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YouTube Videos

e This lecture series is based on numerous papers of T.
Yamakami. He gave conference talks (in English) and
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.

« Use the following keywords to find a playlist of those
videos.

 YouTube search keywords:
Tomoyuki Yamakami conference invited talk playlist

¥ Conference Talk at
The 11th
International
Workshop on
Reachability

i

M

Problems (RP 2017)

& Egham, UK

Conference talk video
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S T. Yamakami. Oracle pushdown automata, nondeterministic
reducibilities, and the hierarchy over the family of context-free
languages. In Proc. of SOFSEM 2014, Lecture Notes in
Computer Science, vol. 8327, pp. 514-525 (2014). A
complete version is available at arXiv:1303.1717.

S T. Yamakami. One-way bounded-error probabilistic
pushdown automata and Kolmogorov complexity (preliminary
report). In Proc. of DLT 2017, Lecture Notes in Computer
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Complexity Measures

A notion of complexity measure is used to classify various
“problems” (i.e., languages and functions).

Basic complexity measures of algorithms include the
running time and the usage of memory space.

We say that problem A is of time complexity t(n) if there
exists an algorithm that solves A in time t(n) for all length-n
Inputs.

Similarly, problem A is of space complexity s(n) if there

exists an algorithm that solves A in space s(n) for all length-
n inputs.

(*) Other complexity measures, including circuit complexity
and state complexity, will be discussed in Weeks 3 and 6.



Complexity Classes

Assume that a specific complexity measure is given.

Informally, we define a complexity class as a collection
of decision problems, solutions of which is measured by
a complexity measure of an algorithm.

, @ complexity class is a set of problems, which
can be solved by algorithms of the given complexity
measure.

In particular, a complexity class of decision problems is
also called a family of languages because decision
problems are identified with languages (see Week 1).



Complexity Class P

 The complexity class P is the set of decision problems
(or languages) that are polynomial-time solvable.

o More precisely, a decision problem (or a language) L is\
In P if there exist a constant k>1 and a multi-tape DTM
(deterministic Turing machine) M s.t., for any input X,

1. xeL — M accepts x in O(nk) time, and
\_ 2. XeL — M rejects x in O(nk) time. )

e Many natural problems belong to this complexity class P.

. The problem PRIMES of determining whether
a given positive integer is a prime number belongs to P.
[Agrawal-Kayal-Saxena (2002)].



Who Introduced Class P?

 The class P was introduced in 1964 by Alan Cobham,
and independently, in 1965 by Jack Edmonds.

» Alan Cobham. The intrinsic computational difficulty of
functions. In Proceedings of the 1964 Congress for Logic,

Methodology, and the Philosophy of Science, pp. 24-30,
1964.

» Jack Edmonds. Paths, trees, and flowers. Canadian
Journal of Mathematics, Vol. 17, pp. 449-467, 1965.

A. Cobham J. Edmonds




Closure Properties of P

e The complexity class P is closed under Boolean
operations, concatenation, and Kleene star.

o ( ) If Ly, L,eP, then
L.uL,eP, L,nL,eP, L¢P, L,L,eP, and L,*eP.
1 2 1 2 1 1=2 1
= |L,UL, :union
m |—1f\|—21 intersection _ Boolean operations
= |,¢: complement
= |,L, : concatenation
L,* : Kleene star (or Kleene closure)

—



Acceptance vs Rejection for NTMs (revisited)

« Oninputx,an NTM M is said to accept x if M enters an
accepting state along a certain computation path.

* An input that is not accepted is said to be rejected.

NTM M

input x input x
o LTI\ T _
deterministic | M accepts x M rejects x computation
computation \ or paths
— \ J
Y

accepted not accepted not accepted



Complexity Class NP

(A decision problem (or a language) L is in NP if there is\
an NTM (nondeterministic Turing machine) M such that,
for any input X,

1. XelL < there exists an accepting computation path
of M on x (or x Is accepted by M), and

\ 2. M halts in polynomial time. /

. Pc NP
4 Proof: This Is because every

deterministic computation is a
special case of a

nondeterministic computation.
Many believe in this way



 There are many natural decision problen
the complexity class NP. For example:

Natural NP Problems |

This problem will be
explained later.

