qacc,Qrej) Σ = input alphabet 

Reversibility condition:  
            ∀q∈Q ∀σ∈Σ  ∃ at most one q’∈Q s.t. δ(q’,σ) = q.  

q’ 

q 

q” 

σ 

σ 

Property: If there is a computation 
path from q0 to q∈Qacc (or Qrej), 
such a path should be unique. 

unique path 



Nondeterminism for Reversible Finite Automata 

• Proof-verification procedures could define non-
determinism.  

• Hence, MA(1rfa) could define one-way nondeterministic 
reversible finite automata (or 1nrfa’s) 

• A language L is in MA(1rfa)  ⇔    
    ∃M = (Q,Σ,δ,q0,Qacc,Qrej): 1rfa  s.t., for any x, 

1. x∈L →  ∃ s∈Σ|x| [ M accepts [x,s]T ] 
2. x∉L →  ∀s∈Σ|x| [ M rejects [x,s]T ] 



Determinism vs. Nondeterminism 

• By definitions, 1RFA ⊆ MA(1rfa). 
 

• However, it is not clear if “determinism” and 
“nondeterminism” coincide for reversible finite automata. 

• In other words, 
          1RFA = MA(1rfa) ? 
• This is because a standard proof for “1DFA = 1NFA” 

does not seem to work for reversible finite automata. 
 



Randomized Algorithms 

• A one-way probabilistic finite automata (or 1pfa) is a 
randomized version of a 1dfa.  

• Recall the bounded-error requirement: 
     There exists a constant ε with 0≤ε<1/2 s.t. 

 x∈L → M accepts x with probability ≥ 1-ε; 
 x∉L → M rejects x with probability ≥ 1-ε. 

 
• L ∈ MA(1pfa)  ⇔ ∃M:1pfa ∃ε∈[0,1/2) s.t., for any x, 

 x∈L → ∃φ: proof [ M accepts x with prob. ≥ 1-ε ]; 
 x∉L → ∀φ: proof [ M rejects x with prob. ≥ 1-ε]. 



Properties of MA(1pfa) 

• MA(1pfa) corresponds to the notion of finite automata 
with nondeterminsitic and probabilistic moves. 
 

• (Claim)  MA(1pfa) = REG. [Condon et al. (1997)] 
 

 
 

• Next, we will expand this MA(1pfa) to a new class 
MA(1qfa) defined with 1-way quantum finite automata. 



Proof-Verification for Quantum Finite Automata 

• Let us consider proof-verification process for 1qfa’s. 
 

• We define MA(1qfa) as follows. 
 

•  A language L is in MA(1qfa)  ⇔  
      ∃M:1qfa ∃ε∈[0,1/2) s.t., for any x, 

 x∈L → ∃|φ〉: proof [ M accepts x with prob. ≥ 1-ε ]; 
 x∉L → ∀|φ〉: proof [ M rejects x with prob. ≥ 1-ε], 

      where |φ〉 is a quantum state over basis states Σ|x|.  



MA(1rfa) and MA(1qfa) 

• Lemma:  [Villagra-Yamakami (2015)] 
     MA(1rfa) ≠ 1QFA. 

• In other words, “nondeterminism” is not powerful enough 
for 1rfa’s to simulate 1qfa’s. 
 

• Recall from Week 3 that 1QFA/n ≠ REG/n.  
• We can obtain the following separation result. 

• Lemma:  [Villagra-Yamakami (2015)] 
     MA(1qfa)/n ≠ REG/n. 

 
 



1QFA vs. MA(1qfa) 

• It is clear that 1QFA ⊆ MA(1qfa). 
 

• Lemma:  [Villagra-Yamakami (2015)] 
     MA(1qfa) ⊆ REG. 

 
 Proof Sketch: 
• By applying the result QIP(1qfa) = REG [Nishimura-

Yamakami (2009)], we obtain MA(1qfa) ⊆ REG. 
 



Class Separations 

• Villagra and Yamakami (2015) showed the 
following class separations among the 
aforementioned  language families. 

MA(1rfa)/n 

1QFA/n 

MA(1dfa) = MA(1pfa)/n 
= REG/n 

ALL  

proper inclusion 

inclusion 
1RFA/n 

MA(1qfa)/n 

no inclusion 

• (Open Problem) Determine whether each inclusion is proper.  
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4. Quantum Optimization of Quantum Solutions 
5. Complexity Class QOP 
6. Relationships 

VI. Quantum Optimization Problems 



• Optimization problems have been important problems in 
theory and in practice. 

