
15th Week

Synopsis.
• Quantum Optimization Problems
• Quantum Interactive Proofs
• Quantum Zero-Knowledge Proofs
• Arthur-Merlin/Merlin-Arthur Games
• Multi-Prover QIP

Quantum Interactive Proofs and
Quantum Optimization

July 12, 2018. 23:59

Course Schedule: 16 Weeks

• Week 1: Basic Computation Models
• Week 2: NP-Completeness, Probabilistic and Counting Complexity Classes
• Week 3: Space Complexity and the Linear Space Hypothesis
• Week 4: Relativizations and Hierarchies
• Week 5: Structural Properties by Finite Automata
• Week 6: Stype-2 Computability, Multi-Valued Functions, and State Complexity
• Week 7: Cryptographic Concepts for Finite Automata
• Week 8: Constraint Satisfaction Problems
• Week 9: Combinatorial Optimization Problems
• Week 10: Average-Case Complexity
• Week 11: Basics of Quantum Information
• Week 12: BQP, NQP, Quantum NP, and Quantum Finite Automata
• Week 13: Quantum State Complexity and Advice
• Week 14: Quantum Cryptographic Systems and Quantum Functions
• Week 15: Quantum Interactive Proofs and Quantum Optimization
• Week 16: Final Evaluation Day (no lecture)

Subject to Change

YouTube Videos

• This lecture series is based on numerous papers of T.
Yamakami. He gave conference talks (in English) and
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.

• Use the following keywords to find a playlist of those
videos.

• YouTube search keywords:
 Tomoyuki Yamakami conference invited talk playlist

Conference talk video

Main References by T. Yamakami I

✎T. Yamakami. Quantum optimization problems. In Proc. of
UMC 2002, LNCS, Vol.2509, pp.300-314 (2002)

✎T. Yamakami. Multiple quantum zero-knowledge proofs
with constant space verifiers. An oracle presentation at
CEQIP 2007 (2007).

✎H. Kobayashi, K. Matsumoto, and T. Yamakami. Quantum
Merlin-Arthur proof systems: are multiple Merlins more
helpful to Arthur? Chicago Journal of Theoretical Computer
Science, Vol. 2009, Article 3 (2009)

✎H. Nishimura and T. Yamakami. An application of quantum
finite automata to interactive proof systems. Journal of
Computer and System Sciences 75, 255-269 (2009)

(To be continued)

Main References by T. Yamakami II

✎M. Villagra and T. Yamakami. Quantum and reversible
verification of proofs using constant space. In Proc. of
TPNC 2014, LNCS, Vol. 8890, pp.144-156 (2014)

✎T. Yamakami. Constant-space quantum interactive proof
systems against multiple provers. Information Processing
Letters 114, 611-619 (2014)

✎H. Nishimura and T. Yamakami. Interactive proofs with
quantum finite automata. Theoretical Computer Science
568, 1-18 (2015)

1. Interactive Proof Systems
2. A Quantum Model of Nishimura and Yamakami
3. Single-Prover Quantum Interactive Proofs
4. Properties of QIPs

I. Quantum Interactive Proofs

Interactive Proof Systems I (revisited)

• We have already discussed a classical case of
interactive proof systems in Week 7.

• A language L has an IP system ⇔ there exists a verifier
V that satisfies the following two conditions: for a certain
constant ε∈[0,1/2),
1. For every x∈L, there exists a honest prover P such

that V accepts a proof from P with probability at least
1/2+ε; and

2. For every x∉L, V rejects any proof from any (possibly
malicious) prover with probability at least 1/2+ε.

A proof is a piece of information.

Interactive Proof Systems II (revisited)

• A language L has an IP system ⇔ there exists a verifier V that
satisfies the following two conditions: for a certain ε∈[0,1/2),

1. For every x∈L, there exists a honest prover P such that V
accepts a proof from P with probability at least 1/2+ε; and

2. For every x∉L, V rejects any proof from any (possibly
malicious) prover with probability at least 1/2+ε.

Accepts with probability ≥ 1/2+ε

Rejects with probability ≥ 1/2+ε prover verifier

Believe me. This is
a correct proof.

