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Course Schedule: 16 Weeks 

• Week 1:  Basic Computation Models 
• Week 2:  NP-Completeness, Probabilistic and Counting Complexity Classes  
• Week 3:  Space Complexity and the Linear Space Hypothesis 
• Week 4:  Relativizations and Hierarchies 
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• Week 11:  Basics of Quantum Information 
• Week 12:  BQP, NQP, Quantum NP, and Quantum Finite Automata 
• Week 13:  Quantum State Complexity and Advice 
• Week 14:  Quantum Cryptographic Systems 
• Week 15:  Quantum Interactive Proofs 
• Week 16:  Final Evaluation Day (no lecture) 
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YouTube Videos 

• This lecture series is based on numerous papers of T. 
Yamakami. He gave conference talks (in English) and 
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.  

• Use the following keywords to find a playlist of those 
videos.  

• YouTube search keywords: 
    Tomoyuki Yamakami  conference  invited talk playlist 
 

Conference talk video 
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✎ T. Yamakami. Oracle pushdown automata, nondeterministic 
reducibilities, and the hierarchy over the family of context-free 
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Computer Science, vol. 8327, pp. 514-525 (2014). A 
complete version is available at  arXiv:1303.1717. 

✎ T. Yamakami. One-way bounded-error probabilistic 
pushdown automata and Kolmogorov complexity (preliminary 
report). In Proc. of DLT 2017, Lecture Notes in Computer 
Science, vol. 10396, pp. 353-364 (2017). A complete and 
corrected version will be posted at arXiv.org shortly. 
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I. Basic Complexity Classes 



Complexity Measures 

• A notion of complexity measure is used to classify various 
“problems” (i.e., languages and functions). 

• Basic complexity measures of algorithms include the 
running time and the usage of memory space. 

• We say that problem A is of time complexity t(n) if there 
exists an algorithm that solves A in time t(n) for all length-n 
inputs.   

• Similarly, problem A is of space complexity s(n) if there 
exists an algorithm that solves A in space s(n) for all length-
n inputs.   

• (*) Other complexity measures, including circuit complexity 
and state complexity, will be discussed in Weeks 3 and 6. 



Complexity Classes 

• Assume that a specific complexity measure is given. 

• Informally, we define a complexity class as a collection  
of decision problems, solutions of which is measured by 
a complexity measure of an algorithm. 

• Namely, a complexity class is a set of problems, which 
can be solved by algorithms of the given complexity 
measure. 

• In particular, a complexity class of decision problems is 
also called a family of languages because decision 
problems are identified with languages (see Week 1).  



Complexity Class P 

• The complexity class P is the set of decision problems 
(or languages) that are polynomial-time solvable.  

• More precisely, a decision problem (or a language) L is 
in P if there exist a constant k≥1 and a multi-tape DTM 
(deterministic Turing machine) M s.t., for any input x,   
1. x∈L → M accepts x in O(nk) time, and 
2. x∉L → M rejects x in O(nk) time. 

 
• Many natural problems belong to this complexity class P. 
• (Example) The problem PRIMES of determining whether 

a given positive integer is a prime number belongs to P. 
[Agrawal-Kayal-Saxena (2002)]. 



Who Introduced Class P? 

• The class P was introduced in 1964 by Alan Cobham, 
and independently, in 1965 by Jack Edmonds.  
 Alan Cobham. The intrinsic computational difficulty of 
functions. In Proceedings of the 1964 Congress for Logic, 
Methodology, and the Philosophy of Science, pp. 24-30, 
1964. 
 Jack Edmonds. Paths, trees, and flowers. Canadian 
Journal of Mathematics, Vol. 17, pp. 449-467, 1965. 

 
 

A. Cobham J. Edmonds 



Closure Properties of P 

• The complexity class P is closed under Boolean 
operations, concatenation, and Kleene star. 
 

• (Claim) If L1,L2∈P, then  
           L1∪L2∈P,  L1∩L2∈P, L1

c∈P, L1L2∈P, and  L1*∈P. 
 
 L1∪L2  : union 

 L1∩L2  :  intersection 
 L1

c : complement 
 L1L2 : concatenation 
 L1* : Kleene star  (or Kleene closure) 

Boolean operations 



Acceptance vs Rejection for NTMs (revisited) 

• On input x, an NTM M is said to accept x if M enters an 
accepting state along a certain computation path.  

• An input that is not accepted is said to be rejected. 
 

input  x 

accepted not accepted 

input  x 
NTM M 

non-
deterministic 
computation 

M accepts x M rejects x 
or 

not accepted 

computation 
paths 



Complexity Class NP 

• A decision problem (or a language) L is in NP if there is 
an NTM (nondeterministic Turing machine) M such that, 
for any input x, 
1. x∈L ↔ there exists an accepting computation path 

of M on x (or x is accepted by M), and 
2. M halts in polynomial time. 

