
Advanced Research Topics in
Computational Complexity Theory

First Semester 2018
University of Fukui

Dr. Tomoyuki Yamakami

Copyright 2018 Tomoyuki Yamakami

— Introduction to T. Yamakami’s Work —

1. Introduction of the Lecturer
2. Purpose of This Lecture Series
3. Course Schedule
4. Where to Find Technical Papers
5. YouTube Videos
6. Suggested Reading

Basic Information on This Lecture Series

Lecturer

August 2017

Dr. Tomoyuki Yamakami

Affiliation:
 Faculty of Engineering
 University of Fukui, Japan
Research Topics:
• quantum computing
• languages and finite automata
• optimization and approximation
• constraint satisfaction problems
• cryptographic systems
• fuzzy computing
• logic, etc.

• Twitter ↪ http://twitter.com/tomoyamakami/
• YouTube ↪ https://www.youtube.com/user/tomoyukiyamakami

Purpose of This Lecture Series

• This lecture series is designed to introduce fundamental
features of computational complexity theory to graduate
students who have just started their study on
complexity-theoretic issues, by explaining and also
giving a clear pointer to a number of results obtained by
Tomoyuki Yamakami since 1982.

• This lecture series also aims at providing unsolved
questions, mostly related to T. Yamakami’s work, which
the audience may try to tackle for his/her theses.

• Topics of this lecture series can be summarized by four
basic categories: complexity-theoretical issues based on
(1) Turing machines, (2) cryptographic systems, (3)
finite automata and their variants, and (4) quantum
machines.

Course Schedule: 16 Weeks

• Week 1: Basic Computation Models
• Week 2: NP-Completeness, Probabilistic and Counting Complexity Classes
• Week 3: Space Complexity and the Linear Space Hypothesis
• Week 4: Relativizations and Hierarchies
• Week 5: Structural Properties by Finite Automata
• Week 6: Stype-2 Computability, Multi-Valued Functions, and State Complexity
• Week 7: Cryptographic Concepts for Finite Automata
• Week 8: Constraint Satisfaction Problems
• Week 9: Combinatorial Optimization Problems
• Week 10: Average-Case Complexity
• Week 11: Basics of Quantum Information
• Week 12: BQP, NQP, Quantum NP, and Quantum Finite Automata
• Week 13: Quantum State Complexity and Advice
• Week 14: Quantum Cryptographic Systems
• Week 15: Quantum Interactive Proofs
• Week 16: Final Evaluation Day (no lecture)

Subject to Change

Course Schedule: 16 Weeks

• Week 1: Basic Computation Models
• Week 2: NP-Completeness, Probabilistic and Counting Complexity Classes
• Week 3: Space-Bounded Complexity and the Linear Space Hypothesis
• Week 4: Relativizations and Hierarchies
• Week 5: Structural Properties by Finite Automata
• Week 6: Stype-2 Computability, Multi-Valued Functions, and State Complexity
• Week 7: Cryptographic Concepts for Finite Automata
• Week 8: Constraint Satisfaction Problems
• Week 9: Combinatorial Optimization Problems
• Week 10: Average-Case Complexity
• Week 11: Basics of Quantum Information
• Week 12: BQP, NQP, Quantum NP, and Quantum Finite Automata
• Week 13: Quantum State Complexity and Advice
• Week 14: Quantum Cryptographic Systems
• Week 15: Quantum Interactive Proofs
• Week 16: Final Evaluation Day (no lecture)

Subject to Change

classical complexity theory

Course Schedule: 16 Weeks

• Week 1: Basic Computation Models
• Week 2: NP-Completeness, Probabilistic and Counting Complexity Classes
• Week 3: Space-Bounded Complexity and the Linear Space Hypothesis
• Week 4: Relativizations and Hierarchies
• Week 5: Structural Properties by Finite Automata
• Week 6: Stype-2 Computability, Multi-Valued Functions, and State Complexity
• Week 7: Cryptographic Concepts for Finite Automata
• Week 8: Constraint Satisfaction Problems
• Week 9: Combinatorial Optimization Problems
• Week 10: Average-Case Complexity
• Week 11: Basics of Quantum Information
• Week 12: BQP, NQP, Quantum NP, and Quantum Finite Automata
• Week 13: Quantum State Complexity and Advice
• Week 14: Quantum Cryptographic Systems
• Week 15: Quantum Interactive Proofs
• Week 16: Final Evaluation Day (no lecture)

Subject to Change

quantum complexity theory

Where to Find Technical Papers

• This lecture series is based on numerous papers written
by Tomoyuki Yamakami over the years. Those papers
can be found at the following websites.

• DBLP Computer Science Bibliography
 http://dblp.uni-trier.de/pers/hd/y/Yamakami:Tomoyuki

• arXiv.org (public domain)
 https://arxiv.org/find/quant-
 ph,grp_cs/1/au:+Yamakami_Tomoyuki/0/1/0/all/0/1?per_page=100

December 2015

YouTube Videos I

• Most materials in this lecture series were presented in
numerous conferences and universities (in English) by
Tomoyuki Yamakami.