/

e Boolean Formula Satisfiability Problem (SAT)

 Traveling Salesperson Problem (TSP)

a Boolean formula ¢

Is there any satisfying assignment for ¢?

a set of cities, a table of traveling cost

between two cities, and a budget k

Is there any tour (i.e., visiting each city
exactly once and finishing at the starting city) with

cost at most k?




Natural NP Problems I

 Here are more examples of NP problems.

 0-1 Knapsack Problem (KNAPSACK)

. a finite set U of items, size s(u)eN*, value
v(u)eN* for each ueU, bounds BeN*, and keN*

- Is there a subset AcU s.t. ¥, _,S(u)<B and
2, eaV(u)=k?
e Graph 3-Colorability Problem (3-COLOR)
- a graph G=(V,E)
- Is G 3-colorable?

“3-colorable” means that there exist a function
f:V—>{1,2,3}s.t. f(u)#f(v) whenever {u,v}eE?




Another Formulation of NP

Here is a quite different formulation of NP.

A language L belongs to NP iff there exists a two-input
polynomial-time algorithm A and constant c>1 such that

L ={xe{0,1}* | 3y s.t. |y|=O(|x|°) and A(x,y) =1 }.

In this case, “y” Is called a certificate.

Moreover, this algorithm A is said to verify the language
L in polynomial time.

In other words, the complexity class NP is the class of
languages that can be verified by a polynomial-time
algorithm.



Who Introduced Class NP?

e The class NP was introduced in 1965 by Jack Edmonds,
who also conjectured that P=NP.

» Jack Edmonds. Paths, trees, and flowers. Canadian
Journal of Mathematics, Vol.17, pp.449—A467, 1965.




Complexity Class co-NP

For any language L, the complement L¢ of L is the
difference * - L.

That is, L is the problem obtained from L by exchanging
Its outcomes of 0 and 1; namely,

L°={xeX |xeL|

(Claim) If LeP then L°eP. In other words, P = co-P.

We define the complexity class co-NP as the set of
decision problems (or languages) L such that L¢eNP.

In other words, L € NP < L€ e co-NP.
CFL U co-CFL <« P = NP n co-NP < NP.



Relationships among P, NP, and co-NP

Four possible scenarios

a b

C d



The P = NP Problem

« The P=NP Problem is one of the most famous open
problems in our time.

e This problem asks if all NP problems are solvable in
polynomial time. That is,

Does LeNP imply LeP?

« Clay Mathematics Institute would award anyone who
solves the P=NP problem with $1,000,000 prize.

(See the next slide.)
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P vs NP Problem

Suppose that you are organizing housing
accemmaodationsfor a group of four hundred
university students. Space is limited and only one
hundred of the students will receive places in the
dormitory. To complicate matters, the Dean has
provided you with a list of pairs of incompatible
students, and requested that no pair from this
list appear in your final choice. This is an example
of what computer scientists call an NP-problem,
since it is easy to check if a given choice of one
hundred students proposed by a coworker is
satisfactory (i.e., no pair taken from your
coworker's list also appears on the list from the
Dean's office), however the task of generating
such a list from scratch seems to be so hard as
to be completely impractical. Indeed, the total
number of ways of choosing one hundred
students from the four hundred applicants is
greater than the number of atoms in the known
universe! Thus no future civilization could ever
hope to build a supercomputer capable of solving
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Open Problems

e Associated with P, NP, and co-NP, there are many
guestions that we do not know their answers at present.

 Here are some of the important open questions.

1. Does LeNP imply Leco-NP? (Equivalently, is NP = co-
NP?)

2. Does LeNPnco-NP imply LeP? (Equivalently, is P =
NP~co-NP?)



lI. NP-Complete Problems
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SAT and 3SAT are NP-Complete
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Polynomial-Time Many-One Reductions

Recall from Week 1 the function class FP of polynomial-
time computable functions.

