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Lecturer 

August 2017 

Dr. Tomoyuki Yamakami 

Affiliation: 
   Faculty of Engineering 
   University of Fukui, Japan 
Research Topics: 
• quantum computing 
• languages and finite automata 
• optimization and approximation 
• constraint satisfaction problems 
• cryptographic systems 
• fuzzy computing 
• logic, etc. 

• Twitter      ↪  http://twitter.com/tomoyamakami/ 
•  YouTube ↪ https://www.youtube.com/user/tomoyukiyamakami 



Purpose of This Lecture Series 

• This lecture series is designed to introduce fundamental 
features of computational complexity theory to graduate 
students who have just started their study on 
complexity-theoretic issues, by explaining and also 
giving a clear pointer to a number of results obtained by 
Tomoyuki Yamakami since 1982. 

• This lecture series also aims at providing unsolved 
questions, mostly related to T. Yamakami’s work, which 
the audience may try to tackle for his/her theses.  

• Topics of this lecture series can be summarized by four 
basic categories: complexity-theoretical issues based on 
(1) Turing machines, (2) cryptographic systems, (3) 
finite automata and their variants, and (4) quantum 
machines.  
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• Week 12:  BQP, NQP, Quantum NP, and Quantum Finite Automata 
• Week 13:  Quantum State Complexity and Advice 
• Week 14:  Quantum Cryptographic Systems 
• Week 15:  Quantum Interactive Proofs 
• Week 16:  Final Evaluation Day (no lecture) 
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Where to Find Technical Papers 

• This lecture series is based on numerous papers written 
by Tomoyuki Yamakami over the years. Those papers 
can be found at the following websites. 
 

• DBLP Computer Science Bibliography 
      http://dblp.uni-trier.de/pers/hd/y/Yamakami:Tomoyuki 

• arXiv.org  (public domain) 
      https://arxiv.org/find/quant- 
      ph,grp_cs/1/au:+Yamakami_Tomoyuki/0/1/0/all/0/1?per_page=100 

December 2015 



YouTube Videos I 

• Most materials in this lecture series were presented in 
numerous conferences and universities (in English) by  
Tomoyuki Yamakami.  

• Some of these public talks have been video-recorded 
and the videos were edited and then uploaded to 
YouTube. 

• Please search on YouTube site using the following 
keywords:   
 

 

Conference talk video 
Egham, UK 2017 

    (*) YouTube search keywords: 
Tomoyuki Yamakami  conference  playlist 



YouTube Videos II 

• Moreover, there are a few invited talk videos (in English) 
currently available on YouTube.  

• Invited Talks (in English) 
 Invited Talk 2013 – Liverpool, UK 
 Invited Talk 2013 – Lisbon, Portugal 
 Dagstuhl Seminar – Public Talk 2013 – Schloss Dagstuhl, Germany 

Invited talk video 
Lisbon, Portugal 2013 

    (*) YouTube search keywords: 
Tomoyuki Yamakami  invited talk  playlist 



Suggested Reading 
• Through this lectures, we will not use specific textbooks. 

However, I advice the audience to read standard textbooks 
on computational complexity theory and languages and 
automata theory.  

• For example: 
 Theory of Computational Complexity. D. Du and K. Ko. Wiley 

Interscience, 2000. 
 Introduction to Automata Theory, Languages, and Computation. 

J. E. Hopcroft, R. Motwani, and J. D. Ullman. Addison-Wesley, 
2nd edition, 2001.  

 Foundations of Cryptography: Basic Tools. O. Goldreich. 
Cambridge University Press, 2001. 

 An Introduction to Kolmogorov Complexity and Its Applications. 
M. Li and P. Vitányi. Springer-Verlag, 1997. 

 Quantum Computation and Quantum Information. M. A. Nielsen 
and I. L. Chuang. Cambridge University Press, 2000.  



1st Week 

Synopsis.  
• Formal Languages 
• Automata and Turing Machines 
• Pushdown Automata 
• 1-FLIN and FP 
• Recursive Functions 
 

Basic Computation Models 

April 1, 2018. 23:59 



Main References by T. Yamakami 

 K. Tadaki, T. Yamakami, J. C. H. Lin. Theory of one-tape 
linear-time Turing machines. Theoretical Computer Science  
411(1): 22-43 (2010) 

March  2018 
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I. Formal Languages and Language Families 



Formal Language Framework I 

• We review basics of theory of formal languages and automata. 
• An alphabet Σ is a finite nonempty set of “symbols.” 
 For example, Σ = { 0,1 }  or  Σ = { a, b, c, ..., z }. 