• Some of these public talks have been video-recorded
and the videos were edited and then uploaded to
YouTube.

• Please search on YouTube site using the following
keywords:

Conference talk video
Egham, UK 2017

 (*) YouTube search keywords:
Tomoyuki Yamakami conference playlist

YouTube Videos II

• Moreover, there are a few invited talk videos (in English)
currently available on YouTube.

• Invited Talks (in English)
 Invited Talk 2013 – Liverpool, UK
 Invited Talk 2013 – Lisbon, Portugal
 Dagstuhl Seminar – Public Talk 2013 – Schloss Dagstuhl, Germany

Invited talk video
Lisbon, Portugal 2013

 (*) YouTube search keywords:
Tomoyuki Yamakami invited talk playlist

Suggested Reading
• Through this lectures, we will not use specific textbooks.

However, I advice the audience to read standard textbooks
on computational complexity theory and languages and
automata theory.

• For example:
 Theory of Computational Complexity. D. Du and K. Ko. Wiley

Interscience, 2000.
 Introduction to Automata Theory, Languages, and Computation.

J. E. Hopcroft, R. Motwani, and J. D. Ullman. Addison-Wesley,
2nd edition, 2001.

 Foundations of Cryptography: Basic Tools. O. Goldreich.
Cambridge University Press, 2001.

 An Introduction to Kolmogorov Complexity and Its Applications.
M. Li and P. Vitányi. Springer-Verlag, 1997.

 Quantum Computation and Quantum Information. M. A. Nielsen
and I. L. Chuang. Cambridge University Press, 2000.

1st Week

Synopsis.
• Formal Languages
• Automata and Turing Machines
• Pushdown Automata
• 1-FLIN and FP
• Recursive Functions

Basic Computation Models

April 1, 2018. 23:59

Main References by T. Yamakami

 K. Tadaki, T. Yamakami, J. C. H. Lin. Theory of one-tape
linear-time Turing machines. Theoretical Computer Science
411(1): 22-43 (2010)

March 2018

1. Formal Language Framework
2. Languages Vs. Decision problems
3. Encoding of Compound Objects
4. Language Families and Complexity Classes
5. Input/Output Sizes of Functions

I. Formal Languages and Language Families

Formal Language Framework I

• We review basics of theory of formal languages and automata.
• An alphabet Σ is a finite nonempty set of “symbols.”
 For example, Σ = { 0,1 } or Σ = { a, b, c, ..., z }.

• A string over Σ is a finite sequence of symbols in Σ.
• Given a string x, |x| denotes the length of x.
• A language L over Σ is any set of strings over Σ.
 For example, if Σ = { 0,1 }, then the following set L is the
language of binary representations of prime numbers:

 L = { 10, 11, 101, 111, 1011, ... }.
• We denote the empty string by λ (or ε) with |λ| = 0.
• Let Σn = { x ∈ Σ* | |x| = n } and Σ≤n = { x ∈ Σ* | |x| ≤ n }.

Formal Language Framework II

• We denote the empty language by ∅.
• The language of all strings over Σ is denoted Σ*.
 For example, if Σ = { 0,1 }, then

 Σ* = { λ, 0, 1, 00, 01, 11, 000, 001, ... }.
• Every language L over Σ is a subset of Σ*.
• We can perform a variety of operations on languages.
• Set-theoretic operations, such as union, intersection,

difference, disjoint union, etc., follow directly from the set-
theoretic definitions.

L1 L2

{ }
{ }
{ }

*
1 2 1 2

*
1 2 1 2

*
1 2 1 2

|

|

|

L L x x L x L

L L x x L x L

L L x x L x L

∩ = ∈Σ ∈ ∧ ∈

∪ = ∈Σ ∈ ∨ ∈

− = ∈Σ ∈ ∧ ∉

Formal Language Framework III

• We define the complement of
L by Lc = Σ* - L.

• The concatenation L1L2 of two
languages L1 and L2 is the
language defined as

Σ*

L Lc

 L1L2 = { xy | x∈L1 and y∈L2 }.
• For each k≥1, we define Lk as the language obtained by

concatenating L to itself k times; that is,
 L1 = L, L2 =LL, L3 = LLL,
• The closure (or Kleene star) of a language L is the

language
 L* = { λ } ∪ L ∪ L2 ∪ L3 ∪ L4 ∪

Languages vs. Decision Problems I
• We want to solve the following decision problems.

 Decision Problem
 instance: input to the problem
 solution: YES (1) or NO (0)
 (or question: does a prescribed property hold?)

• Example:
 instance: a positive integer n
 question: Is n a prime number?

• In order to solve such a problem, we represent instances of
the problem in a way that the program understands.

• Hence, we need to encode a compound object (such as
polygons, graphs, functions, ordered pairs) as a binary string
by combining the representations of its constituent parts.

Languages vs. Decision Problems II

• The set of instances for any decision problem Q is simply the
set Σ*, where Σ = { 0,1 }.