 
• (Claim)  P ⊆ NP NP 

P 
 Proof:  This is because every 

deterministic computation is a 
special case of a 
nondeterministic computation.  

Many believe in this way 



Natural NP Problems  I 

• There are many natural decision problems that fall into 
the complexity class NP. For example: 
 

• Boolean Formula Satisfiability Problem (SAT) 
 instance: a Boolean formula φ 
 question: Is there any satisfying assignment for φ? 

 
• Traveling Salesperson Problem (TSP) 
 instance: a set of cities, a table of traveling cost 

between two cities, and a budget k 
 question: Is there any tour (i.e., visiting each city 

exactly once and finishing at the starting city) with 
cost at most k? 

This problem will be 
explained later. 



Natural NP Problems  II 

• Here are more examples of NP problems. 
 

• 0-1 Knapsack Problem (KNAPSACK) 
 instance: a finite set U of items, size s(u)∈N+, value 

v(u)∈N+ for each u∈U, bounds B∈N+, and k∈N+  
 question: Is there a subset A⊆U s.t. Σu∈As(u)≤B and 
Σu∈Av(u)≥k? 

• Graph 3-Colorability Problem (3-COLOR) 
 instance: a graph G=(V,E)  
 question: Is G 3-colorable? 

“3-colorable” means that there exist a function 
f : V → {1,2,3} s.t. f(u)≠f(v) whenever {u,v}∈E? 



Another Formulation of NP 

• Here is a quite different formulation of NP. 

• A language L belongs to NP iff there exists a two-input 
polynomial-time algorithm A and constant c≥1 such that 

             L = { x∈{0,1}* | ∃ y s.t. |y|=O(|x|c) and  A(x,y) = 1 }. 

• In this case, “y” is called a certificate.  
• Moreover, this algorithm A is said to verify the language 

L in polynomial time. 
 

• In other words, the complexity class NP is the class of 
languages that can be verified by a polynomial-time 
algorithm. 
 



Who Introduced Class NP? 

• The class NP was introduced in 1965 by Jack Edmonds, 
who also conjectured that P≠NP.  
 
 Jack Edmonds. Paths, trees, and flowers. Canadian 
Journal of Mathematics, Vol.17, pp.449—467, 1965. 

 
 



Complexity Class co-NP 

• For any language L, the complement Lc of L is the 
difference Σ* - L. 

• That is, Lc is the problem obtained from L by exchanging 
its outcomes of 0 and 1; namely, 

          
  
• (Claim)  If L∈P then Lc∈P. In other words, P = co-P. 

• We define the complexity class co-NP as the set of 
decision problems (or languages) L such that Lc∈NP. 

• In other words,  L ∈ NP  ⇔  Lc ∈ co-NP.  
• (Claim)  CFL ∪ co-CFL ⊆ P ⊆ NP ∩ co-NP ⊆ NP. 

{ }* |cL x x L= ∈Σ ∉



Relationships among P, NP, and co-NP 

 
 

Four possible scenarios   



The P = NP Problem 

• The P=NP Problem is one of the most famous open 
problems in our time. 

• This problem asks if all NP problems are solvable in 
polynomial time. That is,  

                    Does L∈NP imply L∈P?  
 

• Clay Mathematics Institute would award anyone who 
solves the P=NP problem with $1,000,000 prize. 

    (See the next slide.) 





Open Problems 

• Associated with P, NP, and co-NP, there are many 
questions that we do not know their answers at present.  

• Here are some of the important open questions. 
 
1. Does L∈NP imply L∈co-NP?   (Equivalently, is NP = co-

NP?) 
2. Does L∈NP∩co-NP imply L∈P?  (Equivalently, is P = 

NP∩co-NP?) 



1. Polynomial-Time Many-One Reductions 
2. Closure Properties of P and NP under ≤p

m 

3. NP-Complete Problems 
4. Formula Satisfiability 
5. Satisfiability Problem SAT 
6. SAT and 3SAT are NP-Complete 
7. How to Prove the NP-Completeness 

 

II. NP-Complete Problems 



Polynomial-Time Many-One Reductions 

• Recall from Week 1 the function class FP of polynomial-
time computable functions. 

• We say that problem A is polynomial-time (many-one) 
reducible to problem B if there exists a function f∈FP  
such that, for every x, 

               x ∈ A ↔ f(x) ∈ B.   

• In this case, we write:  
p
mA B≤

1 2    via    p
mL L f≤

(See the next slide.) 

Σ* Σ* 



1 2    via    p
mL L f≤ 1 2[ ( ) ]x x L f x L∀ ∈ ↔ ∈

Σ* Σ* 



Closure Properties of P and NP under ≤p
m 

• Consider closure properties under ≤p
m

 . 
 

• (Claim)  If L1≤p
m

 L2  and L2∈P, then L1∈P.  