• A string over Σ is a finite sequence of symbols in Σ.  
• Given a string x, |x| denotes the length of x. 
• A language L over Σ is any set of strings over Σ. 
 For example, if Σ = { 0,1 }, then the following set L is the 
language of binary representations of prime   numbers:  

      L = { 10, 11, 101, 111, 1011, ... }. 
• We denote the empty string by λ (or ε) with |λ| = 0. 
• Let Σn = { x ∈ Σ* | |x| = n } and Σ≤n = { x ∈ Σ* | |x| ≤ n }.  



Formal Language Framework II 

• We denote the empty language by ∅. 
• The language of all strings over Σ is denoted Σ*. 
 For example, if Σ = { 0,1 }, then  

          Σ* = { λ, 0, 1, 00, 01, 11, 000, 001, ... }. 
• Every language L over Σ is a subset of Σ*. 
• We can perform a variety of operations on languages.  
• Set-theoretic operations, such as union, intersection, 

difference, disjoint union, etc., follow directly from the set-
theoretic definitions. 
 
L1 L2 

{ }
{ }
{ }

*
1 2 1 2

*
1 2 1 2
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1 2 1 2

|
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|

L L x x L x L

L L x x L x L

L L x x L x L

∩ = ∈Σ ∈ ∧ ∈

∪ = ∈Σ ∈ ∨ ∈

− = ∈Σ ∈ ∧ ∉



Formal Language Framework III 

• We define the complement of 
L by Lc = Σ* - L. 

• The concatenation L1L2 of two 
languages L1 and L2 is the 
language defined as  

Σ* 

L Lc 

        L1L2  = { xy | x∈L1  and  y∈L2 }.  
• For each k≥1, we define Lk as the language obtained by 

concatenating L to itself k times; that is, 
             L1 = L,   L2 =LL,   L3 = LLL, ......   
• The closure (or Kleene star) of a language L is the 

language 
              L* = { λ } ∪ L ∪ L2 ∪ L3 ∪ L4 ∪ ....... 



Languages vs. Decision Problems  I 
• We want to solve the following decision problems. 

    Decision Problem 
 instance: input to the problem 
 solution: YES (1) or NO (0) 
   (or question: does a prescribed property hold?) 

• Example: 
 instance: a positive integer n 
 question: Is n a prime number? 

• In order to solve such a problem, we represent instances of 
the problem in a way that the program understands. 

• Hence, we need to encode a compound object (such as 
polygons, graphs, functions, ordered pairs) as a binary string 
by combining the representations of its constituent parts. 



Languages vs. Decision Problems II 

• The set of instances for any decision problem Q is simply the 
set Σ*, where Σ = { 0,1 }. 

• Since Q is entirely characterized by those problem instances 
that produces a 1 (YES) answer, we can view Q as a 
language L over Σ, where  

        L = { x∈Σ* | Q(x) = 1 }. 
 

• Example: 
  (*) Decision Problem 

 instance: a binary string of the form u#v 
 solution: YES if |u|=|v|; NO otherwise 

  (*) Language 
  { w | ∃u,v∈{0,1}*[w=u#v ∧ |u|=|v|] } 

( ) 1  (or  answers YES) x L Q x Q∈ ⇔ =

We identify 
languages with 
decision 
problems. 



Encoding of Compound Objects  

• An encoding of a set S of objects is a mapping e( ) from S to 
the set of binary strings. 

• Example 1: We encode natural numbers N = { 0,1,2,3,4...} as 
the strings { 0,1,10,11,100,... }. Using this encoding, e(0)=0, 
e(1)=1, e(2)=10, e(3)=11, e(4)=100. 

• Example 2: Keyboard characters are encoded into the ASCII 
code using 7 bits. E.g., the encoding of letter “A” is 1000001. 

 

• (*) In the rest of this lecture series, we assume that all objects 
are encoded into strings over some reasonable alphabet. 

• (*) Therefore, we assume that our problems have the set of 
strings over some reasonable alphabet as its instance set.  



Language Families and Complexity Classes 

• We informally define a complexity class as a set of languages, 
membership in which is determined by a complexity measure, 
such as running time, of an algorithm that determines whether 
a given string x belongs to language L. 

• Hence, a complexity class is used as a synonym for  “family of 
languages.” 

 

• The complement of a language L over alphabet Σ is the 
difference Σ* – L = { x∈Σ* | x∉L } and is denoted by Lc.  

