
2nd Week

Synopsis.
• P, NP, co-NP
• NP-Complete Problems
• Kolmogorov Complexity
• Probabilistic Computation
• Counting Complexity Classes

NP-Completeness, Probabilistic and
Counting Complexity Classes

April 16, 2018. 23:59

Course Schedule: 16 Weeks

• Week 1: Basic Computation Models
• Week 2: NP-Completeness, Probabilistic and Counting Complexity Classes
• Week 3: Space Complexity and the Linear Space Hypothesis
• Week 4: Relativizations and Hierarchies
• Week 5: Structural Properties by Finite Automata
• Week 6: Stype-2 Computability, Multi-Valued Functions, and State Complexity
• Week 7: Cryptographic Concepts for Finite Automata
• Week 8: Constraint Satisfaction Problems
• Week 9: Combinatorial Optimization Problems
• Week 10: Average-Case Complexity
• Week 11: Basics of Quantum Information
• Week 12: BQP, NQP, Quantum NP, and Quantum Finite Automata
• Week 13: Quantum State Complexity and Advice
• Week 14: Quantum Cryptographic Systems
• Week 15: Quantum Interactive Proofs
• Week 16: Final Evaluation Day (no lecture)

Subject to Change

YouTube Videos

• This lecture series is based on numerous papers of T.
Yamakami. He gave conference talks (in English) and
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.

• Use the following keywords to find a playlist of those
videos.

• YouTube search keywords:
 Tomoyuki Yamakami conference invited talk playlist

Conference talk video

Main References by T. Yamakami

✎ T. Yamakami. Oracle pushdown automata, nondeterministic
reducibilities, and the hierarchy over the family of context-free
languages. In Proc. of SOFSEM 2014, Lecture Notes in
Computer Science, vol. 8327, pp. 514-525 (2014). A
complete version is available at arXiv:1303.1717.

✎ T. Yamakami. One-way bounded-error probabilistic
pushdown automata and Kolmogorov complexity (preliminary
report). In Proc. of DLT 2017, Lecture Notes in Computer
Science, vol. 10396, pp. 353-364 (2017). A complete and
corrected version will be posted at arXiv.org shortly.

1. Complexity Measures
2. Complexity Classes
3. Complexity Class P
4. Complexity Class NP
5. Another Formulation of NP
6. Complexity Class co-NP
7. Relationships among P, NP, and co-NP
8. The P=NP Problem

I. Basic Complexity Classes

Complexity Measures

• A notion of complexity measure is used to classify various
“problems” (i.e., languages and functions).

• Basic complexity measures of algorithms include the
running time and the usage of memory space.

• We say that problem A is of time complexity t(n) if there
exists an algorithm that solves A in time t(n) for all length-n
inputs.

• Similarly, problem A is of space complexity s(n) if there
exists an algorithm that solves A in space s(n) for all length-
n inputs.

• (*) Other complexity measures, including circuit complexity
and state complexity, will be discussed in Weeks 3 and 6.

Complexity Classes

• Assume that a specific complexity measure is given.

• Informally, we define a complexity class as a collection
of decision problems, solutions of which is measured by
a complexity measure of an algorithm.

• Namely, a complexity class is a set of problems, which
can be solved by algorithms of the given complexity
measure.

• In particular, a complexity class of decision problems is
also called a family of languages because decision
problems are identified with languages (see Week 1).

Complexity Class P

• The complexity class P is the set of decision problems
(or languages) that are polynomial-time solvable.

• More precisely, a decision problem (or a language) L is
in P if there exist a constant k≥1 and a multi-tape DTM
(deterministic Turing machine) M s.t., for any input x,
1. x∈L → M accepts x in O(nk) time, and
2. x∉L → M rejects x in O(nk) time.

• Many natural problems belong to this complexity class P.
• (Example) The problem PRIMES of determining whether

a given positive integer is a prime number belongs to P.
[Agrawal-Kayal-Saxena (2002)].

Who Introduced Class P?