Let me judge the
correctness of your proof.

x∈L

x∉L

An Illustration of IP System (revisited)

• Dwork-Stockmeyer IP system, based on probabilistic
finite automata (pfa’s), is illustrated as follows.

¢ $ x1x2x3…..xn

An infinite private tape

¢ $ x1x2x3…..xn

A communication cell

An input tape

A finite control unit

A pfa verifier A prover

An input tape

A tape
head

A communication
alphabet Γ

An alphabet ∆

A tape
alphabet Σ

Constant-Space Interactive Proofs (revisited)

• Dwork and Stockmeyer (1992) considered interactive proof
(IP) systems with 2-way probabilistic finite automata
(2pfa’s).

• Major advantages: we can prove certain separation results
that are impossible (at least at present) to obtain for
polynomial-time or logarithmic-space bounded IP systems.

• Finite automata can be viewed as constant-space Turing
machines with read-only input tapes and work tapes.

• IP(〈restrictions〉) = the class of all languages that have IP
systems satisfying the restrictions given in 〈restrictions〉.
 IP(2pfa,poly-time) = the class of all languages that have

IP systems with 2pfa verifiers running in expected
polynomial time.

Private Coins vs. Public Coins (revisited)

• In an IP system, a verifier is considered to choose the
next transition probabilistically by flipping coins.

• When the outcomes of such coin flips are hidden from a
prover, we say that the verifier uses private coins.

• By contrast, if the verifier reveals the outcomes, the
verifier is said to use public coins.

• A public-coin version of IP systems are called Arthur-
Merlin proof systems or Arthur-Merlin games.

• AM(〈restrictions〉) = the class of all languages that have
public-coin IP systems satisfying the restrictions given in
〈restrictions〉
AM(2pfa) = the class of all languages that have

public-coin IP systems with 2pfa verifiers

A Quantum Model of Nishimura and Yamakami

• Nishimura and Yamakami (2009) presented a quantum
analogue of IP(2pfa) and IP(2pfa,poly-time) by replacing
probabilistic finite automata (pfa’s) with Kondacs-
Watrous quantum finite automata (qfa’s).

• Moreover, Nishimura and Yamakami used quantum
provers in place of classical provers.

• What if quantum computation is used for IP systems?

Single-Prover Quantum Interactive Proofs

• Nishimura and Yamakami (2009) introduced the notation
QIP(〈restrictions〉) in a way similar to define
IP(〈restrictions〉).

• QIP(〈restrictions〉) = the class of all languages that have
single-prover QIP systems between quantum provers
and quantum verifiers with restrictions given in
〈restrictions〉.
 QIP(1qfa) = a quantum analogue of IP(1pfa) with

1pfa verifiers
 QIP(2qfa,poly-time) = similar with 2qa verifiers

running in expected polynomial time

Examples of QIP Systems I

• Let us construct a simple QIP system for the marked
even-length palindromes:

 Pal# = { x#xR | x {0,1}* }.

A verifier works as follows.

Examples of QIP Systems II

• (P,V) protocol for Pal#

 Let ε∈(0,1/2) be any constant and let d = log2(1/ε).
 Let s = λ (empty string) and start with q0,s.
 Repeat the following process d times.
 Consider an input x = y#zR

a

P (prover) sends yR bit by bit.

a’

a’’

a’’

1/√2

1/√2

q1,s

q2,s

Move the head

Split into two
configurations

Examples of QIP Systems III

a’

a’

a

a

q1,s

q2,s

¢

$

¢

¢

The head jumps from $ to ¢
because the tape is circular.

q0,s0

q0,s1

Move the head in opposite directions

Examples of QIP Systems III

• Consider the case where x is of the form y#yR.
 When honest P provides yR to V, V correctly checks x

is of the from y#yR with probability 1.

• Consider the case where x is of the from y#zR with y ≠ z.
 No matter what a dishonest P* provides, V mistakenly

rejects with probability at least 1/2.
 Since we repeat the process d times, the total

rejection probability is at most ∑i=1
d 2-i = 1- 2-d ≥ 1- ε.

Properties of QIPs I

• Single-prover QIP systems with 1-qfa verifiers.