• (Claim)  If L1≤p
m

 L2  and L2∈NP, then L1∈NP.  
 

• In other words, P and NP are closed under ≤p
m-

reductions. 
• These closure properties are critical for the introduction 

of  a completeness notion.  
 
 



NP-Complete Problems I 

• Polynomial-time reductions provide a formal means for 
showing that one problem is at least as hard as another, 
to within a polynomial-time factor. 

• That is, if L1 ≤p
m L2, then L1 is not more than a polynomial 

factor harder than L2.  
 

• A language L ⊆ {0,1}* is called NP-hard (or many-one 
hard for NP) if  

     for every language A ∈ NP,  A ≤p
m L.  

• A language L is called NP-complete (polynomial-time 
many-one complete for NP, or ≤p

m
 -complete for NP) if  

1. L ∈ NP  and 
2. L is NP-hard. 



NP-Complete Problems II 

• In other words, a language L is called NP-complete if  
1. L ∈ NP  and  
2. for every language A ∈ NP,   A ≤p

m L.  
 

• All NP-complete problems are the hardest problems in 
NP to solve in polynomial time. 

• We sometimes write NPC to denote the class of all NP-
complete languages (or NP-complete problems). 

• There are hundreds of NP-complete problems 
discovered so far. (See, e.g., [Garey-Johnson (1979)].) 



NP 

P 

NPC 

NPI 

The set of all 
NP complete 
problems 

The set of all 
P problems 

The set of all 
problems 
having 
intermediate 
difficulty 

Inside of NP 

Efficiently solvable 
problems 



Formula Satisfiability 

• Here, we formulate the (formula) satisfiability problem  
(SAT) in the form of language. 

• An instance of SAT is a Boolean formula ϕ composed of  
1. n Boolean variables: x1, x2, ..., xn; 
2. m Boolean connectives: ∧ (AND), ∨ (OR), ¬ (NOT); 

and 
3. parentheses (  “(“ and “)”  ). 

• It is possible to encode any Boolean formula ϕ into a 
certain binary string of length that is polynomial in n+m. 

• Hereafter, we always assume such an encoding. 



Satisfiability Problem SAT 

• A truth assignment for a Boolean formula ϕ is a set of 
values assigned to all variables of ϕ. 

• A satisfying assignment for a Boolean formula ϕ is a 
truth assignment that causes ϕ to evaluate to 1.  

• A formula with a satisfying assignment is a satisfiable 
formula. (See the next slide.) 
 

• The satisfiability problem (SAT) is a decision problem: 
 instance: a Boolean formula ϕ; 
question: is ϕ satisfiable? 



Example: Satisfying Assignments 

• Here is an example of a satisfiable formula. 
 
 
 

• satisfying assignment  
 

1 2 1 3 2 4( ) (( ) )x x x x x xϕ ≡ ¬ ¬ ∨ ∧¬ ¬ ∧ ∨ ∧

(1,0,0,1) ( 1 0) (( 1 0) 0) 1
                (0 0) ((0 0) 0)
                0 (0 0)
                1 1
                1

ϕ ≡ ¬ ¬ ∨ ∧¬ ¬ ∧ ∨ ∧
= ¬ ∨ ∧¬ ∧ ∨
= ¬ ∧¬ ∨
= ∧
=

( ) ( )1 2 3 4, , , 1,0,0,1x x x x =



SAT and 3SAT are NP-Complete 

• SAT is the first problem to be shown as an NP-complete 
problem.  
 

• We restrict formulas to have 3-conjunctive normal form 
(3CNF), which has at most 3 literals in each clause.  
 

• 3-Satisfiability Problem (3SAT) 
 instance: a 3CNF formula ϕ 
 question: is ϕ satisfiable? 
 

• E.g., 3CNF: ϕ ≡ (x1∨x2∨¬x3)∧(x1∨¬x3)∧(¬x2∨x3) 
 

• (Claim)  SAT and 3SAT are NP-complete. [Cook (1971)] 

A literal is either a 
variable or the negation 
of a variable. 



How to Prove the NP-Completeness 

• Once we find some NP-complete problems, it is rather easy 
to prove that other NP problems are also NP-complete. 

• Her is a way to prove the NP-completeness of other 
problems. 

•  (Claim)  Assume that A is a known NP-complete problem. 
If B is an NP problem and A ≤p

m B, then B is NP-complete. 
 Proof Sketch:  
• Let C be any NP problem. Since A is NP-complete, it 

follows that C ≤p
m A.  

• If B satisfies A ≤p
m B, then the transitivity property of ≤p

m 
implies that C ≤p

m B.  
• Hence, B is also NP-complete by definition. QED 
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III. Kolmogorov Complexity 



Universal Turing Machines 

• Let us consider a universal Turing machine, which can 
simulates, on any input, any 1DTM equipped with an output 
tape and produces the same outputs whenever the original 
1DTM halts. 