• Given a complexity class C, the class of all complements of 
languages in L, { Lc  | L ∈ C }, is denoted by co-C. 



Input/Output Sizes of Functions 

• Let Σ1 and Σ2 be two alphabets.  

• A function Σ1→Σ2 is polynomially bounded (or simply, p-
bounded) if there exists a positive polynomial p such that, 
for all x∈Σ1*, |f(x)|≤p(|x|) holds.  

• That is, output size cannot be too large compared to 
input size. 

• A function Σ1→Σ2 is polynomially honest (or simply, p-
honest) if there exists a positive polynomial p such that, 
for all x∈Σ1* and y∈Σ2*, if f(x) = y, then |x|≤p(|y|).  

• That is, output size cannot be too small compared to 
input size.  
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II. Finite (State) Automata 



Why Finite (State) Automata? 

• Finite (state) automata are one of the simplest 
computational models to execute (prescribed) algorithms. 

• Finite automata are machines with no memory device. 
• Finite automata are also known as “constant-space” 

Turing machines (with read-only input tapes and 
rewritable work tapes using only constant space) 

• There are numerous variants of finite automata in use. 
• In particular, we introduce 1-way/2-way variants of finite 

automata. 
• We also consider deterministic/nondeterministic variants 

of finite automata. 
 



1-Way Finite (State) Automata I 

• A 1-way deterministic finite (state) automaton (1dfa) M is 
a 5-tuple (Q, Σ, δ, q0, F), where  
 Q is a finite set of inner states, 
 q0 ∈ Q is the initial state (or start state), 
 F ⊆ Q is a set of final (or accepting) states, 
 Σ is a finite (input) alphabet, and 
 δ is the transition function mapping  Q×(Σ∪{¢,$}) to Q. 

• The finite automaton begins in state q0 and reads the 
characters of its input string one at a time. 

• δ is viewed as a “program” of a machine.  



1-Way Finite (State) Automata II 
A “standard” model of 1-way one-head finite (state) 
automaton (or simply, 1dfa) is shown as follows. 

¢ $ σ 

q Head direction: one-way 

Left end-marker Right end-marker An infinite read-only tape 

M = (Q,Σ,{ȼ,$},δ,q0,F) 
Q = set of inner states 
Σ = input alphabet 
δ : transition function 
q0 : initial state 
F = set of final states 

Inner state ∈ Q 

… …....... 

L(M) = set of strings    
accepted by M 

CPU 



1-Way Finite (State) Automata III 

• A finite automaton consists of a tape, a tape head, and a CPU.  
• An input is initially written on the input tape.  
• The automaton scans a tape symbol, follows a program, 

changes the inner state of the CPU, and then moves the head.  

input/work tape 
head 

p 

tape cell 

σ 

q CPU 

A head is scanning 
symbol σ in state p. 

Instruction: (p,σ) → q 

ν 

(p,σ) → q 

…
…

 

program 



Acceptance and Rejection for 1dfa’s 

• An automaton starts scanning ¢ in the initial state q0.  
• If the automaton is in inner state q and reads input character 

σ, it moves from state q to state δ(q,σ). 
• The tape head always moves to the right. 
• Whenever its current state q is a member of F, the machine M 

is said to have accepted the input string.  
• An input that is not accepted is said to be rejected. 
• The automaton halts if either it enters a final state or reaches 

the right endmarker $. 
• A finite automaton M induces a function ϕ, called the final-

state function, from Σ* to Q such that ϕ(w) is the state in which 
M ends up after scanning the entire string w. 

• Thus, M accepts w iff ϕ(w)∈F. 
 



A simple two-state finite automaton with state set Q = {0,1}, initial 
state q0 = 0, input alphabet Σ = {a,b}, final state set F = {1} 

Three ways to express the same finite automaton 

δ(0,a) = 1, δ(0,b) = 1,  
δ(1,a) = 0, δ(1,b) = 0  

Three Different Descriptions of 1dfa’s 



Examples of 1dfa’s 



Determinism vs. Nondeterminism 

• Nondeterminism is a natural extension of determinism, 
representing “choices of next moves”. 

• 1-way deterministic finite automaton (1dfa) 
 
 
 

• 1-way nondeterministic finite automaton (1nfa) 

q p 
σ 

q 
p1 σ 

p2 
σ 

δ : Q×(Σ∪{¢,$})→Q 

δ : Q×(Σ∪{λ,¢,$})→2Q 

δ(q,σ) = p 

δ(q,σ) = { p1, p2 } 



1-Way Nondeterministic Finite Automata 

• A 1-way nondeterministic finite (state) automaton (1nfa) M is a 
5-tuple (Q, Σ, δ, q0, F), where  
 Q is a finite set of inner states, 
 q0 ∈ Q is the initial state (or start state), 
 F ⊆ Q is a distinguished set of final states, 
 Σ is a finite (input) alphabet, 
 δ is a function: (Q-F)×(Σ∪{λ,¢,$})→℘(Q), called the 

transition function of M (with λ-transitions). 