• Theorem: [Nishimura-Yamakami (2009)]
 1QFA ⊆ QIP(1qfa) = REG.

• Since 1QFA ≠ REG, we obtain 1QFA ≠ QIP(1qfa).

 Proof Sketch:
• It suffices to show that QIP(1qfa) = REG.
• REG ⊆QIP(1qfa) is shown by using the honest prover as

an eraser to guarantee the reversibility of verifiers.
• QIP(1qfa)⊆REG requires a notion of 1-tiling complexity.

QED

Properties of QIPs II

• Single-prover QIP systems with 2-qfa verifiers.

• Theorem: [Nishimura-Yamakami (2009)]
1. REG ⊆ QIP(2qfa,poly-time) ⊆ NP.
2. QIP(2qfa,poly-time) ⊈ AM(2pfa).

 Proof Sketch:
• (1) The last inclusion follows from a direct simulation.
• (2) This comes from the fact that Pal# ∈ QIP(2qfa,poly-

time) but Pal# ∉ AM(2pfa) [Dwork-Stockmeyer (1992)]

QED

Properties of QIPs III

• In our single-prover QIP systems, provers behave
quantumly.

• When those provers behave classically (i.e., they use
classical deterministic moves), we use the term “c-
prover”.

• Let Center = { x1y | x,y∈{0,1}*, |x|=|y| }.

• Theorem: [Nishimura-Yamakami (2015)]
1. AM(2pfa) ⊆ QIP(2qfa,c-prover).
2. Center ∈ QIP(2qfa,poly-time,c-prover).

• (Open Problem)
 Is it true that Center ∈ QIP(2qfa,poly-time)?

Open Problems

• Consider the following issues associated with QIP
systems.

1. What if we restrict prover’s ability?
2. Compare between public coins and private coins.
3. Consider the case of communicating through

classical channels.
4. Minimize the number of interactions.
5. Study the effect of using prior entanglement.

1. Multiple Provers
2. Multi-Prover Quantum Interactive Proofs
3. Power of Multi-Provers
4. Immediate Consequences
5. Does Shared Entanglement Help?
6. Polynomially-Shared Entanglement

II. Multiple-Prover QIP Systems

Multiple Provers

• A standard model of IP system uses one single prover
communicating with a verifier.

• Instead, Feige and Shamir (1992) considered a multiple-
prover model of weak-verifier IP system.

• 2IP(2pfa,poly-time) = the language class defined by IP
systems with 2 provers

• (Claim) [Feige-Shamir (1992)]
1. 2IP(2pfa,poly-time) = NEXP
2. 2IP(2pfa) = RE

• RE stands for the set of recursively enumerable
languages.

Multi-Prover Quantum Interactive Proofs

• Similar to the classical case, we can consider a QIP
system with multiple provers who do not communicate
with each other.

• QMIP(〈restrictions〉) = similar to QIP but with multiple
provers and restrictions given in 〈restrictions〉.
QMIP(2qfa,poly-time) = the language class defined by

QIP systems with multiple provers and a verifier
running in expected polynomial time

• We can show the following statements.
• In what follows, all amplitudes are limited to polynomial-

time approximable amplitudes.

• Theorem: [Yamakami (2014)]
1. CFL ⊆ QMIP(1qfa) ⊆ NE
2. QMIP(2qfa) = RE
3. QMIP(2qfa,poly-time) = NEXP.

• In the following slides, we will give the proof sketches of

this theorem.

Power of Multi-Provers

• We want to show that QMIP(2qfa) = RE.

• Lemma:

1. QMIP(2qfa) ⊆ RE.
2. QMIP(2qfa,poly-time) ⊆ NEXP.

 Proof Sketch:
• Note that quantum provers can use any amount of

quantum memory in their computation.
• The claim follows from the fact that the quantum-prover’s

private memory can be reduced to polynomial size.

Proof Ideas I

QED

• Next, we want to show that QMIP(2qfa,poly-time) =
NEXP.

• Lemma:

1. 2IP(2pfa) ⊆ 2QIP(2qfa).
2. 2IP(2pfa,poly-time) ⊆ 2QIP(2qfa,poly-time).