• More precisely, a universal Turing machine is a DTM with 
an output tape that takes inputs of the form 〈e(M),x〉 and 
simulates M on input x, where e(M) denotes an appropriate 
binary encoding of a 1DTM M. 

• We write U for a fixed universal Turing machine. 
• Clearly, it follows that U(〈e(M),x〉) = M(x) for any 1DTM M 

and any input x whenever M(x) halts. 
• Note that U takes a standard input x and any binary input p, 

which is considered to be a program (that is e(M)). 



Kolmogorov Complexity 

• Roughly, the Kolmogorov complexity of string x is the 
minimal size |y| of any binary string y such that U(y) = x.  

• In other words, the Kolmogorov complexity of x means 
the size of the smallest program that produces x. 

• bin(n) = binary representation of n∈N 
• x=x1x2...xn ∈{0,1}n. 
• self-delimiting code of x : xsdc = 1|bin(|x|)|0bin(|x|)x. 

• Conditional Kolmogorov complexity of x conditioned to y: 
           C(x|y) = min{ |p| : U(psdcy) = x, p ∈{0,1}* } 
• Kolmogorov complexity of x: 
           C(x) = C(x|λ) 

 
 
 



Basic Properties 

• Here are known properties of Kolmogorov complexity. 
a. C(x|y) ≤ C(x) ≤ |x| + O(1) 
b. C(f(x)|y) ≤ C(x|y) + O(1) for any recursive function f 
c. C(x) ≤ C(x|y) + C(y) + O(min{ log|x|, log|y| }) 

• Examples: 
 Let x = 1n. 
 C(1n) = O(log(n)), compared to |1n|=n. 
 To see this, consider the following program: 
o on input λ, retrieve “n” (in binary) from CPU memory 

(O(log(n) bits), and repeatedly output 1 for n times. 



Compressibility and Incompressibility 

• Let x be any binary string and let n∈N. 

• x is compressible ⇔ C(x)<|x|.  
    Otherwise, x is incompressible. 
• n is compressible ⇔ C(bin(n))<log(n).  
    Otherwise, n is incompressible.  

• (Claim) For any (sufficiently) large n, there exists an 
incompressible string of length n.  

• An incompressible string is sometimes called 
algorithmically random, which is different from “statistical 
randomness.” 

• (*) Kolmogorov complexity will be used shortly. 
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IV. Probabilistic Complexity Classes 



2-Way Probabilistic Finite Automata 
Let us review a model of 2-way probabilistic finite 
automaton (or simply, 2pfa) with endmarkers. 

¢ $ σ 

q 

Head direction: 2-way 

End-marker End-marker Infinite read-only input tape 

M = (Q,Σ,{ȼ,$},δ,q0, Qacc,Qrej) 
Σ = input alphabet 

Inner state q ∈ Q 

… …....... 

Qacc∪ Qrej ⊆ Q 

δ : a probabilistic 
transition function  

This is 
quite 
different 



Formal Definition of 2pfa’s 

A 2pfa M = (Q,Σ,{ȼ,$},δ,q0,Qacc,Qrej) has a read-only input tape 
and a probabilistic transition function δ of the form: 

 
 
 
 

• Stochastic Requirement:   
• Endmarker condition: 
 No tape head should move out of the region marked 

between ȼ and $.  
 

• Similarly, we can define 1pfa’s. 
    (See the next slide.) 

: [0,1]Q Q Dδ ×Σ× × →


All probabilities sum up to 1. 

Σ =


Σ ∪ { ₵, $ } D = { -1, 0, +1 } 

( , )
( , ) ( , , , ) 1

p d
q q p dσ δ σ ∀ = ∑



Examples of 1pfa’s (one-way case) 

• As an example of 1pfa, let us consider the following simple 
1pfa and its transition function (expressed as matrices). 

a,b/0.5 

a/0.5 

b/0.7 

q0 

q1 

q2 

qf 

b/0.5 

a/0.5 

a,b/1.0 

a/0.5 
b/1.0 

a/0.5 

a/0.5 

0.5 0.5 0 0
0.5 0.5 0 0.5
0 0 0 0
0 0 1.0 0.5 a

 
 
 
 
 
 

0 0.5 0 0
0.3 0 0 5
0.7 0 0 0
0 0.5 1.0 1.0 b

 
 
 
 
 
 

=1 

b/0.3 

x′ = Ax 0

1

2

f

q
q
q
q

x A 



Probabilistic Computation 
• A 2pfa produces accepting/non-accepting computation 

paths (which may or may not halt).  

input  x 

accepted not accepted 

input  x 
2pfa M 

probabilistic 
computation 

probabilistic 
computation 

M accepts x M  does not accept x 

or 

accepted not accepted 



Cut-Point Criteria 
• Rabin (1963) introduced a notion of “cut point”. 

• Let M be a 2pfa, let η∈[0,1], and let L⊆Σ*. 