• ℘(Q) (=2Q) denotes the power set (a set of all subsets) of Q. 
• A 1nfa begins in state q0, reads the characters of its input 

string one at a time, and moves its tape head. 
• Final states are considered as halting (accepting) states. 



Configurations 

• Consider a machine (such as 1dfa and 1npda) M. 
• A configuration is, roughly, an instantaneous description of 

the machine’s current internal situation.  
 In the case of 1dfa M, a configuration of M on input x is of 

the form (q,z) with q∈Q and z∈Σ*, which describes that M 
is in state q and z is the unread substring of the input x. 

 In the case of 1npda M, a configuration of M on input x is 
of the form (q,z,w), which states that M is in state q with 
unread substring z of x and stack content w.  

• The initial configuration of M on input x is a configuration 
(q0,x) and (q0,x,Z) for 1dfa and 1npda, respectively.  

• A final (or halting) configuration is a configuration with a final 
state or the unread string becomes empty in case of 1-way 
head move.  



Computation 

 
• A computation of M on input x is a series (c0,c1,c2,...) of 

configurations such that  
 c0 is the initial configuration of M on x and 
 for each i ≥ 0, ci+1 is obtained from ci by making a single 

step of M. 
• Moreover, when M halts (either M enters a final state or it 

reads up all input symbols), the computation must end with a 
final configuration.    
 



Acceptance and Rejection for 1nfa’s 

• If a 1nfa’s current state q is a member of F along a 
certain computation path, the machine M is said to have 
accepted the input string.  

• An input that is not accepted is said to be rejected. 
 

input  x 

accepted not accepted 

input  x 
1npfa M 

non-
deterministic 
computation M accepts x M rejects x 

or 

not accepted 

computation 
paths 



2-Way Finite (State) Automata 

• If we allow a finite automaton to move its tape head in 
both directions as well as make the tape head stay still 
(called a stationary move), then we obtain a 
computational model of 2-way finite (state) automaton (or 
simply, 2dfa) with two endmarkers. 

¢ $ σ 

q 
Head direction: 2-way or stationary 

End-marker End-marker Infinite read-only input tape 

M = (Q,Σ,{ȼ,$},δ,q0, Qacc,Qrej) 
Σ = input alphabet 

Inner state q ∈ Q 

… …....... 

Qacc ∪ Qrej⊆ Q 

δ : a probabilistic 
transition function  



Formal Definition of 2dfa’s 

A 2dfa M = (Q,Σ,{ȼ,$},δ,q0, Qacc,Qrej) has a read-only input tape 
and a transition function δ of the form: 

 
 
 
 

• Endmarker condition: 
 No tape head should move out of the region marked 

between ȼ and $.  
• Acceptance and Rejection: 
When a 2dfa enters an accepting state (in Qacc) and a 

rejecting state (in Qrej), then the 2dfa halts and 
accepts and rejects a given input, respectively.  
 

: ( )haltQ Q Q Dδ − ×Σ→ ×


Σ =


Σ ∪ { ₵, $ } D = { -1, 0, +1 } 

Qhalt = Qacc ∪ Qrej 



1-Way Pushdown Automata 
Let us review a model of 1-way nondeterministic pushdown 
automaton (or 1npda). 

¢ $ σ 

q 

Head direction: one-way 

End-marker End-marker Infinite read-only input tape 

M = (Q,Σ,{ȼ,$},Θ,δ,q0,Z0,F) 

Inner state q ∈ Q 

… …....... 
Z0 

a 

Bottom-marker 

Stack 

...... 

Q,q0,F are the same 
Σ = input alphabet 
Θ = stack alphabet 
δ : transition function 
Z0 : stack’s bottom marker 

L(M) = set of strings accepted by M 



Transition Functions of 1npda’s 

• The arguments of a transition function δ of a 1npda are the 
current state of the control unit, the current input symbol, and 
the current symbol on top of the stack. 

• The result is a set of pairs (q,u), where q is the next state of 
the control unit and u is a string which is put on top of the 
stack in place of the single symbol there before.  