We say that problem A is polynomial-time (many-one) A
reducible to problem B if there exists a function fe FP

such that, for every X,
X € A < f(x) € B.

In this case, we write:;
p
< B

(See the next slide.)




L<PL, via f < vx[xel, < f(x)el,]




Closure Properties of P and NP under <P_

Consider closure properties under <P .

(Claim) If L,<P L, and L,eP, then L, eP.
(Claim) If L,<P L, and L,eNP, then L,;eNP.

In other words, P and NP are closed under <P_-
reductions.

These closure properties are critical for the introduction
of a completeness notion.



NP-Complete Problems |

Polynomial-time reductions provide a formal means for
showing that one problem is at least as hard as another,
to within a polynomial-time factor.

Thatis, if L, <P_ L,, then L, is not more than a polynomial
factor harder than L.

A language L < {0,1}* is called NP-hard (or many-one
hard for NP) if

for every language A € NP, A<P_ L.

&

A language L is called NP-complete (polynomial-time A
many-one complete for NP, or <P_ -complete for NP) if

1. Le NP and
2. Lis NP-hard. )




NP-Complete Problems Il

In other words, a language L is called NP-complete if
1. L e NP and
2. for every language A € NP, A<P_ L.

All NP-complete problems are the hardest problems in
NP to solve in polynomial time.

We sometimes write NPC to denote the class of all NP-
complete languages (or NP-complete problems).

There are hundreds of NP-complete problems
discovered so far. (See, e.g., [Garey-Johnson (1979)].)



Inside of NP

NP

NPC
The set of all
NP complete
problems
The set of all
problems
having
intermediate
difficulty
P
The set of all Efficiently solvable

P problems problems



Formula Satisfiability

Here, we formulate the (formula) satisfiability problem
(SAT) in the form of language.

An instance of SAT is a Boolean formula ¢ composed of
1. n Boolean variables: x4, X, ..., X;

2. m Boolean connectives: A (AND), v (OR), — (NOT);
and

3. parentheses ( “(*and “)” ).

It is possible to encode any Boolean formula ¢ into a
certain binary string of length that is polynomial in n+m.

Hereafter, we always assume such an encoding.



Satisfiability Problem SAT

A truth assignment for a Boolean formula ¢ is a set of
values assigned to all variables of .

A satisfying assignment for a Boolean formula ¢ Iis a
truth assignment that causes ¢ to evaluate to 1.

A formula with a satisfying assignment is a satisfiable
formula. (See the next slide.)

The satisfiability problem (SAT) is a decision problem:
» instance: a Boolean formula o;
» question: is ¢ satisfiable?



Example: Satisfying Assignments

 Here is an example of a satisfiable formula.

@ =—(=X, VX)) A=((—X, A Xy) VX, ) A X,

- satisfying assignment (X, X,, X3, %,) =(1,0,0,1)

»(1,0,0,1) =—(-1vO0)A=((—1A0)v0) Al
=—=(0v0)A—=((0A0)Vv0)
=—0A—=(0Vv0)
=141
=1



SAT and 3SAT are NP-Complete

SAT is the first problem to be shown as an NP-complete

problem.

We restrict formulas to have 3-conjunctive normal form
(3CNF), which has at most 3 literals in each clause.

3-Satisfiability Problem (3SAT)
Instance: a 3CNF formula ¢
guestion: is ¢ satisfiable?

S

A literal is either a
variable or the negation
of a variable.

E.g., 3CNF: ¢ = (X;VXovV—Xg)A (X VXA (—X5vXs)

SAT and 3SAT are NP-complete. [Cook (1971)]



How to Prove the NP-Completeness

« Once we find some NP-complete problems, it is rather easy
to prove that other NP problems are also NP-complete.

 Heris a way to prove the NP-completeness of other
problems.

o (Claim) Assume that A is a known NP-complete problem.
If B is an NP problem and A <P_ B, then B is NP-complete.

L Proof Sketch:

 Let C be any NP problem. Since A is NP-complete, it
follows that C <P A.

« If B satisfies A <P, B, then the transitivity property of <P_
implies that C <P B.