• pM,acc(x) = acceptance probability of M on input x 

• A 2pfa recognizes language L with cut point η  ⇔  for all 
x∈Σ*, x∈L ↔ pM,acc(x) ≥ η 

• A 2pfa M is said to have an isolated cut point η for 
language L  ⇔  there exists a constant ε∈[0,1/2) s.t., for 
all x∈Σ*, (1) x∈L → pM,acc(x) ≥ η+ε and (2) x∉L → 
pM,acc(x) ≤ η-ε  

• A 2pfa M is said to have an exact cut point η for 
language L  ⇔  for all x∈Σ*, x∈L ↔ pM,acc(x) = η  



Bounded-Error Criteria 
• Let M be a 2pfa, let η∈[0,1], and let L⊆Σ*. 

• pM,rej(x) = rejection probability of M on input x 

• A 2pfa M is said to have a bounded-error probability for 
language L  ⇔  there exists a constant ε∈[0,1/2) s.t., for 
all x∈Σ*, (1) x∈L → pM,acc(x) ≥ 1/2+ε and (2) x∉L → 
pM,rej(x) ≥ 1/2+ε  

• A 2pfa recognizes language L with unbounded-error 
probability  ⇔  for all x∈Σ*, (1’) x∈L → pM,acc(x) > 1/2 and 
(2’) x∉L → pM,rej(x) ≥ 1/2  

• “Bounded-error probability” is, in essence, equivalent to 
“isolated cut point,” but “unbounded-error probability” 
slightly deviates from “cut point.”  



Probabilistic Language Families 

• rat-1pfa = one-way rational probabilistic finite automaton 
• SLrat = collection of all languages recognized by rat-1pfa’s 

with cut point  ½. Such languages are called stochastic 
languages.  

• SL=
rat = collection of all languages L recognized by rat-

1pfa’s s.t. ∀x [ x∈L ↔ M accepts x with exact cut point ½ ] 

• (Claim)  REG ⊆ SL=
rat  ⊆ SLrat 

• (Claim)  SLrat is also defined by rat-2pfa’s with cut point ½. 
[Kaņeps (1989)]  
 This means that there is no difference between 1pfa’s 

and 2pfa’s in case of cut point ½.  
• Later, we will connect them to 1-tape linear-time classes. 



1-Way Probabilistic Pushdown Automata 
Let us review a model of 1-way (one head) probabilistic 
pushdown automaton (or 1ppda). 

σ 

q 
Head direction: one-way 

Infinite read-only input tape 

M = (Q,Σ,{ȼ,$}, Γ,ΘΓ,δ,q0,Z0,F) 

Inner state q ∈ Q 

… …....... 

Z0 

τ 

Bottom-
marker 

Stack 

...... 

Q,q0,F: standard notation 
Σ = input alphabet 
Γ = stack alphabet 
ΘΓ = a finite subset of Γ* 

δ : transition function 
Z0 : stack’s bottom marker 

L(M) = set of strings 
accepted by M 

¢ $ 



Probabilistic Transition Functions 

• A 1ppda M uses a probabilistic transition function δ of the 
form: 
 
 

    where       = Σ ∪ {ȼ,$}.   

• The notation  σ(q,σ,a|p,u) = γ  means the following:  
 γ  is the transition probability that M is currently in 

state q, scanning σ on an input tape and symbol a at 
the top of a stack, and M makes a move of replacing a 
by u with entering state p.  

 

: ( { }) [0,1]Q Qδ λ Γ× Σ∪ ×Γ× ×Θ →


Σ




Formal Definition of 1ppda’s 

A 1ppda M = (Q,Σ,Γ,ΘΓ,δ,q0,Qacc) has a read-only input tape, a 
stack, and a probabilistic transition function δ of the form: 

 
 
 

• Let 

 
• Probability Requirement:  

 
• This extends the deterministic requirement for 1dpda’s.  

: ( { }) [0,1]Q Qδ λ Γ× Σ∪ ×Γ× ×Θ →


All probabilities sum up to 1. 

Σ =


Σ ∪ { ₵, $ } 

[ ]( , , ) [ , , ] [ , , ] 1q a q a q aσ δ σ δ λ∀ + =

( , , | , ) [0,1]q a p uδ σ ∈

( , )

[ , , ] ( , , | , )
p u Q

q a q a p uδ σ δ σ
Γ∈ ×Θ

= ∑



Probabilistic Language Families 

• Similarly to CFL, we define PCFL and BPCFL. 

• PCFL = collection of all languages recognized by 
1ppda’s with unbounded-error probability 

• BPCFL = collection of all languages L recognized by 
1ppda’s with bounded-error probability 

• Let ε∈[0,1/2) be any error bound. 
• BPCFLε = class of languages recognized by 1ppda’s 

with error probability at most ε 
• In particular, BPCFL0 = DCFL 
• BPCFL = ∪ε∈[0,1/2) BPCFLε  

 



Basic Relationships 

• Here are simple known relationships among DCFL, 
BPCFL, and PCFL. 