• Since Q is entirely characterized by those problem instances
that produces a 1 (YES) answer, we can view Q as a
language L over Σ, where

 L = { x∈Σ* | Q(x) = 1 }.

• Example:
 (*) Decision Problem

 instance: a binary string of the form u#v
 solution: YES if |u|=|v|; NO otherwise

 (*) Language
 { w | ∃u,v∈{0,1}*[w=u#v ∧ |u|=|v|] }

() 1 (or answers YES) x L Q x Q∈ ⇔ =

We identify
languages with
decision
problems.

Encoding of Compound Objects

• An encoding of a set S of objects is a mapping e() from S to
the set of binary strings.

• Example 1: We encode natural numbers N = { 0,1,2,3,4...} as
the strings { 0,1,10,11,100,... }. Using this encoding, e(0)=0,
e(1)=1, e(2)=10, e(3)=11, e(4)=100.

• Example 2: Keyboard characters are encoded into the ASCII
code using 7 bits. E.g., the encoding of letter “A” is 1000001.

• (*) In the rest of this lecture series, we assume that all objects
are encoded into strings over some reasonable alphabet.

• (*) Therefore, we assume that our problems have the set of
strings over some reasonable alphabet as its instance set.

Language Families and Complexity Classes

• We informally define a complexity class as a set of languages,
membership in which is determined by a complexity measure,
such as running time, of an algorithm that determines whether
a given string x belongs to language L.

• Hence, a complexity class is used as a synonym for “family of
languages.”

• The complement of a language L over alphabet Σ is the
difference Σ* – L = { x∈Σ* | x∉L } and is denoted by Lc.

• Given a complexity class C, the class of all complements of
languages in L, { Lc | L ∈ C }, is denoted by co-C.

Input/Output Sizes of Functions

• Let Σ1 and Σ2 be two alphabets.

• A function Σ1→Σ2 is polynomially bounded (or simply, p-
bounded) if there exists a positive polynomial p such that,
for all x∈Σ1*, |f(x)|≤p(|x|) holds.

• That is, output size cannot be too large compared to
input size.

• A function Σ1→Σ2 is polynomially honest (or simply, p-
honest) if there exists a positive polynomial p such that,
for all x∈Σ1* and y∈Σ2*, if f(x) = y, then |x|≤p(|y|).

• That is, output size cannot be too small compared to
input size.

1. 1-Way Finite (State) Automata
2. Acceptance and Rejection for 1dfa’s
3. Determinism vs. Nondeterminism
4. 1-Way Nondeterministic Finite Automata
5. 2-Way finite (State) Automata
6. Transition Functions of 1npda’s
7. Configurations and Computation
8. Complexity Classes REG and CFL
9. Formal Definition of 1dpda’s

II. Finite (State) Automata

Why Finite (State) Automata?

• Finite (state) automata are one of the simplest
computational models to execute (prescribed) algorithms.

• Finite automata are machines with no memory device.
• Finite automata are also known as “constant-space”

Turing machines (with read-only input tapes and
rewritable work tapes using only constant space)

• There are numerous variants of finite automata in use.
• In particular, we introduce 1-way/2-way variants of finite

automata.
• We also consider deterministic/nondeterministic variants

of finite automata.

1-Way Finite (State) Automata I

• A 1-way deterministic finite (state) automaton (1dfa) M is
a 5-tuple (Q, Σ, δ, q0, F), where
 Q is a finite set of inner states,
 q0 ∈ Q is the initial state (or start state),
 F ⊆ Q is a set of final (or accepting) states,
 Σ is a finite (input) alphabet, and
 δ is the transition function mapping Q×(Σ∪{¢,$}) to Q.

• The finite automaton begins in state q0 and reads the
characters of its input string one at a time.

• δ is viewed as a “program” of a machine.

1-Way Finite (State) Automata II
A “standard” model of 1-way one-head finite (state)
automaton (or simply, 1dfa) is shown as follows.

¢ $ σ

q Head direction: one-way

Left end-marker Right end-marker An infinite read-only tape

M = (Q,Σ,{ȼ,$},δ,q0,F)
Q = set of inner states
Σ = input alphabet
δ : transition function
q0 : initial state
F = set of final states

Inner state ∈ Q

… ….......

L(M) = set of strings
accepted by M

CPU

1-Way Finite (State) Automata III

• A finite automaton consists of a tape, a tape head, and a CPU.
• An input is initially written on the input tape.
• The automaton scans a tape symbol, follows a program,

changes the inner state of the CPU, and then moves the head.

input/work tape
head

p

tape cell

σ

q CPU

A head is scanning
symbol σ in state p.

Instruction: (p,σ) → q

ν

(p,σ) → q

…
…

program

Acceptance and Rejection for 1dfa’s

• An automaton starts scanning ¢ in the initial state q0.
• If the automaton is in inner state q and reads input character

σ, it moves from state q to state δ(q,σ).
• The tape head always moves to the right.
• Whenever its current state q is a member of F, the machine M

is said to have accepted the input string.
• An input that is not accepted is said to be rejected.
• The automaton halts if either it enters a final state or reaches

the right endmarker $.
• A finite automaton M induces a function ϕ, called the final-

state function, from Σ* to Q such that ϕ(w) is the state in which
M ends up after scanning the entire string w.