 Hence, B is also NP-complete by definition. QED
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Universal Turing Machines

Let us consider a universal Turing machine, which can
simulates, on any input, any 1DTM equipped with an output
tape and produces the same outputs whenever the original
1DTM halts.

More precisely, a universal Turing machine is a DTM with

an output tape that takes inputs of the form (e(M),x) and

simulates M on input X, where e(M) denotes an appropriate
ofa 1DTM M.

We write U for a fixed universal Turing machine.

Clearly, it follows that U((e(M),x)) = M(x) for any 1DTM M
and any input x whenever M(x) halts.

Note that U takes a standard input x and any binary input p,
which is considered to be a program (that is e(M)).



Kolmogorov Complexity

Roughly, the Kolmogorov complexity of string x is the
minimal size |y| of any binary string y such that U(y) = x.

In other words, the Kolmogorov complexity of x means
the size of the smallest program that produces Xx.
bin(n) = binary representation of neN

X=X X,...X, €{0,1}".

self-delimiting code of x : xsd¢ = 1lein(xDIghin(|x])x.

Conditional Kolmogorov complexity of x conditioned to y:

C(xly) = min{ |p| : U(p®?y) = x, p €{0,1}* }
Kolmogorov complexity of x:
C(x) = C(x[2)



Basic Properties

 Here are known properties of Kolmogorov complexity.
a. C(xly) £ C(x) < |x] + O(1)
b. C(f(x)]y) < C(x]y) + O(1) for any recursive function f
c. C(x) < C(x]y) + C(y) + O(min{ log|x]|, logly| })

 Examples:
= Letx=1"
= C(1") = O(log(n)), compared to |1"|=n.
* To see this, consider the following program:

O on input A, retrieve “n” (in binary) from CPU memory
(O(log(n) bits), and repeatedly output 1 for n times.



Compressibility and Incompressibility

Let X be any binary string and let neN.

X IS compressible < C(x)<|x|. )
Otherwise, X is incompressible.

n is compressible < C(bin(n))<log(n).
Otherwise, n is incompressible. )

(Claim) For any (sufficiently) large n, there exists an
Incompressible string of length n.

An incompressible string is sometimes called
algorithmically random, which is different from “statistical
randomness.”

(*) Kolmogorov complexity will be used shortly.
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2-Way Probabillistic Finite Automata

Let us review a model of 2-way probabilistic finite
automaton (or simply, 2pfa) with endmarkers.

: This is
> = Input alphabet quite

M = (Q,Z,{¢,$}.8,d0, Qacc:Qre) Qacc” Qi € Q / different

O : a probabilistic
transition function

Inner state g € Q [

q
<—— —) Head direction: 2-way

¢ T $

End-marker Infinite read-only input tape End-marker




Formal Definition of 2pfa’s

A 2pfa M = (Q,Z,{¢,$}.6,d0,Qacc: Qrey) has a read-only input tape
and a probabilistic transition function 6 of the form:

5:QxIxQxD—[0,1]

>=uU{C, $} D={-1,0,+1}

« Stochastic Requirement: v(q,g)[z(pd)g(q,g, p,d)=1]
« Endmarker condition: 0

v No tape head should move out of the region marked
between ¢ and $.

All probabilities sum up to 1.

e Similarly, we can define 1pfa’s.



Examples of 1pfa’s (one-way case)

« As an example of 1pfa, let us consider the following simple
1pfa and its transition function (expressed as matrices).

A X
v=an, |05 05, 0 07 q
" al0s 0505/ 0 05| @

O 0] 0 O o7

0 \0/1.0 05| Q0
=1




Probabilistic Computation

o A 2pfa produces accepting/non-accepting computation
paths (which may or may not halt).