• (Claim)  DCF ⊆ BPCFL  ⊆ PCFL 
• (Claim)  BPCFL ⊄ CFL and CFL ⊄ BPCFL  

             [Hromkovič-Schnitger (2010)] 

DCFL 

CFL 
BPCFL 

PCFL 

CFL BPCFL 

DCFL 

Many believe in this way 



Example Lkeq   I 
• We see a simple example of BPCFL-languages. 
• Let Σk = { a1, a2, ..., ak } for a constant k ≥ 1. 
• Lkeq = { a1

na2
n...ak

n | n ≥ 1 }. (bounded language) 
 
 

(Claim)  Lkeq ∉ CFL for any k ≥ 3 (by the pumping  
lemma or the swapping lemma (see Week 5)).  

• (Claim)  Lkeq is in BPCFL for k ≥ 1. [Hromkovič-Schnitger 
(2010)] 

 Proof Sketch:  
• Case k=1,2: Trivial because L1eq ∈ REG and L2eq ∈ DCFL. 

a1a1......a1 a2a2......a2 akak......ak ..... input 



Example Lkeq   II 

• Case k=3: The following algorithm places L3eq into 
BPCFL. The case of k≥4 is similar. 
1. Fix a sufficiently large constant t ≥ 1.  
2. Let w be any nonempty input (i.e., w ≠ λ).  
3. Check if w = a1

ia2
ja3

k for certain i,j,k ≥ 1. If not, reject 
w. Otherwise, proceed with  i,j,k ≥ 1. 

4. Pick s ∈ {1,2,...,t } uniformly at random. 
4. While reading one a1, push s+1 0’s. 
5. While reading one a2, pop s 0s. 
6. While reading one a3, pop one 0. 
7. If w is completely read and the stack is empty, then 

accept; otherwise, reject. 



Example Lkeq   III 

• Analysis: 
1. If i=j=k≥1, then M accepts for all s∈[t]. 
2. Assume that i≠j or i≠k. If, for example, M accepts w 

for a pair s1,s2 (s1≠ s2), then we obtain (sa+1)i-saj-k =0 
for a=1,2; that is, 
 
 

3. If i=j, then we obtain i=k, a contradiction. Thus, i≠j. 
4. Since i≠j, (*) then leads to s1=s2, a contradiction.  
5. Hence, there is no such pair s1,s2 (s1≠ s2).  
6. This implies that M accepts w with prob. ≤ 1/t. 

1

2

( ) ( ) 0
( ) ( ) 0

s i j i k
s i j i k

− + − =
 − + − =

QED 

(*) 



Known Results 

• Freivalds 
 Σk = { a1, a2, ..., ak, b1, b2, ..., bk } for each k ≥ 1 
 #a(w) = # of occurrences of a in w 
 kEqual = { w∈Σ* | ∀i∈[k] #ai(w) = #bi(w) } 
 kEqual ∈ BPCFL for all k ≥ 3. 

• Kaņeps, Geidmanis, Freivalds (1997) 
 TALLY ∩ BPCFL ⊆ REG 

• Yamakami (2014) 
 BPCFL ⊄ CFL/n (with advice) 
 ∃ A: oracle s.t. BPCFLA ⊄ ΣCFL,A

2    (see next slide) 

2nd level of the 
CFL hierarchy 
(see Week 4) 

TALLY = class of languages over single-letter alphabets 



REG 

 co-CFL = ΠCFL
1 

ΣCFL
2 

ΣCFL
1 = CFL 

CFL2 

ΣCFL
3 

ΠCFL
2 

ΠCFL
3 

DSPACE(O(n)) 

CSL  

inclusion 

proper inclusion 

CFLH 

CFL(2) 

CFL(3) 

AC0(CFL) 
= LOGCFL 

= SAC1 

CFLm
CFL(1)  

  = CFLm[1]
CFL 

CFLm
CFL(ω) 

REG/n 

CFL/n 
L 

no inclusion 

NL 
CFL(ω) 

BHCFL 

CFL3 

NC2  

CFLm
CFL(2)  

  = CFLm[2]
CFL 

PCFL 

BPCFL  

TC1  

AC0(REG) 
= NC1  

Inclusion Relations among Language Families 



Complexity of Palindromes 

• Theorem:  [Yamakami (2017)] 
    Pal = { w ∈{0,1}* | w = wR } is not in BPCFL. 

 Proof Idea: 
• The proof of the theorem uses Kolmogorov complexity. 
• Li and Vitányi (1995) first proposed Kolmogorov 

complexity versions of the pumping lemmas for 1dfa’s 
and 1dpda’s. 

• Glier (2003) gave a (corrected form of) Kolmogorov 
complexity version of the pumping lemma for 1dpda’s.  