 Proof Sketch:
• By an “almost” straightforward simulation except for the

use of one prover as an eraser who stores all the
information discarded from the other provers and the
verifier.

Proof Ideas II

QED

• The previous theorem leads to the following
consequences.

• Theorem: [Yamakami (2014)]

1. QIP(2qfa,poly-time) ≠ QMIP(2qfa,poly-time).
2. QIP(1pfa) ≠ QMIP(1qfa).

 Proof Ideas:
• Recall that QIP(2qfa,poly-time) ⊆ NP.
• Note that QIP(1qfa) = REG.

Immediate Consequences

QED

Does Shared Entanglement Help?

• Entanglement is an essence of quantum computation.
• What if multiple provers share entangled qubits?
• In a one-way communication model, such entanglement

does not help. How about two-way communication
model?

entanglement

Prover 1 Prover 2 Prover 3 Prover 4

• With a polynomial amount of shared entanglement, we
expand our multiple-prover QIP.

• We use the new restriction:
• poly-shared = certain polynomially-many entangled

qubits being shared among multiple provers

• QMIP(2qfa,poly-shared,poly-time) = the language class
by expected-polynomial-time QMIP systems whose
provers share polynomially-many entangled qubits

• There is an unsettling question of how useful shared
entanglement really is in a various setting of quantum
computation.

• (Open Problem) Does QMIP(2qfa,poly-time) coincide
with QMIP(2qfa,poly-shared,poly-time)?

Polynomially Shared Entanglement

1. Intuitive Explanation
2. Returning to Formalism
3. Basic Concepts and Notation
4. Zero-Knowledge Proofs
5. Quantum Zero-Knowledge Proofs
6. Shared Entanglement

III. Zero-Knowledge Proofs

(*) This section is based on an oracle presentation at CEQIP 2007.

Intuitive Explanation

• Roughly, a zero-knowledge property is about a technical way to
convince people that your claim is true without telling it.

• Is this a magic or hoax? What do ordinary people say?

Actually, I
found its
proof last

night.

I cannot
believe you.

Show me
your proof.

I’d really like
to check it.

I don’t want to
show my proof.
Are you stealing

it or not?

Of course not!
How dare you
are! How can I

believe you if you
don’t show me

your proof?

Do you know
the famous

open problem
called the

P=NP problem?

Yes. It has been
open for thirty

years or so. If you
solve it, you can

claim a prize
money.

Why don’t we
use a ZKP
protocol?

Returning to Formalism

• Let’s go back to the formal definition of zero-knowledge
proofs.

• We are focused on a restricted model with constant-
space verifiers.

• A core framework of our zero-knowledge proof system is
the same as our interactive proof system.

• How can we formulate the zero-knowledge property
using finite automata?

• Apparently, we cannot take a standard definition of zero-
knowledge property for polynomial-time verifiers.

Basic Concepts and Notation

• A partial problem is a pair (A,B) of sets over a common
alphabet such that A∩B=∅.

• A MIP protocol or a machine M recognizes (A,B) with
error probability ε ⇔ for any input x,

1. if x∈A, M accepts x with probability ≥ 1 - ε, and
2. if x∈B, M rejects x with probability ≥ 1 - ε.

A B Σ*

M accepts M rejects

Zero-Knowledge Proofs

• Dwork and Stockmeyer (1992, in another paper) defined
weak-verifier zero-knowledge proof (ZKP) systems.

• Zero-knowledge property: any (untrusted) verifier can learn
nothing more than the validity of the outcome from the
interaction with a honest prover.

• Dwork and Stockmeyer used the (recognition) zero-
knowledge property, explained below.

• Recognition zero-knowledge property:
A k-IP system (P1,P2,…,Pk,V) satisfies the (recognition)
zero-knowledge for language L over class C of verifiers ⇔
for every partial problem (A,B) with A∪B⊆L, every verifier
V*∈C, and every constant ε<1/2, if (P1,P2,…,Pk,V*)
recognizes (A,B) with error probability at most ε, then there
exists a constant ε’<1/2 and a 2pfa M such that M
recognizes (A,B) with error probability at most ε’.

Recognition Zero-Knowledge Property

L

A B

(P1,P2,V*) recognizes (A,B)
with error probability < ε,
where V* is a cheater.