• Thus, M accepts w iff ϕ(w)∈F.

A simple two-state finite automaton with state set Q = {0,1}, initial
state q0 = 0, input alphabet Σ = {a,b}, final state set F = {1}

Three ways to express the same finite automaton

δ(0,a) = 1, δ(0,b) = 1,
δ(1,a) = 0, δ(1,b) = 0

Three Different Descriptions of 1dfa’s

Examples of 1dfa’s

Determinism vs. Nondeterminism

• Nondeterminism is a natural extension of determinism,
representing “choices of next moves”.

• 1-way deterministic finite automaton (1dfa)

• 1-way nondeterministic finite automaton (1nfa)

q p
σ

q
p1 σ

p2
σ

δ : Q×(Σ∪{¢,$})→Q

δ : Q×(Σ∪{λ,¢,$})→2Q

δ(q,σ) = p

δ(q,σ) = { p1, p2 }

1-Way Nondeterministic Finite Automata

• A 1-way nondeterministic finite (state) automaton (1nfa) M is a
5-tuple (Q, Σ, δ, q0, F), where
 Q is a finite set of inner states,
 q0 ∈ Q is the initial state (or start state),
 F ⊆ Q is a distinguished set of final states,
 Σ is a finite (input) alphabet,
 δ is a function: (Q-F)×(Σ∪{λ,¢,$})→℘(Q), called the

transition function of M (with λ-transitions).

• ℘(Q) (=2Q) denotes the power set (a set of all subsets) of Q.
• A 1nfa begins in state q0, reads the characters of its input

string one at a time, and moves its tape head.
• Final states are considered as halting (accepting) states.

Configurations

• Consider a machine (such as 1dfa and 1npda) M.
• A configuration is, roughly, an instantaneous description of

the machine’s current internal situation.
 In the case of 1dfa M, a configuration of M on input x is of

the form (q,z) with q∈Q and z∈Σ*, which describes that M
is in state q and z is the unread substring of the input x.

 In the case of 1npda M, a configuration of M on input x is
of the form (q,z,w), which states that M is in state q with
unread substring z of x and stack content w.

• The initial configuration of M on input x is a configuration
(q0,x) and (q0,x,Z) for 1dfa and 1npda, respectively.

• A final (or halting) configuration is a configuration with a final
state or the unread string becomes empty in case of 1-way
head move.

Computation

• A computation of M on input x is a series (c0,c1,c2,...) of

configurations such that
 c0 is the initial configuration of M on x and
 for each i ≥ 0, ci+1 is obtained from ci by making a single

step of M.
• Moreover, when M halts (either M enters a final state or it

reads up all input symbols), the computation must end with a
final configuration.

Acceptance and Rejection for 1nfa’s

• If a 1nfa’s current state q is a member of F along a
certain computation path, the machine M is said to have
accepted the input string.

• An input that is not accepted is said to be rejected.

input x

accepted not accepted

input x
1npfa M

non-
deterministic
computation M accepts x M rejects x

or

not accepted

computation
paths

2-Way Finite (State) Automata

• If we allow a finite automaton to move its tape head in
both directions as well as make the tape head stay still
(called a stationary move), then we obtain a
computational model of 2-way finite (state) automaton (or
simply, 2dfa) with two endmarkers.

¢ $ σ

q
Head direction: 2-way or stationary

End-marker End-marker Infinite read-only input tape

M = (Q,Σ,{ȼ,$},δ,q0, Qacc,Qrej)
Σ = input alphabet

Inner state q ∈ Q

… ….......

Qacc ∪ Qrej⊆ Q

δ : a probabilistic
transition function

Formal Definition of 2dfa’s

A 2dfa M = (Q,Σ,{ȼ,$},δ,q0, Qacc,Qrej) has a read-only input tape
and a transition function δ of the form:

• Endmarker condition:
 No tape head should move out of the region marked

between ȼ and $.
• Acceptance and Rejection:
When a 2dfa enters an accepting state (in Qacc) and a

rejecting state (in Qrej), then the 2dfa halts and
accepts and rejects a given input, respectively.

: ()haltQ Q Q Dδ − ×Σ→ ×

Σ =

Σ ∪ { ₵, $ } D = { -1, 0, +1 }

Qhalt = Qacc ∪ Qrej

1-Way Pushdown Automata
Let us review a model of 1-way nondeterministic pushdown
automaton (or 1npda).

¢ $ σ

q

Head direction: one-way

End-marker End-marker Infinite read-only input tape

M = (Q,Σ,{ȼ,$},Θ,δ,q0,Z0,F)

Inner state q ∈ Q

… ….......
Z0

a

Bottom-marker

Stack

......