• We extend Glier’s result to handle 1ppda’s and obtain a 
new pumping lemma for 1ppda’s. 

 
QED 



Open Problems 

• There are a number of problems left unsolved. 
 

• Here is an open problem given by Hromkovič and 
Schnitger (2010).   
 Question: DISJ = { x#y | x ∩ y = ∅ }∉BPCFL?  
 Here, x and y are seen as sets of indices of “1”. For 

example, y=0100101 means {2,5,7}. 
 

• We can ask the following question.   
 Let Center = { u1w | u,w ∈{0,1}*, |u|=|w| }. 
 Question: Is it true that Center ∉ BPCFL? 

 



Probabilistic 1-Tape Turing Machines 

 
 

• 1PTM =  1-tape probabilistic Turing machine using the strong 
definition for its running time 

• 1-BPLIN = collection of all languages recognized by linear-
time 1PTMs with bounded error (i.e., error < ½ -ε) 

• 1-PLIN = collection of all languages recognized by linear-time 
1PTMs with unbounded error (i.e., error < ½ ) 

• 1-C=LIN = collection of all languages L that are recognized by 
linear-time 1PTMs such that 

∀x [ x∈L ↔ M accepts x with probability exactly ½ ].  

• (Claim) 
1. 1-BPLIN ∪ 1-C=LIN ⊆ 1-PLIN.  
2. 1-DLIN ⊆ 1-BPLIN ∩ 1-C=LIN.  



Typical Examples 

• The complexity classes 1-PLIN, 1-BPLIN, and 1-C=LIN 
contain the following problems.   
 

• Problems in 1-PLIN 
Let Diff< = { anbm | 1 ≤ n < m }. 
 (Claim)  Diff< ∈ CFL – REG. 

• Problems in 1-C=LIN 
Let Equal = { anbn | n ≥ 1 }. 
 (Claim)  Equal ∈ DCFL – REG. 

 
• We can use the pumping lemma for regular languages to 

show that Diff< and Equal are not in REG.  



Relationships among Complexity Classes 

• Here is a short list of known results regarding the 
aforementioned complexity classes. 
 

• Collapse results 
 1-DLIN = 1-NLIN = 1-BPLIN = REG 

[Hennie65,Kobayashi85,Tadaki-Yamakami-Lin04] 
 1-C=LIN = SL=

rat  [Tadaki-Yamakami-Lin (2004)] 
 1-PLIN = SLrat  [Tadaki-Yamakami-Lin (2004)] 

 
• Separation results 
 1-C=LIN ≠ 1-PLIN  [Turakainen (1969)] 
 1-C=LIN ≠ co-1-C=LIN  [Dieu (1971)]  



Complexity Class PP 

• We introduce a complexity class defined by probabilistic 
Turing machines (or PTMs). 

• A decision problem (or a language) L is in PP if there is a 
probabilistic Turing machine M such that, for any input x, 
1. x∈L → M accepts x with probability > 1/2,  
2. x∉L → M rejects x with probability ≥ 1/2, and 
3. M halts in polynomial time. 

 
• When M satisfies Conditions 1-2, we say that M makes 

unbounded-error probability. 



Natural Problems in PP 

• Complexity class PP contains the following problems. 
 

• Majority Satisfiability Problem (Majority-SAT) 
 instance: a Boolean formula ϕ 
 question: YES if more than half of all assignments 

make ϕ true; NO otherwise.  

• E.g., ϕ ≡ (x1∨x2)∧(x1∨x3∨¬x4)∧(x2∨¬x3∨¬x4) 

         question:  

• (Claim)  PP is closed under union, intersection, and 
complementation.  [Beigel-Reinold-Spielman (1991)] 

{ } 4
1 2 3 4 1 2 3 4( , , , ) | ( , , , ) 1 2 2 ?α α α α ϕ α α α α ≡ >



Complexity Class BPP 

• A decision problem (or a language) L is in BPP if there 
are a PTM M and a constant (an error bound) ε∈[0,1/2) 
such that, for any input x, 
1. x∈L → M accepts x with probability ≥ 1–ε,  
2. x∉L → M rejects x with probability ≥ 1–ε, and 
3. M halts in polynomial time. 

• When M satisfies Conditions 1-2, we say that M makes 
bounded-error probability. 
 

• (Claim)  P ⊆ BPP ⊆ PP.  
• (Claim)  P ⊆ NP ⊆ PP.  