• The class P was introduced in 1964 by Alan Cobham,
and independently, in 1965 by Jack Edmonds.
 Alan Cobham. The intrinsic computational difficulty of
functions. In Proceedings of the 1964 Congress for Logic,
Methodology, and the Philosophy of Science, pp. 24-30,
1964.
 Jack Edmonds. Paths, trees, and flowers. Canadian
Journal of Mathematics, Vol. 17, pp. 449-467, 1965.

A. Cobham J. Edmonds

Closure Properties of P

• The complexity class P is closed under Boolean
operations, concatenation, and Kleene star.

• (Claim) If L1,L2∈P, then
 L1∪L2∈P, L1∩L2∈P, L1

c∈P, L1L2∈P, and L1*∈P.

 L1∪L2 : union

 L1∩L2 : intersection
 L1

c : complement
 L1L2 : concatenation
 L1* : Kleene star (or Kleene closure)

Boolean operations

Acceptance vs Rejection for NTMs (revisited)

• On input x, an NTM M is said to accept x if M enters an
accepting state along a certain computation path.

• An input that is not accepted is said to be rejected.

input x

accepted not accepted

input x
NTM M

non-
deterministic
computation

M accepts x M rejects x
or

not accepted

computation
paths

Complexity Class NP

• A decision problem (or a language) L is in NP if there is
an NTM (nondeterministic Turing machine) M such that,
for any input x,
1. x∈L ↔ there exists an accepting computation path

of M on x (or x is accepted by M), and
2. M halts in polynomial time.

• (Claim) P ⊆ NP NP

P
 Proof: This is because every

deterministic computation is a
special case of a
nondeterministic computation.

Many believe in this way

Natural NP Problems I

• There are many natural decision problems that fall into
the complexity class NP. For example:

• Boolean Formula Satisfiability Problem (SAT)
 instance: a Boolean formula φ
 question: Is there any satisfying assignment for φ?

• Traveling Salesperson Problem (TSP)
 instance: a set of cities, a table of traveling cost

between two cities, and a budget k
 question: Is there any tour (i.e., visiting each city

exactly once and finishing at the starting city) with
cost at most k?

This problem will be
explained later.

Natural NP Problems II

• Here are more examples of NP problems.

• 0-1 Knapsack Problem (KNAPSACK)
 instance: a finite set U of items, size s(u)∈N+, value

v(u)∈N+ for each u∈U, bounds B∈N+, and k∈N+
 question: Is there a subset A⊆U s.t. Σu∈As(u)≤B and
Σu∈Av(u)≥k?

• Graph 3-Colorability Problem (3-COLOR)
 instance: a graph G=(V,E)
 question: Is G 3-colorable?

“3-colorable” means that there exist a function
f : V → {1,2,3} s.t. f(u)≠f(v) whenever {u,v}∈E?

Another Formulation of NP

• Here is a quite different formulation of NP.

• A language L belongs to NP iff there exists a two-input
polynomial-time algorithm A and constant c≥1 such that

 L = { x∈{0,1}* | ∃ y s.t. |y|=O(|x|c) and A(x,y) = 1 }.

• In this case, “y” is called a certificate.
• Moreover, this algorithm A is said to verify the language

L in polynomial time.

• In other words, the complexity class NP is the class of
languages that can be verified by a polynomial-time
algorithm.

Who Introduced Class NP?

• The class NP was introduced in 1965 by Jack Edmonds,
who also conjectured that P≠NP.

 Jack Edmonds. Paths, trees, and flowers. Canadian
Journal of Mathematics, Vol.17, pp.449—467, 1965.

Complexity Class co-NP

• For any language L, the complement Lc of L is the
difference Σ* - L.

• That is, Lc is the problem obtained from L by exchanging
its outcomes of 0 and 1; namely,

• (Claim) If L∈P then Lc∈P. In other words, P = co-P.

• We define the complexity class co-NP as the set of
decision problems (or languages) L such that Lc∈NP.

• In other words, L ∈ NP ⇔ Lc ∈ co-NP.
• (Claim) CFL ∪ co-CFL ⊆ P ⊆ NP ∩ co-NP ⊆ NP.

{ }* |cL x x L= ∈Σ ∉

Relationships among P, NP, and co-NP

Four possible scenarios

The P = NP Problem

• The P=NP Problem is one of the most famous open
problems in our time.