2pfa M
probabilistic or probabilistic
computation computation
accepted not accepted accepted not accepted

M accepts x M does not accept X




Cut-Point Criteria g%&%po

O iH S
Q

Rabin (1963) introduced a notion of “cut point”. {v\(, cf%

Let M be a 2pfa, let n<[0,1], and let LcX*.
Puv.acc(X) = acceptance probability of M on input x

A 2pfa recognizes language L with cut point n < for all
XeX*, Xel <> Py acc(X) 2 M

A 2pfa M is said to have an isolated cut point n for
language L < there exists a constant €<[0,1/2) s.t., for
all xeX*, (1) XeL = py acc(X) 2 n+e and (2) xgl —

pM,acc(X) <1n-¢

A 2pfa M Is said to have an exact cut point n for D
language L <> for all xeX*, XxeL <> Py acc(X) = M /




Bounded-Error Criteria éig,g
Q >
Q
Let M be a 2pfa, let n<[0,1], and let LcX*. > QS%
Pu.rei(X) = rejection probability of M on input X

A 2pfa M is said to have a bounded-error probability for
language L < there exists a constant €<[0,1/2) s.t., for
all xeX*, (1) XeL = py acc(X) = 1/2+e and (2) xgL —
pM,rej(X) > 1/2+¢

A 2pfa recognizes language L with unbounded-error
probability < for all xeX*, (1') XeL — Py acc(X) > 1/2 and
(2') XgL — Py rei(X) = 1/2

“Bounded-error probability” is, in essence, equivalent to
“Isolated cut point,” but “unbounded-error probability”
slightly deviates from “cut point.”



Probabilistic Language Families

rat-1pfa = one-way rational probabilistic finite automaton

SL,,; = collection of all languages recognized by rat-1pfa’s
with cut point %2. Such languages are called stochastic
languages.

SL=,.; = collection of all languages L recognized by rat-
1pfa’s s.t. VX [ xeL <> M accepts x with exact cut point %2 |
(Claim) REG < SL=,,; < SL,;

(Claim) SL,, Is also defined by rat-2pfa’s with cut point %-.
[Kaneps (1989)]

v' This means that there is no difference between 1pfa’s
and 2pfa’s in case of cut point Y.

Later, we will connect them to 1-tape linear-time classes.



1-Way Probabilistic Pushdown Automata

Let us review a model of 1-way (one head) probabilistic
pushdown automaton (or 1ppda).

M = (Q,Z.{¢,$}, I',0..,8,00,.Z,.F) Q.qo,F: standard notation
> = input alphabet

L(M) = set of strings
Stack (M) J I" = stack alphabet

accepted by M

O = a finite subset of I
Inner state g € Q o : transition function
w h Z, : stack’s bottom marker
T | q
l ——»  Head direction: one-way
¢ c | e $
Zy Infinite read-only input tape
Bottom-

marker



Probabilistic Transition Functions

 Alppda M uses a probabilistic transition function 6 of the
form:

5 Qx(EuU{ANxI'xQx0.—[0,1]

where X =3 U {¢,$}.

 The notation o(g,0,al|p,u) =y means the following:

» v Is the transition probability that M is currently In
state g, scanning o on an input tape and symbol a at
the top of a stack, and M makes a move of replacing a

by u with entering state p. g}



Formal Definition of 1ppda’s

A lppda M = (Q,Z,I',0,0,d4,,Q...) has a read-only input tape, a
stack, and a probabilistic transition function 6 of the form:

5:QxCu{ANxI'xQx0. —[0,1] 5(q,0,a|p,u) [0,1]

e Let 0o[q,0,a]= Z 0(g,0,a| p,u) =2u{C $}

( p’u)EQX®F

 Probability Requirement:  Vv(q,0,a)[5[q,0,a]l+d[q,4,a] =1

A\

* This extends the deterministic requirement for 1dpda’s.

All probabilities sum up to 1.




Probabilistic Language Families

Similarly to CFL, we define PCFL and BPCFL.
PCFL = collection of all languages recognized by
lppda’s with unbounded-error probability

BPCFL = collection of all languages L recognized by
1ppda’s with bounded-error probability

Let £€[0,1/2) be any error bound.

BPCFL, = class of languages recognized by 1ppda’s
with error probability at most ¢

In particular, BPCFL, = DCFL
BPCFL = U, 012 BPCFL,



Basic Relationships

 Here are simple known relationships among DCFL,
BPCFL, and PCFL.