• The second argument of δ may be λ, indicating that a move 
that does not consume an input symbol is possible. Such a 
move is called a λ-move (or λ-transition). 

• No 1npda can remove Z0 from the stack at any step.  
• A 1npda may have several choices for its move. 
• The use of λ-move is crucial for pushdown automata to 

exercise their full computational power. 



Formal Definition of 1npda’s 

A 1npda M = (Q,Σ,{λ ,ȼ,$},δ,q0, Qacc,Qrej) has a read-only input 
tape, a stack and a transition function δ of the form: 

 
 
 
 

• Stack usage: 
 A 1npda scans only the topmost stack symbol together 

with/without each input symbol, including ȼ and $.  
• Acceptance and Rejection: 
When a 1npda enters an accepting state (in Qacc) and 

a rejecting state (in Qrej), then the 1npda halts and 
accepts and rejects a given input, respectively.  
 

*: ( ) ( { }) ( )haltQ Q Qδ λ− × Σ∪ ×Θ→℘ ×Θ


Σ =


Σ ∪ { ₵, $ } D = { -1, 0, +1 } 

Qhalt = Qacc ∪ Qrej 



Examples of 1npda’s 

M: 1npda 

L(M) = { anbmcn | n,m ≥ 1 } ∪ { anbncm | n,m ≥ 1 } 

nondeterministic choice 



Complexity Classes: REG and CFL 

 
 

• We use the following abbreviations for machines. 
 1dfa = 1-way deterministic finite automaton 
 1npda = 1-way nondeterministic pushdown automaton 
 

• REG = collection of all languages recognized by 1dfa’s 
(i.e., regular languages) 

• CFL = collection of all languages that are recognized by 
1npda’s (i.e., context-free languages) 

• co-CFL = { Lc | L ∈ CFL } 

REG 

CFL 
co-CFL 

• For the separations among the above 
language families, see the next slide. 



Known Facts on REG, CFL, and co-CFL 

• Here is a short list of well-known facts on 1-way finite 
automata. 

• (Claim)  REG ⊆CFL but REG ≠ CFL. 

 Upal = {anbn | n≥1} ∈ CFL – REG  
 Pal = { x∈{0,1}* | xR = x } is in CFL – REG. 

• The above non-regularity results are obtained by the pumping 
lemma for 1dfa’s. 

• (Claim)  CFL ≠ co-CFL. 

 Diff = { aibjck | i ≠ j or j ≠ k } is in CFL but not in co-CFL. 

• The pumping lemma was proposed by Bar-Hillel, Perles, and  
Shamir (1961). 



REG 

 co-CFL = ΠCFL
1 

ΣCFL
2 

ΣCFL
1 = CFL 

CFL2 

ΣCFL
3 

ΠCFL
2 

ΠCFL
3 

DSPACE(O(n)) 

CSL  

inclusion 

proper inclusion 

CFLH 

CFL(2) 

CFL(3) 

AC0(CFL) 
= LOGCFL 

= SAC1 

CFLm
CFL(1)  

  = CFLm[1]
CFL 

CFLm
CFL(ω) 

REG/n 

CFL/n 
L 

no inclusion 

NL 
CFL(ω) 

BHCFL 

CFL3 

NC2  

CFLm
CFL(2)  

  = CFLm[2]
CFL 

PCFL 

BPCFL  

TC1  

AC0(REG) 
= NC1  

Inclusion Relations among Language Families 



Formal Definition of 1dpda’s 

A 1dpda M = (Q,Σ,{λ ,ȼ,$},δ,q0, Qacc,Qrej) has a read-only input 
tape, a stack and a transition function δ of the form: 

 
 
 
 

• Deterministic requirement: 
 A deterministic transition function must satisfy the following 

condition: 
(1) The output set of δ contains at most one element, and 
(2) At every step, the next move of M is uniquely determined, 

including λ-moves.  
• DCFL = collection of all languages recognized by 1dpda’s 

*: ( ) ( { }) ( )haltQ Q Qδ λ− × Σ∪ ×Θ→℘ ×Θ


Σ =


Σ ∪ { ₵, $ } D = { -1, 0, +1 } Qhalt = Qacc ∪ Qrej 



Examples of 1dpda’s 

• The marked even-length palindrome:  
           Mark-Pal = { wcwR | w∈ {0,1}* }. 
• Here is a 1dpda that recognizes Mark-Pal. 
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III. Turing Machines 



Languages Accepted by Algorithms 

• An “algorithm” is an informal term for “mechanical 
procedure.” 