Q,q0,F are the same
Σ = input alphabet
Θ = stack alphabet
δ : transition function
Z0 : stack’s bottom marker

L(M) = set of strings accepted by M

Transition Functions of 1npda’s

• The arguments of a transition function δ of a 1npda are the
current state of the control unit, the current input symbol, and
the current symbol on top of the stack.

• The result is a set of pairs (q,u), where q is the next state of
the control unit and u is a string which is put on top of the
stack in place of the single symbol there before.

• The second argument of δ may be λ, indicating that a move
that does not consume an input symbol is possible. Such a
move is called a λ-move (or λ-transition).

• No 1npda can remove Z0 from the stack at any step.
• A 1npda may have several choices for its move.
• The use of λ-move is crucial for pushdown automata to

exercise their full computational power.

Formal Definition of 1npda’s

A 1npda M = (Q,Σ,{λ ,ȼ,$},δ,q0, Qacc,Qrej) has a read-only input
tape, a stack and a transition function δ of the form:

• Stack usage:
 A 1npda scans only the topmost stack symbol together

with/without each input symbol, including ȼ and $.
• Acceptance and Rejection:
When a 1npda enters an accepting state (in Qacc) and

a rejecting state (in Qrej), then the 1npda halts and
accepts and rejects a given input, respectively.

*: () ({ }) ()haltQ Q Qδ λ− × Σ∪ ×Θ→℘ ×Θ

Σ =

Σ ∪ { ₵, $ } D = { -1, 0, +1 }

Qhalt = Qacc ∪ Qrej

Examples of 1npda’s

M: 1npda

L(M) = { anbmcn | n,m ≥ 1 } ∪ { anbncm | n,m ≥ 1 }

nondeterministic choice

Complexity Classes: REG and CFL

• We use the following abbreviations for machines.
 1dfa = 1-way deterministic finite automaton
 1npda = 1-way nondeterministic pushdown automaton

• REG = collection of all languages recognized by 1dfa’s
(i.e., regular languages)

• CFL = collection of all languages that are recognized by
1npda’s (i.e., context-free languages)

• co-CFL = { Lc | L ∈ CFL }

REG

CFL
co-CFL

• For the separations among the above
language families, see the next slide.

Known Facts on REG, CFL, and co-CFL

• Here is a short list of well-known facts on 1-way finite
automata.

• (Claim) REG ⊆CFL but REG ≠ CFL.

 Upal = {anbn | n≥1} ∈ CFL – REG
 Pal = { x∈{0,1}* | xR = x } is in CFL – REG.

• The above non-regularity results are obtained by the pumping
lemma for 1dfa’s.

• (Claim) CFL ≠ co-CFL.

 Diff = { aibjck | i ≠ j or j ≠ k } is in CFL but not in co-CFL.

• The pumping lemma was proposed by Bar-Hillel, Perles, and
Shamir (1961).

REG

 co-CFL = ΠCFL
1

ΣCFL
2

ΣCFL
1 = CFL

CFL2

ΣCFL
3

ΠCFL
2

ΠCFL
3

DSPACE(O(n))

CSL

inclusion

proper inclusion

CFLH

CFL(2)

CFL(3)

AC0(CFL)
= LOGCFL

= SAC1

CFLm
CFL(1)

 = CFLm[1]
CFL

CFLm
CFL(ω)

REG/n

CFL/n
L

no inclusion

NL
CFL(ω)

BHCFL

CFL3

NC2

CFLm
CFL(2)

 = CFLm[2]
CFL

PCFL

BPCFL

TC1

AC0(REG)
= NC1

Inclusion Relations among Language Families

Formal Definition of 1dpda’s

A 1dpda M = (Q,Σ,{λ ,ȼ,$},δ,q0, Qacc,Qrej) has a read-only input
tape, a stack and a transition function δ of the form:

• Deterministic requirement:
 A deterministic transition function must satisfy the following

condition:
(1) The output set of δ contains at most one element, and
(2) At every step, the next move of M is uniquely determined,

including λ-moves.
• DCFL = collection of all languages recognized by 1dpda’s

*: () ({ }) ()haltQ Q Qδ λ− × Σ∪ ×Θ→℘ ×Θ

Σ =

Σ ∪ { ₵, $ } D = { -1, 0, +1 } Qhalt = Qacc ∪ Qrej

Examples of 1dpda’s

• The marked even-length palindrome:
 Mark-Pal = { wcwR | w∈ {0,1}* }.
• Here is a 1dpda that recognizes Mark-Pal.

1. Languages Accepted by Algorithms
2. Turing Machines
3. Time and Space Complexity
4. One-Tape Linear-Time Turing Machines
5. Polynomial-Time Algorithms
6. Complexity Classes P, NP, co-NP
7. Alternating Finite Automata
8. Alternating Turing Machines

III. Turing Machines

Languages Accepted by Algorithms

• An “algorithm” is an informal term for “mechanical
procedure.”

• We say that an algorithm A accepts a string x∈Σ* if,
given input x, the algorithm’s output A(x) is 1.