+ (Claim) DCF c BPCFL < PCFL

e (Claim) BPCFL ¢ CFL and CFL « BPCFL
[HromkoviC-Schnitger (2010)]

PCFL

/N

BPCFL

CF
./

DCFL

L

Many believe in this way



Example Lo, |

We see a simple example of BPCFL-languages.
Let>, ={a,, a,, ..., 8, } fora constant k > 1.
* Lyeqg={2a;"a)"...a," | n 21} (bounded language)

input | a;a;......a; | aa,......8, | ... Ay eeen Ay

(Claim) Lyeq ¢ CFL for any k > 3 (by the pumping
lemma or the swapping lemma (see Week 5)).

(Claim) Lyeq Is In BPCFL for k > 1. [HromkovicC-Schnitger
(2010)]

O Proof Sketch:
e Case k=1,2: Trivial because L

€ REG and L,,, € DCFL.

leq 2eq



Example L., |

 Case k=3: The following algorithm places L, into
BPCFL. The case of k>4 is similar.

Fix a sufficiently large constantt > 1.

Let w be any nonempty input (i.e., w = A).

Check if w = a,'a,Jaz* for certain i,j,k > 1. If not, reject
w. Otherwise, proceed with 1,j,k > 1.

Pick s € {1,2,...,t } uniformly at random.

While reading one a,, push s+1 0’s.

While reading one a,, pop s 0s.

While reading one a;, pop one O.

If w is completely read and the stack is empty, then
accept; otherwise, reject.



Example L, I

 Analysis:
1. If i=j=k>1, then M accepts for all se[t].

2. Assume that i#] or izk. If, for example, M accepts w
for a pair s,,s, (S;# S,), then we obtain (s +1)i-s_j-k =0
for a=1,2; that is,

s(i—-p+(@{-k)=0
{sz<i—j>+<i—k)=o ©)
If i=], then we obtain 1=k, a contradiction. Thus, i#J.
Since 1], (*) then leads to s,=s,, a contradiction.
Hence, there is no such pair s,;,S, (S;# S,).
This implies that M accepts w with prob. < 1/.

o 0Bk W

QED




Known Results

* Freivalds
= Y. ={a, a,, ..., a, b, b, ..., b }foreachk>1
= #_(w) = # of occurrences of a in w
» KEqual = {weX" | Vie[K] #,(w) = #,(w) }
» kEqual € BPCFL for all k > 3.

« Kaneps, Geidmanis, Freivalds (1997)

= TALLY N BPCFL c REG 21 level of the
_ CFL hierarchy
 Yamakami (2014) (see Week 4)

= BPCFL ¢ CFL/n (with advice) =
= 3 A: oracle s.t. BPCFLA ¢ XCFLA,

TALLY = class of languages over single-letter alphabets




Inclusion Relations among Language Families

CSL
4 <4 proper inclusion
DSPACE(O(n)) p P :
<«— inclusion
TCl / CFLH,\ <\~ noinclusion
74 s A
NC?2 HC.:FLS ZC.FLB
T \
ACO(CFL) T T CFL . CFL(w)
= LOGCFL «| \HCFL2 - SCFL, m
= SAC! 4 4
. | BHCFL ~___ CEL _CFL®)
PCFL + CFL(w) m
NL I CFEL A = CFLpyp
f A CFL(3) t CFL/n
L BPCFL CEL 4 CFL,“Ft® T
T X 2 CFL(2) = CFLypy ™
ACO(REG) / \ M REG/n
- NC1
B NE co-CFL = TTCFL, >CFL, = CFL J

N

~ REG —




Complexity of Palindromes

 Theorem: [Yamakami (2017)]

Pal ={w <{0,1} | w =wR } is not in BPCFL.
4 Proof Idea:
e The proof of the theorem uses

e Liand Vitanyi (1995) first proposed Kolmogorov
complexity versions of the pumping lemmas for 1dfa’s
and ldpda’s.

o Glier (2003) gave a (corrected form of) Kolmogorov
complexity version of the pumping lemma for 1dpda’s.