A B

A 2pfa M recognizes (A,B)
with error probability < ε’
without any help of (P1,P2).

M accepts A. M rejects B.

Σ*

Every information V* can
obtain from (P1,P2) can be
obtained without (P1,P2).

V* accepts A with
help of (P1,P2).

V* rejects B with
help of (P1,P2).

Assuming that provers
are all honest and
helping a verifier.

(Classical) ZKP Notation

• In the classical case, Dwork and Stockmeyer (1992)
introduced the following notation.

• ZKP(〈restrictions〉) = the class of all languages that have
IP systems satisfying the recognition zero-knowledge
property for a verifier and a prover with restrictions given
in 〈restrictions〉.

• For example:
ZKP(2pfa,poly-time) = the class of all languages that

have ZKP systems with 2pfa verifiers running in
expected polynomial time.

Quantum Zero-Knowledge Proofs

• Earlier, Watrous (2002) and Kobayashi (2003) studied
polynomial-time quantum zero-knowledge proof (QZKP)
systems.

• Here, we discuss a quantum analogue of automata-
based ZKP(2pfa,poly-time) with multiple provers.

multiple provers a verifier

QMZKP Notation

• QMZKP(〈restrictions〉) = the class of all languages that
have QZKP (〈restrictions〉) systems with the restrictions
given in 〈restrictions〉.

• For example:
QMZKP(2qfa,poly-time) = the language class by

QMIP(2qfa,poly-time) systems that satisfy the
recognition zero-knowledge property.

QMZKP(2qfa,poly-shared,poly-time) = the language
class by QMIP(2qfa,poly-shared,poly-time) systems
with polynomially-many shared entangled qubits

QMIP vs. QMZKP

• Yamakami (2007) obtained the following statement.

• Theorem: [Yamakami (2007)]
QMIP(2qfa,poly-shared,poly-time) ⊆ QMZKP(2qfa,poly-
shared,poly-time).

1. Quantum Merlin-Arthur Proof Systems
2. Polynomial-Time QMA
3. Power of QMA Systems

IV. Polynomial-Time QMA Proof Systems

Quantum Merlin-Arthur Proof Systems

• Kobayashi, Matsumoto, and Yamakami (2009) studied
polynomial-time QMA proof systems.

• Here, we take quantum Turing machines (QTMs) as
verifiers.

• A language L has a (k,c,s)-quantum Merlin-Arthur proof
(QMA) system (P,V) ⇔ there exists a polynomial-time
quantum verifier (i.e., QTM) V s.t., for every input x,
 x∈L → there exists a set of k(|x|) quantum proofs

that makes V accept x with prob ≥ c(|x|), and
 x∉L → for any set of k(|x|) quantum proofs, V accept

x with prob ≤ s(|x|).

Polynomial-Time QMA

• A language L is in QMA(k,c,s) ⇔ L has a (k,c,s)-
quantum Merlin-Arthur proof (QMA) system

• Theorem: [Kobayashi-Matsumoto-Yamakami (2009)]
 The following statements are equivalent.

1. QMA(k,c,s) = QMA(2,2/3,1/3) for any k ≥2 and any
two-sided bounded-error completeness-soundness
pair (c,s).

2. QMA(2,c,s) = QMA(2,2/3,1/3) for any two-sided
bounded-error completeness-soundness pair (c,s).

Power of QMA Systems

• Here, we present two results obtained by Kobayashi,
Matsumoto, and Yamakami (2009).

• Theorem: [Kobayashi-Matsumoto-Yamakami (2009)]
For any p-bounded function k and any function c :
N+→(0,1], it follows that QMA(k,c,0) = QMA(1,c,0).

• Theorem: [Kobayashi-Matsumoto-Yamakami (2009)]
 NQP = ⋃c QMA(1,c,0),
 where c : N+→ (0,1] be any function.