PP 

NP 
BPP 

P 

Many believe in this way 



Zero-Error Probabilistic Computation 

• Here, we consider a slightly different probabilistic model.  
• We allow PTMs to reach three distinguished outcomes along 

each computation path: “accept,” “reject,” and “don’t know.” 
• The “don’t know” state is treated as a halting state but neither 

accepting states nor rejecting states.  
 

input  x 

accepted don’t know 

input  x 
PTM M 

probabilistic 
computation 

probabilistic 
computation 

or 

don’t know rejected 



Complexity Class ZPP 

• A decision problem L is in ZPP if there are a PTM M and 
a constant ε∈[0,1/2) such that, for any input x, 
1. x∈L → M outputs either “accept” or “don’t know,”  
2. x∉L → M outputs either “reject” or “don’t know,” 
3. The probability of producing “don’t know” on each 

input is at most 1/2, and 
4. M terminates in polynomial time. 

• When M satisfies Conditions 1-3, we say that M makes 
zero-error probability. 

• (Claim)  P ⊆ ZPP ⊆ BPP.  
• (Claim)  ZPP ⊆ NP ∩ co-NP.  



Other Well-Known Complexity Classes 

• There are a number of complexity classes that are well-
known in use. Here is two of them. 
 
• RP = one-sided version of PP 
• co-RP = complement class of RP 
• Note that ZPP = RP ∩ co-RP.  
 

• For more complexity classes, see Complexity Zoo: 
      https://complexityzoo.uwaterloo.ca/Complexity_Zoo 



Known Results 

• There are numerous results known for probabilistic 
complexity classes. 
 

• (Claims)   
1. If NP ⊆ BPP, then RP = NP. [Ko (1982)]  
2. If NP ⊆ BPP, then PH ⊆  BPP. [Zachos (1988)]  
3. BPP ⊆ Σ2

p ∩ Π2
p. [Sipser-Gacs (1983)]  

4. BPPBPP = BPP. [Ko (1982), Zachos (1982)] 
5. PPPH ⊆ BPPC=P ⊆  PPP. [Toda (1991)]  

• (*) Relativizations and the polynomial hierarchy will be 
discussed in Week 4.  



Open Problems 

• There are a number of problems that have not been  
solved in the past literature. 

• We list some of them below. 
 
 Is P = BPP? 
 Is NP ⊆ BPP? 
 Is P = PP? 
 Is BPP = PP? 

 
• A certain number of researchers nowadays believe that 

P = BPP, that is, the use of probabilistic computation 
does not help.  

 

PP 

NP 
BPP 

P 

Many believe in this way. 



1. Complexity Class C=P 
2. PP as a Counting Complexity Class 
3. Simple Inclusion Relationships  

 

V. Counting Complexity Classes 



Complexity Class C=P 

• A decision problem (or a language) L is in C=P if there 
are an NTM M and a function f : Σ* → N in FP such that, 
for any input x, 
1. x∈L ↔ the number of accepting computation paths 

of M on x is f(x), and 
2. M halts in polynomial time. 

• In other words, L = { x | #M(x) = f(x) }, where #M(x) 
denotes the number of accepting computation paths of M 
on input x. 

• Surprisingly, it is possible to fix f as  
    f(x) = #M(x)/2. 

C=P co-C=P 

P 



Natural Problems in C=P 

• Complexity class C=P was first defined by Wagner 
(1986). 

• This complexity class contains the following problems. 
 

• Equality Satisfiability Problem (Equal-SAT) 
 instance: a Boolean formula ϕ 
 question: YES if exactly half of all assignments make 

ϕ true; NO otherwise. 
 

• E.g., ϕ ≡ ((x1∧x2)∨((¬x1∨x3)∨¬x4))∧(x2∨¬x3∨¬x4) 
            question:  { } 4

1 2 3 4 1 2 3 4( , , , ) | ( , , , ) 1 2 2 ?α α α α ϕ α α α α ≡ =



PP as a Counting Complexity Class 

• We have already seen the complexity class PP.  
• This complexity class PP is also considered as a 

counting complexity class. 
 

• (Claim) P ⊆ C=P∩co-C=P. 
• (Claim) C=P∪co-C=P ⊆ PP.  
                 [Simon (1975)] PP 

C=P co-C=P 

P 

Many believe in this way. 



Simple Inclusion Relationships 

P 

BPP C=P co-NP 

PP 

co-C=P NP 

inclusion 

• Here are class inclusions among the 
aforementioned complexity classes.  



Open Problems 

• The following questions are not 
yet answered. 
 
 Is P = C=P or P = co-C=P? 
 Is C=P∪co-C=P = PP? 
 Is C=P = co-C=P? 
 Is NP = C=P? 
 Is P = BPP? 
 Is NP ⊆ BPP? 
 

PP 

C=P co-C=P 

P 

PP 

NP BPP 

Many believe in this way. 



Other Well-Known Complexity Classes 

• There are a number of complexity classes that are well-
known for use and analysis. 
 
• US, FewP, SPP, ⊕P 
• IP, MIP, P-sel, AM, MA 
• OptP 
 

• For more complexity classes, see Complexity Zoo: 
      https://complexityzoo.uwaterloo.ca/Complexity_Zoo 





Q & A 
I’m happy to take your question! 



 
 

                                 END 
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