• Krentel (1988) defined OptP, which is an optimization 
class consisting of optimal cost functions for NP 
optimization problems.  

• Given a function class F, we want to introduce a general 
notion of OptF.  

Generalization of Krentel’s Framework 



• Here, we consider only partial functions from Σ*×Σ*to R. 
• Let F be any set of such partial functions.  
• Let F be any set of such partial functions.  

• A partial function f : Σ*×Σ*→ R is in OptF  ⇔  there are a 
polynomial p and a maximization problem Π=(Σ*,solΠ,g)  
with Σ* as the set of instances and g as a partial cost 
function chosen from F satisfying that 
1. solΠ(x) ⊆ Σp(|x|)  for all x, and  
2. f is the maximal cost function for Π, namely, 
          f(x) = max{ g(x,s) | (x,s) ∈ dom(g), s ∈ Σp(|x|)  } 
      if g(x,s) exists. 

Function Class OptF  I 



• By taking  
       FP, FPSPACE, #P, #QP, and FBQP   as F,  
    we obtain  
       OptFP, OptFPSPACE, Opt#P, Opt#QP, and OptFBQP. 

• Note that OptFP coincides with Krentel’s OptP. 
 

• (Claim)   OptFPSPACE = FPSPACE 
 

• (Open Problem)  Is  OptFP = FP?  

Function Class OptF  II 



• We see a simple example of elements of Opt#QP. 
• Fix a universal QTM, say, U. 

• Maximum QTM Problem (MAXQTM) 
 instance: 〈M,x,1t,1m〉 with a QTM M, t∈N, and m∈N+ 

solution: maximal acceptance probability over all 
strings  s∈Σ|x| of U on input 〈M,xs,1t,1m〉 

 
• (Claim)   MAXQTM ∈ Opt#QP 

Examples: MAXQTM 



• Yamakami (2002) showed the following properties of 
OptF. 

 

• Lemma:  OptP∪#P ⊆ Opt#P ⊆ FPSPACE 

• Lemma: 

• Proposition: 

• Theorem:   
     NPPP = EQP  ⇒ Opt#QP = #QP  ⇒ NPPP = WQP. 

Properties of OptF  I 

# # #
PPNPQP Opt QP QP⊆ ⊆

2 ( )p BQPFBQP OptFBQP FPΣ⊆ ⊆



• Lemma:  [Yamakami (2002)] 
    OptFBQP = FBQP  ⇔  NPBQP = BQP. 

 Proof Sketch: 
• If NPBQP = BQP, then Σ2

p(BQP)  = BQP.  
• Thus, OptFBQP ⊆ FPΣp2(BQP) ⊆ FPBQP = FBQP. 

Properties of OptF  II 

QED 



• Let F be a set of partial functions from Σ* × Φ∞  to R. 

• A partial function f : Σ* → R is in QoptF  ⇔  there are a 
polynomial p and a maximization problem Π with Σ* and 
g as a partial cost function in F s.t., for any instance 
x∈Σ*,  

             f(x) = sup{ g(x,|φ〉) | (x,|φ〉)∈dom(g), |φ〉∈Φp(|x|)  } 
    if such an g(x,|φ〉) exists. Otherwise, f(x) is undefined. 

• A set of quantum solutions of x for Π is  
            solg(x) = {|φ〉∈Φp(|x|) | (x,|φ〉)∈dom(g) }. 

 
 

Quantum Optimization of Quantum Solutions 



• A language L is in QOP (quantum optimization 
polynomial time)  ⇔  there exist two functions f,g∈#QP 
and a function h∈FP (called a selection function) s.t., for 
any x, 

            x∈L  ↔  2|h(x)| f(x) > 2|h(x)| g(x).  
 

• Moreover, we define 
       QOPˆ = { L ∈ QOP | ∀x  [ 2|h(x)| f(x) > 2|h(x)| g(x) ] }.  

 
• (Claim)   QOPˆ ⊆ QOP 

 

Complexity Class QOP 



• We use the notion  «e defined by: 
        F «e G  ⇔  ∀f∈F ∀p:polynomial ∃g∈F s.t.  
                                           ∀x  |f(x) - g(x)| ≤ 2-p(|x|). 

 
• Yamakami (2002) showed the following relationships. 

• Theorem: 
1. EQP = QOP  →  Opt#QP «e #QP. 
2. Qopt#QP «e #QP  →  QOPˆ = PP. 
3. Opt#QP ⊆ Qopt#QP «e #QPQOP «e FPSPACE. 

 

Relationships 





Q & A 
I’m happy to take your question! 



 
 

                                 END 
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