1. Proof-Verification for Finite Automata
2. Classical Merlin-Arthur Proof Systems
3. Correspondence to Nondeterminism
4. Reversible Finite Automata
5. Randomized Algorithms
6. properties of MA(1pfa)
7. Proof-Verification for Quantum Finite Automata
8. MA(1rfa) and MA(1qfa)
9. 1QFA vs. MA(1qfa)

V. Proof-Verification Processes

Proof-Verification for Finite Automata

¢ $

q

Head direction

End-marker End-marker A read-only tape

Inner state

φ

x
φ

Prover

• Verifier is now uses one-way finite automata.

• Merlin-Arthur Proof-Verification Condition:
 x∈L → ∃ φ:proof [V accepts [x,φ]T]
 x∉L → ∀ φ:proof [V rejects [x,φ]T]

proof
Verifier

Classical Merlin-Arthur Proof Systems

• Our proof-verification systems are called Merlin-Arthur
games.

• Notationally, we write:
MA(fa) = languages L s.t. there is a Merlin-Arthur proof
system with fa for L

• If we use determinsitic advice, we write

MA(fa)/n = languages L s.t. there is a Merlin-Arthur
proof system with fa with advice for L

Correspondence to Nondeterminism

• Proof-verification process naturally corresponds to
“nondeterminism.”

• For example, we can prove that MA(1dfa) = 1NFA.
• However, it is known that 1DFA = 1NFA = REG.
• Therefore, we obtain the following conclusion.

• (Claim) MA(1dfa) = REG.

• Similarly, by adding advice, we can show that
 MA(1dfa)/n = 1NFA/n.
 1DFA/n = 1NFA/n = REG/n.

Reversible Finite Automata (revisited)

A one-way (deterministic) reversible finite
automaton (or 1rfa) is defined as follows:
M = (Q,Σ,δ,q0,Qacc,Qrej) Σ = input alphabet

Reversibility condition:
 ∀q∈Q ∀σ∈Σ ∃ at most one q’∈Q s.t. δ(q’,σ) = q.

q’

q

q”

σ

σ

Property: If there is a computation
path from q0 to q∈Qacc (or Qrej),
such a path should be unique.

unique path

Nondeterminism for Reversible Finite Automata

• Proof-verification procedures could define non-
determinism.

• Hence, MA(1rfa) could define one-way nondeterministic
reversible finite automata (or 1nrfa’s)

• A language L is in MA(1rfa) ⇔
 ∃M = (Q,Σ,δ,q0,Qacc,Qrej): 1rfa s.t., for any x,

1. x∈L → ∃ s∈Σ|x| [M accepts [x,s]T]
2. x∉L → ∀s∈Σ|x| [M rejects [x,s]T]

Determinism vs. Nondeterminism

• By definitions, 1RFA ⊆ MA(1rfa).

• However, it is not clear if “determinism” and
“nondeterminism” coincide for reversible finite automata.

• In other words,
 1RFA = MA(1rfa) ?
• This is because a standard proof for “1DFA = 1NFA”

does not seem to work for reversible finite automata.

Randomized Algorithms

• A one-way probabilistic finite automata (or 1pfa) is a
randomized version of a 1dfa.

• Recall the bounded-error requirement:
 There exists a constant ε with 0≤ε<1/2 s.t.

 x∈L → M accepts x with probability ≥ 1-ε;
 x∉L → M rejects x with probability ≥ 1-ε.

• L ∈ MA(1pfa) ⇔ ∃M:1pfa ∃ε∈[0,1/2) s.t., for any x,

 x∈L → ∃φ: proof [M accepts x with prob. ≥ 1-ε];
 x∉L → ∀φ: proof [M rejects x with prob. ≥ 1-ε].

Properties of MA(1pfa)

• MA(1pfa) corresponds to the notion of finite automata
with nondeterminsitic and probabilistic moves.

• (Claim) MA(1pfa) = REG. [Condon et al. (1997)]

• Next, we will expand this MA(1pfa) to a new class
MA(1qfa) defined with 1-way quantum finite automata.

Proof-Verification for Quantum Finite Automata

• Let us consider proof-verification process for 1qfa’s.

• We define MA(1qfa) as follows.

• A language L is in MA(1qfa) ⇔
 ∃M:1qfa ∃ε∈[0,1/2) s.t., for any x,

 x∈L → ∃|φ〉: proof [M accepts x with prob. ≥ 1-ε];
 x∉L → ∀|φ〉: proof [M rejects x with prob. ≥ 1-ε],

 where |φ〉 is a quantum state over basis states Σ|x|.