• We say that an algorithm A accepts a string x∈Σ* if, 
given input x, the algorithm’s output A(x) is 1. 

• Similarly, an algorithm A rejects a string if A(x) = 0. 
 

• The language accepted by algorithm A is the set of 
strings L = { x∈Σ* | A(x) = 1 }; that is, the set of strings 
that the algorithm accepts. 

• A language L is decided (or recognized) by algorithm A if 
every string in L is accepted by A and every string not in 
L is rejected by A. 



Acceptance vs. Decision 

• A language L is accepted in time t(n) by algorithm A if  
1. it is accepted by A and  
2. If, in addition, for any length-n string x∈L, algorithm 
A accepts x in time t(n).  

• A language L is decided (or recognized) in time t(n) by 
algorithm A if, for any length-n string x∈Σ*, the algorithm 
correctly decides whether x∈L in time t(n). 
 

• To accept a language L  A accepts every string in L. 
• To decide (or recognize) a language L  A accepts and 

rejects every string in Σ* correctly.  



Time and Space Complexity 

• Let L be a problem and let s,t be functions from N to N. 
• We say that an algorithm solves a (decision) problem in 

time O(t(n)) if, when it is provided a problem instance x 
of length n=|x|, the algorithm can produce the solution in 
O(t(n)) time. 

• Similarly, we define the notion of solving in space O(s(n)). 

• The problem L is of time complexity t(n) if (i) there exists 
an algorithm that solves L in time t(n) for all length-n 
inputs.   

• The problem L is of space complexity s(n) if (i) there 
exists an algorithm that solves L in space s(n) for all 
length-n inputs.   

 



Turing Machines  I 

• In 1936, Alan Turing introduce 
the notion of Turing machine to 
realize “mechanical 
procedures.” 

• This notion had become a 
blueprint of the existing 
computers.  
 

• “On Computable Numbers, with 
an Application to the 
Entscheidungsproblem,” 1936. 



Turing Machines  II 
• A Turing machine consists of tape(s), tape head, and CPU. 
• An input string is initially written on the input/work tape. 
• The machine scans a symbol on the tape, follows a program, 

rewrites the tape symbol and the inner state of the CPU, and 
then moves the head.  

input/work tape 
head 

p 

tape cell 

σ 

q 

τ 

CPU 

A head is scanning 
symbol σ in state p. 

Instruction: (p,σ) → (q,τ,+1) 

ν 

(p,σ) → (q,τ,+1) 

…
…

 

program 



a computation 
         = 
a series of 
configurations 
like these ones 



One-Tape Turing Machines  I 

 
 

• We consider one-tape two-way (one-head) 
Turing machines.  

• A one-tape two-way (one-head) Turing 
machine M is defined as follows. 

¢ $ σ 

q 

Head direction: { -1, 0, +1 } 

End-marker End-marker An infinite re-writable tape 

M = (Q,Σ,{ȼ,$},δ,q0,Qacc,Qrej) Σ = input alphabet 

Deterministic case -   δ: Q×    → Q×Σ×{-1,0,+1} 

Inner state 

…… … 

Nondeterministic case -  δ: Q×   →P(Q×Σ×{-1,0,+1}) 

Σ =


Σ ∪ { ₵, $ } Σ


Σ




Examples of Tape Head Moves 

• Consider the following simple task. 
• Task of modifying the current tape content 
 current tape content x∈Σ* 
 produce x#x on an input/work tape 

• To get this task done, a 1DTM requires O(n2) time by 
moving a tape head back and forth at most n times. 

1 0 0 1 0  

1 0 0 1 0  #  

1 0 0 1 0  #  1  

1 0 0 1 0  #  1 0   

..... 
x =  



One-Tape Turing Machines  II 

 
 

• Major features 
 A tape of a one-tape Turing machine is used as an 

input/work tape, stretching to both the left and the right.  
 Initially, the tape is empty (i.e., filled with the blank 

symbols) except for an input string. 
 This machine can freely rewrite tape symbols, 

including ȼ and $. 
 This machine can use any blank space to remember 

any information necessary to carry out its computation. 



Strong Definition for Running Time 
• Michel (1991) proposed the notion of strong 

definition for running time of one-tape Turing 
machines.  

• The running time is the length of the longest 
computation accepting/rejecting path.  