• Similarly, an algorithm A rejects a string if A(x) = 0.

• The language accepted by algorithm A is the set of
strings L = { x∈Σ* | A(x) = 1 }; that is, the set of strings
that the algorithm accepts.

• A language L is decided (or recognized) by algorithm A if
every string in L is accepted by A and every string not in
L is rejected by A.

Acceptance vs. Decision

• A language L is accepted in time t(n) by algorithm A if
1. it is accepted by A and
2. If, in addition, for any length-n string x∈L, algorithm
A accepts x in time t(n).

• A language L is decided (or recognized) in time t(n) by
algorithm A if, for any length-n string x∈Σ*, the algorithm
correctly decides whether x∈L in time t(n).

• To accept a language L A accepts every string in L.
• To decide (or recognize) a language L A accepts and

rejects every string in Σ* correctly.

Time and Space Complexity

• Let L be a problem and let s,t be functions from N to N.
• We say that an algorithm solves a (decision) problem in

time O(t(n)) if, when it is provided a problem instance x
of length n=|x|, the algorithm can produce the solution in
O(t(n)) time.

• Similarly, we define the notion of solving in space O(s(n)).

• The problem L is of time complexity t(n) if (i) there exists
an algorithm that solves L in time t(n) for all length-n
inputs.

• The problem L is of space complexity s(n) if (i) there
exists an algorithm that solves L in space s(n) for all
length-n inputs.

Turing Machines I

• In 1936, Alan Turing introduce
the notion of Turing machine to
realize “mechanical
procedures.”

• This notion had become a
blueprint of the existing
computers.

• “On Computable Numbers, with
an Application to the
Entscheidungsproblem,” 1936.

Turing Machines II
• A Turing machine consists of tape(s), tape head, and CPU.
• An input string is initially written on the input/work tape.
• The machine scans a symbol on the tape, follows a program,

rewrites the tape symbol and the inner state of the CPU, and
then moves the head.

input/work tape
head

p

tape cell

σ

q

τ

CPU

A head is scanning
symbol σ in state p.

Instruction: (p,σ) → (q,τ,+1)

ν

(p,σ) → (q,τ,+1)

…
…

program

a computation
 =
a series of
configurations
like these ones

One-Tape Turing Machines I

• We consider one-tape two-way (one-head)
Turing machines.

• A one-tape two-way (one-head) Turing
machine M is defined as follows.

¢ $ σ

q

Head direction: { -1, 0, +1 }

End-marker End-marker An infinite re-writable tape

M = (Q,Σ,{ȼ,$},δ,q0,Qacc,Qrej) Σ = input alphabet

Deterministic case - δ: Q× → Q×Σ×{-1,0,+1}

Inner state

…… …

Nondeterministic case - δ: Q× →P(Q×Σ×{-1,0,+1})

Σ =

Σ ∪ { ₵, $ } Σ

Σ

Examples of Tape Head Moves

• Consider the following simple task.
• Task of modifying the current tape content
 current tape content x∈Σ*
 produce x#x on an input/work tape

• To get this task done, a 1DTM requires O(n2) time by
moving a tape head back and forth at most n times.

1 0 0 1 0

1 0 0 1 0 #

1 0 0 1 0 # 1

1 0 0 1 0 # 1 0

.....
x =

One-Tape Turing Machines II

• Major features
 A tape of a one-tape Turing machine is used as an

input/work tape, stretching to both the left and the right.
 Initially, the tape is empty (i.e., filled with the blank

symbols) except for an input string.
 This machine can freely rewrite tape symbols,

including ȼ and $.
 This machine can use any blank space to remember

any information necessary to carry out its computation.

Strong Definition for Running Time
• Michel (1991) proposed the notion of strong

definition for running time of one-tape Turing
machines.

• The running time is the length of the longest
computation accepting/rejecting path.

Input x

Accept/reject

Input x

Accept/reject

Height Computation
trees

Height

One-Tape Linear-Time Turing Machines

• We use the following abbreviations:
• 1DTM = one-tape deterministic Turing machine
• 1NTM = one-tape non-deterministic Turing machine

(using the strong definition for its running time)

• 1-DLIN = collection of all languages that are recognized
by 1DTMs in linear time (i.e., O(n) time)

• 1-NLIN = collection of all languages that are recognized
by 1DTMs in linear time

• NOTE: All accepting and/or rejecting computation paths
of a 1NTM are always terminated within O(n) time.

One-Tape Linear-Time Classes

• The complexity classes 1-DLIn and 1-NLIN turn out to be
closely related to finite automata.

• It is obvious that REG ⊆ 1-DLIN ⊆ 1-NLIN.

• Moreover, we can show that the computational power of
1NTMs is significantly limited when their running time is
restricted to linear time.

• Collapse results
 1-DLIN = 1-NLIN = 1-DTIME(o(nlog(n))) = REG
 [Hennie65,Kobayashi85,Tadaki-Yamakami-LinL04]

Polynomial-Time Algorithms

• Next, we are interested in polynomial time computation
made by Turing machines.