MA(1rfa) and MA(1qfa)

• Lemma: [Villagra-Yamakami (2015)]
 MA(1rfa) ≠ 1QFA.

• In other words, “nondeterminism” is not powerful enough
for 1rfa’s to simulate 1qfa’s.

• Recall from Week 3 that 1QFA/n ≠ REG/n.
• We can obtain the following separation result.

• Lemma: [Villagra-Yamakami (2015)]
 MA(1qfa)/n ≠ REG/n.

1QFA vs. MA(1qfa)

• It is clear that 1QFA ⊆ MA(1qfa).

• Lemma: [Villagra-Yamakami (2015)]
 MA(1qfa) ⊆ REG.

 Proof Sketch:
• By applying the result QIP(1qfa) = REG [Nishimura-

Yamakami (2009)], we obtain MA(1qfa) ⊆ REG.

Class Separations

• Villagra and Yamakami (2015) showed the
following class separations among the
aforementioned language families.

MA(1rfa)/n

1QFA/n

MA(1dfa) = MA(1pfa)/n
= REG/n

ALL

proper inclusion

inclusion
1RFA/n

MA(1qfa)/n

no inclusion

• (Open Problem) Determine whether each inclusion is proper.

1. Generalization of Krentel’s Framework
2. Function Class OptF
3. Properties of OptF
4. Quantum Optimization of Quantum Solutions
5. Complexity Class QOP
6. Relationships

VI. Quantum Optimization Problems

• Optimization problems have been important problems in
theory and in practice.

• Krentel (1988) defined OptP, which is an optimization
class consisting of optimal cost functions for NP
optimization problems.

• Given a function class F, we want to introduce a general
notion of OptF.

Generalization of Krentel’s Framework

• Here, we consider only partial functions from Σ*×Σ*to R.
• Let F be any set of such partial functions.
• Let F be any set of such partial functions.

• A partial function f : Σ*×Σ*→ R is in OptF ⇔ there are a
polynomial p and a maximization problem Π=(Σ*,solΠ,g)
with Σ* as the set of instances and g as a partial cost
function chosen from F satisfying that
1. solΠ(x) ⊆ Σp(|x|) for all x, and
2. f is the maximal cost function for Π, namely,
 f(x) = max{ g(x,s) | (x,s) ∈ dom(g), s ∈ Σp(|x|) }
 if g(x,s) exists.

Function Class OptF I

• By taking
 FP, FPSPACE, #P, #QP, and FBQP as F,
 we obtain
 OptFP, OptFPSPACE, Opt#P, Opt#QP, and OptFBQP.

• Note that OptFP coincides with Krentel’s OptP.

• (Claim) OptFPSPACE = FPSPACE

• (Open Problem) Is OptFP = FP?

Function Class OptF II

• We see a simple example of elements of Opt#QP.
• Fix a universal QTM, say, U.

• Maximum QTM Problem (MAXQTM)
 instance: 〈M,x,1t,1m〉 with a QTM M, t∈N, and m∈N+

solution: maximal acceptance probability over all
strings s∈Σ|x| of U on input 〈M,xs,1t,1m〉

• (Claim) MAXQTM ∈ Opt#QP

Examples: MAXQTM

• Yamakami (2002) showed the following properties of
OptF.

• Lemma: OptP∪#P ⊆ Opt#P ⊆ FPSPACE

• Lemma:

• Proposition:

• Theorem:
 NPPP = EQP ⇒ Opt#QP = #QP ⇒ NPPP = WQP.

Properties of OptF I

#
PPNPQP Opt QP QP⊆ ⊆

2 ()p BQPFBQP OptFBQP FPΣ⊆ ⊆

• Lemma: [Yamakami (2002)]
 OptFBQP = FBQP ⇔ NPBQP = BQP.

 Proof Sketch:
• If NPBQP = BQP, then Σ2

p(BQP) = BQP.
• Thus, OptFBQP ⊆ FPΣp2(BQP) ⊆ FPBQP = FBQP.

Properties of OptF II

QED

• Let F be a set of partial functions from Σ* × Φ∞ to R.