 We extend Glier’s result to handle 1ppda’s and obtain a

new pumping lemma for 1ppda’s.

QED




Open Problems
 There are a number of problems left unsolved.

 Here is an open problem given by Hromkovi¢ and
Schnitger (2010).

= Question: DISI ={x#y | xny = }¢BPCFL?

= Here, X and y are seen as sets of indices of “1”. For
example, y=0100101 means {2,5,7}.

 We can ask the following question.
= Let Center = {ulw | u,w €{0,1}*, |u|=|w] }.
= Question: Is it true that Center ¢ BPCFL?



Probabilistic 1-Tape Turing Machines

1PTM = 1-tape probabilistic Turing machine using the strong
definition for its running time

1-BPLIN = collection of all languages recognized by linear-
time 1PTMs with bounded error (i.e., error < ¥z -g)

1-PLIN = collection of all languages recognized by linear-time
1PTMs with unbounded error (i.e., error < %2 )

1-C_LIN = collection of all languages L that are recognized by
linear-time 1PTMs such that

VX [ xeL <> M accepts x with probability exactly 2 ].

(Claim)

1. 1-BPLIN U 1-C_LIN < 1-PLIN.
2. 1-DLIN < 1-BPLIN n 1-C_LIN. /



Typical Examples

The complexity classes 1-PLIN, 1-BPLIN, and 1-C_LIN
contain the following problems.

Problems in 1-PLIN
Let Diff_={a"b™|1<n<m}
Diff. € CFL — REG.

Problems in 1-C_LIN
Let Equal={a"b"|n>1}.
Equal € DCFL — REG.

We can use the pumping lemma for regular languages to
show that Diff_ and Equal are not in REG.



Relationships among Complexity Classes

Here is a short list of known results regarding the
aforementioned complexity classes.

Collapse results

1-DLIN = 1-NLIN = 1-BPLIN = REG
[Hennie65,Kobayashi85, Tadaki-Yamakami-Lin04]

1-C_LIN = SL=,, [Tadaki-Yamakami-Lin (2004)]
1-PLIN = SL,,; [Tadaki-Yamakami-Lin (2004)]

Separation results
1-C_LIN # 1-PLIN [Turakainen (1969)]
1-C_LIN # co-1-C_LIN [Dieu (1971)]




Complexity Class PP

 We introduce a complexity class defined by probabilistic
Turing machines (or PTMs).

* A decision problem (or a language) L is in PP if there is a
probabilistic Turing machine M such that, for any input x,

1. XeL — M accepts x with probability > 1/2,
2. Xx¢L — M rejects x with probability > 1/2, and
3. M halts in polynomial time.

 When M satisfies Conditions 1-2, we say that M makes
unbounded-error probability.



Natural Problems in PP

Complexity class PP contains the following problems.

Majority Satisfiability Problem (Majority-SAT)
» Instance: a Boolean formula ¢

» question: YES if more than half of all assignments
make ¢ true; NO otherwise.

guestion: ‘{(al,az,a3,a4) oo, a,, a;,0,) = 1}‘ >24/2 7

(Claim) PP is closed under union, intersection, and
complementation. [Beigel-Reinold-Spielman (1991)]



Complexity Class BPP

A decision problem (or a language) L is in BPP if there
are a PTM M and a constant (an error bound) €<[0,1/2)
such that, for any input X,

1. xeL — M accepts x with probability > 1—¢,
2. X¢L — M rejects x with probability > 1—¢, and
3. M halts in polynomial time.

When M satisfies Conditions 1-2, we say that M makes

bounded-error probability. Bp

( ) P c BPP c PP.
: BPP
(Claim) P < NP c PP. @

Many believe in this way



Zero-Error Probabilistic Computation

 Here, we consider a slightly different probabilistic model.

 We allow PTMs to reach three distinguished outcomes along
each computation path: “accept,” “reject,” and “don’t know.”

 The “don’t know” state is treated as a halting state but neither
accepting states nor rejecting states.