Input x 

Accept/reject 

Input x 

Accept/reject 

Height Computation 
trees 

Height 



One-Tape Linear-Time Turing Machines 

 
 

• We use the following abbreviations: 
• 1DTM = one-tape deterministic Turing machine 
• 1NTM = one-tape non-deterministic Turing machine 

(using the strong definition for its running time) 
 

• 1-DLIN = collection of all languages that are recognized 
by 1DTMs in linear time (i.e., O(n) time) 

• 1-NLIN = collection of all languages that are recognized 
by 1DTMs in linear time 
 

• NOTE: All accepting and/or rejecting computation paths 
of a 1NTM are always terminated within O(n) time. 



One-Tape Linear-Time Classes 

• The complexity classes 1-DLIn and 1-NLIN turn out to be 
closely related to finite automata. 

• It is obvious that REG ⊆ 1-DLIN ⊆ 1-NLIN. 
 

• Moreover, we can show that the computational power of 
1NTMs is significantly limited when their running time is 
restricted to linear time. 
 

• Collapse results 
 1-DLIN = 1-NLIN = 1-DTIME(o(nlog(n))) = REG  
    [Hennie65,Kobayashi85,Tadaki-Yamakami-LinL04] 



Polynomial-Time Algorithms 

• Next, we are interested in polynomial time computation 
made by Turing machines. 

• A polynomial-time algorithm takes inputs of size n and 
their worst-case running time is O(nk) for a certain fixed 
constant k. 
 

• Question: Can all problems be solved by polynomial-time 
algorithms? 

• Answer: No!  
 

• Unfortunately, there are problems, such as Turing’s 
“Halting Problem,” that cannot be solved by any 
computer, no matter how much time we allow.  



Polynomial-Time Solvable Problems 

• Let t be a time-bounding function from N to N.  
 

• We say that an algorithm (or a deterministic Turing 
machine) solves a (decision) problem in time O(t(n)) if, 
when it is provided a problem instance x of length n=|x|, 
the algorithm can produce the solution in O(t(n)) time. 
 

• A (decision) problem is polynomial-time solvable if there 
exists an algorithm to solve it in time O(nk) for some 
constant k. 
 
 



Acceptance vs Rejection for NTMs 

• On input x, an NTM M is said to accept x if M enters an 
accepting state along a certain computation path.  

• An input that is not accepted is said to be rejected. 
 

input  x 

accepted not accepted 

input  x 
NTM M 

non-
deterministic 
computation M accepts x M rejects x 

or 

not accepted 

computation 
paths 



Complexity Classes P, NP, and co-NP 

• “Polynomial time” means that the running time of a 
machine requires at most nc steps for any input of length 
n, where c is a suitable constant, independent of n.   

• We define three complexity classes associated with 
polynomial-time computability. 
• P = set of all decision problems solvable by 

deterministic Turing machines in polynomial time 
• NP = set of all decision problems solvable by 

nondeterministic Turing machines in polynomial time  
• co-NP = set of all complements of NP problems 

• We will return to these complexity classes in Week 2. 



Alternating Finite (State) Automata I 

• A 2-way alternating finite (state) 
automaton (2afa) is a generalization 
of a 2-way nondeterministic finite 
automaton (2nfa). 

• A 2afa’s inner states are partitioned 
into a set Q∃ of existential states and 
a set Q∀ of universal states.  

• Roughly speaking, at each step, if the 
2afa’s inner state is existential, then it 
makes nondeterministically choose an 
accepting branch, and if its inner state 
is universal, then it checks that all 
branches are accepting.  
 

∀ 

∃ 

∃ 

∀ 

∀ 

wrong 

bad computation tree 



Alternating Finite (State) Automata II 

∀ 

∃ 

∃ 

∀ 

∀ 

accepting 
computation tree 

∃ 

∀ 

∀ 

∃ 

∃ 

∀ 

∀ 

rejecting 
computation tree 

∃ 

∀ 

accepting 
subtree 



Alternating Turing Machines 

• Similar to 2afa’s, an alternating Turing machine (ATM) is 
also a generalization of a nondeterministic Turing 
machine (NTM). 

• An ATM’s inner states are partitioned into a set of 
existential states and a set of universal states.  
 

• ATIME,SPACE(t(n),s(n)) =  set of all decision problems 
solvable by ATMs in time at most t(|x|) using space at 
most s(|x|) on all inputs x.   
 

• If there is no time bound t(n) or space bound s(n), we 
use the notation * (asterisk).  



Relationships of ATMs to Other Machines 

• There are close connections between alternating 
machines and deterministic machines. 
 

• (Claim)  [Chandra-Kozen-Stockmeyer (1981)] 
 ATIME,SPACE(*,log) = P 
 ATIME,SPACE(*,poly) = EXP  
 ATIME,SPACE(poly,*) = PSPACE 
 

• (*) EXP is defined by exponential-time DTMs. PSPACE 
(polynomial space class) will be discussed extensively in 
Week 3. 