• A polynomial-time algorithm takes inputs of size n and
their worst-case running time is O(nk) for a certain fixed
constant k.

• Question: Can all problems be solved by polynomial-time
algorithms?

• Answer: No!

• Unfortunately, there are problems, such as Turing’s
“Halting Problem,” that cannot be solved by any
computer, no matter how much time we allow.

Polynomial-Time Solvable Problems

• Let t be a time-bounding function from N to N.

• We say that an algorithm (or a deterministic Turing
machine) solves a (decision) problem in time O(t(n)) if,
when it is provided a problem instance x of length n=|x|,
the algorithm can produce the solution in O(t(n)) time.

• A (decision) problem is polynomial-time solvable if there
exists an algorithm to solve it in time O(nk) for some
constant k.

Acceptance vs Rejection for NTMs

• On input x, an NTM M is said to accept x if M enters an
accepting state along a certain computation path.

• An input that is not accepted is said to be rejected.

input x

accepted not accepted

input x
NTM M

non-
deterministic
computation M accepts x M rejects x

or

not accepted

computation
paths

Complexity Classes P, NP, and co-NP

• “Polynomial time” means that the running time of a
machine requires at most nc steps for any input of length
n, where c is a suitable constant, independent of n.

• We define three complexity classes associated with
polynomial-time computability.
• P = set of all decision problems solvable by

deterministic Turing machines in polynomial time
• NP = set of all decision problems solvable by

nondeterministic Turing machines in polynomial time
• co-NP = set of all complements of NP problems

• We will return to these complexity classes in Week 2.

Alternating Finite (State) Automata I

• A 2-way alternating finite (state)
automaton (2afa) is a generalization
of a 2-way nondeterministic finite
automaton (2nfa).

• A 2afa’s inner states are partitioned
into a set Q∃ of existential states and
a set Q∀ of universal states.

• Roughly speaking, at each step, if the
2afa’s inner state is existential, then it
makes nondeterministically choose an
accepting branch, and if its inner state
is universal, then it checks that all
branches are accepting.

∀

∃

∃

∀

∀

wrong

bad computation tree

Alternating Finite (State) Automata II

∀

∃

∃

∀

∀

accepting
computation tree

∃

∀

∀

∃

∃

∀

∀

rejecting
computation tree

∃

∀

accepting
subtree

Alternating Turing Machines

• Similar to 2afa’s, an alternating Turing machine (ATM) is
also a generalization of a nondeterministic Turing
machine (NTM).

• An ATM’s inner states are partitioned into a set of
existential states and a set of universal states.

• ATIME,SPACE(t(n),s(n)) = set of all decision problems
solvable by ATMs in time at most t(|x|) using space at
most s(|x|) on all inputs x.

• If there is no time bound t(n) or space bound s(n), we
use the notation * (asterisk).

Relationships of ATMs to Other Machines

• There are close connections between alternating
machines and deterministic machines.

• (Claim) [Chandra-Kozen-Stockmeyer (1981)]
 ATIME,SPACE(*,log) = P
 ATIME,SPACE(*,poly) = EXP
 ATIME,SPACE(poly,*) = PSPACE

• (*) EXP is defined by exponential-time DTMs. PSPACE
(polynomial space class) will be discussed extensively in
Week 3.

1. Decision Problems vs. Functions
2. Computing Functions Using Output Tapes
3. Function Class 1-FLIN
4. Polynomial-Time Computable Functions
5. Function Class FP
6. Recursive Functions

VI. Functions and Function Classes

Decision Problems vs. Functions

• A decision problem (or a language) is a problem of
determining whether an instance satisfies a certain
property by accepting or rejecting the instance.

• In other words, a decision problem is to output a single
bit; YES (1) or NO (0).

• In contrast, a function is to produce outcomes (or
outputs) from each instance.

• By encoding “objects” into strings, we can handle any
functions that map “objects” to “objects.”

• Many problems are categorized as functions.
• For example, search problems, optimization problems,

counting problems, etc.

Computing Functions Using Output Tapes
• Consider functions mapping from Σ* to Σ* (or N), where

N={0,1,2,…} is the set of all natural numbers.

• To compute a function, we need to equip a machine with an
extra write-only output tape whose tape head moves in one
direction.

σ

q

An input/work tape

q ∈ Q
…... …..

A write-only output tape

f(x)

head: only one direction

Start cell

Polynomial-Time Computable Functions

• Let f be a function mapping Σ* to Σ* (or N).
• Let t be a time-bounding function from N to N.

• We say that a DTM M computes f in time O(t(n)) if, when

M is provided a problem instance (or input) x of length n,
M produces the outcome of the function on an output
tape in O(t(n)) time.

• A function is said to be polynomial-time computable if
there exists a DTM to compute it in time O(nk) for some
constant k.