: PTM M
Input X input x
probabilistic or probabilistic
computation computation
VoA /|
\ J
Y — —— " Y /

don’t know accepted rejected don’t know



Complexity Class ZPP

A decision problem L is in ZPP if there are a PTM M and
a constant e<[0,1/2) such that, for any input X,

1. xeL — M outputs either “accept” or “don’t know,”
2. Xe¢L — M outputs either “reject” or “don’t know,”

3. The probability of producing “don’t know” on each
iInput is at most 1/2, and

4. M terminates in polynomial time.

When M satisfies Conditions 1-3, we say that M makes
zero-error probability.

( ) P c ZPP c BPP.
( ) ZPP < NP ~ co-NP.



Other Well-Known Complexity Classes

 There are a number of complexity classes that are well-
known in use. Here is two of them.

e RP = one-sided version of PP
* CO-RP = complement class of RP
 Note that ZPP = RP n co-RP.

 For more complexity classes, see Complexity Zoo:
https://complexityzoo.uwaterloo.ca/Complexity Zoo



Known Results

 There are numerous results known for probabilistic
complexity classes.

* (

P

d.

)
If NP — BPP, then RP = NP. [Ko (1982)]

If NP < BPP, then PH < BPP. [Zachos (1988)]
BPP < Z.,P n ILP. [Sipser-Gacs (1983)]
BPPBPP = BPP. [Ko (1982), Zachos (1982)]
PPPH — BPPC=P < PPP, [Toda (1991)]

* (*) Relativizations and the polynomial hierarchy will be
discussed in Week 4.



Open Problems

 There are a number of problems that have not been
solved Iin the past literature.

 We list some of them below. Many believe in this way.

> Is P = BPP? PP

» Is NP < BPP?

BPP
> Is P = PP? @

> Is BPP = PP?

e A certain number of researchers nowadays believe that
P = BPP, that is, the use of probabilistic computation
does not help.



V. Counting Complexity Classes

1. Complexity Class C_P
2. PP as a Counting Complexity Class
3. Simple Inclusion Relationships



Complexity Class C_P

e A decision problem (or a language) L is in C_P if there
are an NTM M and a function f : 2* — N in FP such that,

for any input X,
1. XelL < the number of accepting computation paths
of M on x is f(x), and

2. M halts in polynomial time.

e Inotherwords, L={x|#M(x) = f(x) }, where #M(x)
denotes the number of accepting computation paths of M
on input X.

o Surprisingly, it is possible to fix f as

f(x) = #M(X)/2. @



Natural Problems in C_P

Complexity class C_P was first defined by Wagner
(1986).

This complexity class contains the following problems.

Equality Satisfiability Problem (Equal-SAT)
» Instance: a Boolean formula ¢

» question: YES If exactly half of all assignments make
¢ true; NO otherwise.

question: ‘{(0‘1’0‘2’0‘3’054) |o(ay, 05,05, 0,) = 1}‘ =2'/27



PP as a Counting Complexity Class

We have already seen the complexity class PP.

This complexity class PP is also considered as a
counting complexity class.

(Claim) P < C_Pnco-C_P.

(Claim) C_Puco-C_P c PP.
[Simon (1975)] PP

Many believe in this way.



Simple Inclusion Relationships N
A

~——
-—

——

 Here are class inclusions among the
aforementioned complexity classes.

<«— inclusion

AR

BP co-NP co-C_P

AN/




Open Problems

* The following questions are not
yet answered.

= [sP=C_PorP =co-C_P?
= |s C_.Puco-C_P = PP?

= |[sC_P =co-C_P?

= |[SNP =C_P?

= |s P =BPP?

= |s NP < BPP?
BPP

Many believe in this way.




Other Well-Known Complexity Classes

 There are a number of complexity classes that are well-
known for use and analysis.

« US, FewP, SPP, @GP
e IP, MIP, P-sel, AM, MA
e OptP

 For more complexity classes, see Complexity Zoo:
https://complexityzoo.uwaterloo.ca/Complexity Zoo
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