1. Decision Problems vs. Functions 
2. Computing Functions Using Output Tapes 
3. Function Class 1-FLIN 
4. Polynomial-Time Computable Functions 
5. Function Class FP 
6. Recursive Functions 

VI. Functions and Function Classes 



Decision Problems vs. Functions 

• A decision problem (or a language) is a problem of 
determining whether an instance satisfies a certain 
property by accepting or rejecting the instance. 

• In other words, a decision problem is to output a single 
bit; YES (1) or NO (0).   

• In contrast, a function is to produce outcomes (or 
outputs) from each instance.  

• By encoding “objects” into strings, we can handle any 
functions that map “objects” to “objects.” 

• Many problems are categorized as functions. 
• For example, search problems, optimization problems, 

counting problems, etc. 



Computing Functions Using Output Tapes 
• Consider functions mapping from Σ* to Σ* (or N), where 

N={0,1,2,…} is the set of all natural numbers.  

• To compute a function, we need to equip a machine with an 
extra write-only output tape whose tape head moves in one 
direction. 

σ 

q 

An input/work tape 

q ∈ Q 
…... ….. 

A write-only output tape 

f(x) 

head: only one direction 

Start cell 



Polynomial-Time Computable Functions 

• Let f be a function mapping Σ* to Σ* (or N).  
• Let t be a time-bounding function from N to N. 

 
• We say that a DTM M computes f in time O(t(n)) if, when 

M is provided a problem instance (or input) x of length n, 
M produces the outcome of the function on an output 
tape in O(t(n)) time. 
 

• A function is said to be polynomial-time computable if 
there exists a DTM to compute it in time O(nk) for some 
constant k. 



Function Class FP 

• We introduce the function class, called FP.  
• A function f: Σ*→ Σ* (or N) is in FP  ⇔  there exists a 

polynomial-time DTM M such that, for every input x∈Σ*,  
            f(x) = outcome of M on x. 
• Given a language A, χA denotes the characteristic function of 

A; that is, 
 
 
 

• (Claim)  For any language A, the following are equivalent. 
1. A ∈ P.    
2. χA ∈ FP. 

1  if    
( )

0  otherwiseA

x A
xχ

∈
= 




Output Convention for 1-Tape Machines 

• Since a 1DTM M has only one input/work tape, we need 
to designate the same input tape as the output tape of 
the machine as well.  

• To specify an “outcome” of the machine, we adopt the 
following convention.  

• Output Convention  
When the machine eventually halts with its output 

tape consisting only of a single block of non-blank 
symbols, say s, surrounded by the blank symbols, in 
a way that the leftmost symbol of s is written in the 
start cell, we consider s as the valid outcome of the 
machine. 

 



Function Class 1-FLIN 

• We pay attention to functions computed by 1-tape TMs, which 
treat the input/work tape as also an output tape. 

• We say that a 1DTM M computes function f if, on any input x 
given onto an input/work tape, M writes down f(x) on the same 
tape, enters an accepting state, and halts. 

• Similarly to 1-DLIN, we define its functional version. 

• 1-FLIN = class of all functions computed by 1DTMs in linear 
time (i.e., O(n) time) 
 

• Simple Example: A function f defined by 
 input: x ∈ {0,1,#}* 
 output: y2 s.t. ∃y1,y2∈{0,1}* ∃y3∈{0,1,#}* [ x = y1#y2#y3 ] 
 



Recursive Functions 

• If we do not place any bound on the running time of 
underlying DTMs (with output tapes) but we guarantee 
that the DTMs halt eventually, then we obtain “recursive” 
functions.   

• Let f be a function mapping from Σ* to Σ* (or N).  

• A function f is recursive (or computable) if there exists a 
DTM M such that, for any x, M produces f(x) on an 
output tape and then halts. 

• A language L is recursive (or computable) if χL is a 
recursive function. 



Non-Recursive Languages 

• Consider the following decision problem. 
 

• Halting Problem: HALT 
 instance: a (description) of a 1DTM M and an input 

string x 
question: does M halt on input x? 

 
• (Claim)  HALT is not recursive. 
• (Proof Idea) The proof is done by contradiction. This 

contradiction can be obtained by employing a sort of the  
Epimenides paradox: Epimenides was a Cretan who 
made one immortal statement “All Cretans are liars.”  





Q & A 
I’m happy to take your question! 



 
 

                                 END 
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