Function Class FP

• We introduce the function class, called FP.
• A function f: Σ*→ Σ* (or N) is in FP ⇔ there exists a

polynomial-time DTM M such that, for every input x∈Σ*,
 f(x) = outcome of M on x.
• Given a language A, χA denotes the characteristic function of

A; that is,

• (Claim) For any language A, the following are equivalent.
1. A ∈ P.
2. χA ∈ FP.

1 if
()

0 otherwiseA

x A
xχ

∈
=

Output Convention for 1-Tape Machines

• Since a 1DTM M has only one input/work tape, we need
to designate the same input tape as the output tape of
the machine as well.

• To specify an “outcome” of the machine, we adopt the
following convention.

• Output Convention
When the machine eventually halts with its output

tape consisting only of a single block of non-blank
symbols, say s, surrounded by the blank symbols, in
a way that the leftmost symbol of s is written in the
start cell, we consider s as the valid outcome of the
machine.

Function Class 1-FLIN

• We pay attention to functions computed by 1-tape TMs, which
treat the input/work tape as also an output tape.

• We say that a 1DTM M computes function f if, on any input x
given onto an input/work tape, M writes down f(x) on the same
tape, enters an accepting state, and halts.

• Similarly to 1-DLIN, we define its functional version.

• 1-FLIN = class of all functions computed by 1DTMs in linear
time (i.e., O(n) time)

• Simple Example: A function f defined by
 input: x ∈ {0,1,#}*
 output: y2 s.t. ∃y1,y2∈{0,1}* ∃y3∈{0,1,#}* [x = y1#y2#y3]

Recursive Functions

• If we do not place any bound on the running time of
underlying DTMs (with output tapes) but we guarantee
that the DTMs halt eventually, then we obtain “recursive”
functions.

• Let f be a function mapping from Σ* to Σ* (or N).

• A function f is recursive (or computable) if there exists a
DTM M such that, for any x, M produces f(x) on an
output tape and then halts.

• A language L is recursive (or computable) if χL is a
recursive function.

Non-Recursive Languages

• Consider the following decision problem.

• Halting Problem: HALT
 instance: a (description) of a 1DTM M and an input

string x
question: does M halt on input x?

• (Claim) HALT is not recursive.
• (Proof Idea) The proof is done by contradiction. This

contradiction can be obtained by employing a sort of the
Epimenides paradox: Epimenides was a Cretan who
made one immortal statement “All Cretans are liars.”

Q & A
I’m happy to take your question!

 END

	Advanced Research Topics in Computational Complexity Theory
	Basic Information on This Lecture Series
	Lecturer
	Purpose of This Lecture Series
	Course Schedule: 16 Weeks
	Course Schedule: 16 Weeks
	Course Schedule: 16 Weeks
	Where to Find Technical Papers
	YouTube Videos I
	YouTube Videos II
	Suggested Reading
	1st Week
	Main References by T. Yamakami
	I. Formal Languages and Language Families
	Formal Language Framework I
	Formal Language Framework II
	Formal Language Framework III
	Languages vs. Decision Problems I
	Languages vs. Decision Problems II
	Encoding of Compound Objects
	Language Families and Complexity Classes
	Input/Output Sizes of Functions
	II. Finite (State) Automata
	Why Finite (State) Automata?
	1-Way Finite (State) Automata I
	1-Way Finite (State) Automata II
	1-Way Finite (State) Automata III
	Acceptance and Rejection for 1dfa’s
	Three Different Descriptions of 1dfa’s
	Examples of 1dfa’s
	Determinism vs. Nondeterminism
	1-Way Nondeterministic Finite Automata
	Configurations
	Computation
	Acceptance and Rejection for 1nfa’s
	2-Way Finite (State) Automata
	Formal Definition of 2dfa’s
	1-Way Pushdown Automata
	Transition Functions of 1npda’s
	Formal Definition of 1npda’s
	Examples of 1npda’s
	Complexity Classes: REG and CFL
	Known Facts on REG, CFL, and co-CFL
	Slide Number 44
	Formal Definition of 1dpda’s
	Examples of 1dpda’s
	III. Turing Machines
	Languages Accepted by Algorithms
	Acceptance vs. Decision
	Time and Space Complexity
	Turing Machines I
	Turing Machines II
	Slide Number 53
	One-Tape Turing Machines I
	Examples of Tape Head Moves
	One-Tape Turing Machines II
	Strong Definition for Running Time
	One-Tape Linear-Time Turing Machines
	One-Tape Linear-Time Classes
	Polynomial-Time Algorithms
	Polynomial-Time Solvable Problems
	Acceptance vs Rejection for NTMs
	Complexity Classes P, NP, and co-NP
	Alternating Finite (State) Automata I
	Alternating Finite (State) Automata II
	Alternating Turing Machines
	Relationships of ATMs to Other Machines
	VI. Functions and Function Classes
	Decision Problems vs. Functions
	Computing Functions Using Output Tapes
	Polynomial-Time Computable Functions
	Function Class FP
	Output Convention for 1-Tape Machines
	Function Class 1-FLIN
	Recursive Functions
	Non-Recursive Languages
	Slide Number 77
	Slide Number 78
	Slide Number 79