• A partial function f : Σ* → R is in QoptF ⇔ there are a
polynomial p and a maximization problem Π with Σ* and
g as a partial cost function in F s.t., for any instance
x∈Σ*,

 f(x) = sup{ g(x,|φ〉) | (x,|φ〉)∈dom(g), |φ〉∈Φp(|x|) }
 if such an g(x,|φ〉) exists. Otherwise, f(x) is undefined.

• A set of quantum solutions of x for Π is
 solg(x) = {|φ〉∈Φp(|x|) | (x,|φ〉)∈dom(g) }.

Quantum Optimization of Quantum Solutions

• A language L is in QOP (quantum optimization
polynomial time) ⇔ there exist two functions f,g∈#QP
and a function h∈FP (called a selection function) s.t., for
any x,

 x∈L ↔ 2|h(x)| f(x) > 2|h(x)| g(x).

• Moreover, we define
 QOPˆ = { L ∈ QOP | ∀x [2|h(x)| f(x) > 2|h(x)| g(x)] }.

• (Claim) QOPˆ ⊆ QOP

Complexity Class QOP

• We use the notion «e defined by:
 F «e G ⇔ ∀f∈F ∀p:polynomial ∃g∈F s.t.
 ∀x |f(x) - g(x)| ≤ 2-p(|x|).

• Yamakami (2002) showed the following relationships.

• Theorem:
1. EQP = QOP → Opt#QP «e #QP.
2. Qopt#QP «e #QP → QOPˆ = PP.
3. Opt#QP ⊆ Qopt#QP «e #QPQOP «e FPSPACE.

Relationships

Q & A
I’m happy to take your question!

 END

	15th Week
	Course Schedule: 16 Weeks
	YouTube Videos
	Main References by T. Yamakami I
	Main References by T. Yamakami II
	I. Quantum Interactive Proofs
	Interactive Proof Systems I (revisited)
	Interactive Proof Systems II (revisited)
	An Illustration of IP System (revisited)
	Constant-Space Interactive Proofs (revisited)
	Private Coins vs. Public Coins (revisited)
	A Quantum Model of Nishimura and Yamakami
	Single-Prover Quantum Interactive Proofs
	Examples of QIP Systems I
	Examples of QIP Systems II
	Examples of QIP Systems III
	Examples of QIP Systems III
	Properties of QIPs I
	Properties of QIPs II
	Properties of QIPs III
	Open Problems
	II. Multiple-Prover QIP Systems
	Multiple Provers
	Multi-Prover Quantum Interactive Proofs
	Power of Multi-Provers
	Proof Ideas I
	Proof Ideas II
	Immediate Consequences
	Does Shared Entanglement Help?
	Polynomially Shared Entanglement
	III. Zero-Knowledge Proofs
	Intuitive Explanation
	Returning to Formalism
	Basic Concepts and Notation
	Zero-Knowledge Proofs
	Recognition Zero-Knowledge Property
	(Classical) ZKP Notation
	Quantum Zero-Knowledge Proofs
	QMZKP Notation
	QMIP vs. QMZKP
	IV. Polynomial-Time QMA Proof Systems
	Quantum Merlin-Arthur Proof Systems
	Polynomial-Time QMA
	Power of QMA Systems
	V. Proof-Verification Processes
	Proof-Verification for Finite Automata
	Classical Merlin-Arthur Proof Systems
	Correspondence to Nondeterminism
	Reversible Finite Automata (revisited)
	Nondeterminism for Reversible Finite Automata
	Determinism vs. Nondeterminism
	Randomized Algorithms
	Properties of MA(1pfa)
	Proof-Verification for Quantum Finite Automata
	MA(1rfa) and MA(1qfa)
	1QFA vs. MA(1qfa)
	Class Separations
	VI. Quantum Optimization Problems
	Generalization of Krentel’s Framework
	Function Class OptF I
	Function Class OptF II
	Examples: MAXQTM
	Properties of OptF I
	Properties of OptF II
	Quantum Optimization of Quantum Solutions
	Complexity Class QOP
	Relationships
	Slide Number 68
	Slide Number 69
	Slide Number 70