• This problem asks if all NP problems are solvable in
polynomial time. That is,

 Does L∈NP imply L∈P?

• Clay Mathematics Institute would award anyone who
solves the P=NP problem with $1,000,000 prize.

 (See the next slide.)

Open Problems

• Associated with P, NP, and co-NP, there are many
questions that we do not know their answers at present.

• Here are some of the important open questions.

1. Does L∈NP imply L∈co-NP? (Equivalently, is NP = co-

NP?)
2. Does L∈NP∩co-NP imply L∈P? (Equivalently, is P =

NP∩co-NP?)

1. Polynomial-Time Many-One Reductions
2. Closure Properties of P and NP under ≤p

m

3. NP-Complete Problems
4. Formula Satisfiability
5. Satisfiability Problem SAT
6. SAT and 3SAT are NP-Complete
7. How to Prove the NP-Completeness

II. NP-Complete Problems

Polynomial-Time Many-One Reductions

• Recall from Week 1 the function class FP of polynomial-
time computable functions.

• We say that problem A is polynomial-time (many-one)
reducible to problem B if there exists a function f∈FP
such that, for every x,

 x ∈ A ↔ f(x) ∈ B.

• In this case, we write:
p
mA B≤

1 2 via p
mL L f≤

(See the next slide.)

Σ* Σ*

1 2 via p
mL L f≤ 1 2[()]x x L f x L∀ ∈ ↔ ∈

Σ* Σ*

Closure Properties of P and NP under ≤p
m

• Consider closure properties under ≤p
m

 .

• (Claim) If L1≤p
m

 L2 and L2∈P, then L1∈P.

• (Claim) If L1≤p
m

 L2 and L2∈NP, then L1∈NP.

• In other words, P and NP are closed under ≤p
m-

reductions.
• These closure properties are critical for the introduction

of a completeness notion.

NP-Complete Problems I

• Polynomial-time reductions provide a formal means for
showing that one problem is at least as hard as another,
to within a polynomial-time factor.

• That is, if L1 ≤p
m L2, then L1 is not more than a polynomial

factor harder than L2.

• A language L ⊆ {0,1}* is called NP-hard (or many-one
hard for NP) if

 for every language A ∈ NP, A ≤p
m L.

• A language L is called NP-complete (polynomial-time
many-one complete for NP, or ≤p

m
 -complete for NP) if

1. L ∈ NP and
2. L is NP-hard.

NP-Complete Problems II

• In other words, a language L is called NP-complete if
1. L ∈ NP and
2. for every language A ∈ NP, A ≤p

m L.

• All NP-complete problems are the hardest problems in
NP to solve in polynomial time.

• We sometimes write NPC to denote the class of all NP-
complete languages (or NP-complete problems).

• There are hundreds of NP-complete problems
discovered so far. (See, e.g., [Garey-Johnson (1979)].)

NP

P

NPC

NPI

The set of all
NP complete
problems

The set of all
P problems

The set of all
problems
having
intermediate
difficulty

Inside of NP

Efficiently solvable
problems

Formula Satisfiability

• Here, we formulate the (formula) satisfiability problem
(SAT) in the form of language.

• An instance of SAT is a Boolean formula ϕ composed of
1. n Boolean variables: x1, x2, ..., xn;
2. m Boolean connectives: ∧ (AND), ∨ (OR), ¬ (NOT);

and
3. parentheses (“(“ and “)”).

• It is possible to encode any Boolean formula ϕ into a
certain binary string of length that is polynomial in n+m.

• Hereafter, we always assume such an encoding.

Satisfiability Problem SAT

• A truth assignment for a Boolean formula ϕ is a set of
values assigned to all variables of ϕ.

• A satisfying assignment for a Boolean formula ϕ is a
truth assignment that causes ϕ to evaluate to 1.

• A formula with a satisfying assignment is a satisfiable
formula. (See the next slide.)

• The satisfiability problem (SAT) is a decision problem:
 instance: a Boolean formula ϕ;
question: is ϕ satisfiable?

Example: Satisfying Assignments

• Here is an example of a satisfiable formula.

• satisfying assignment

1 2 1 3 2 4() (())x x x x x xϕ ≡ ¬ ¬ ∨ ∧¬ ¬ ∧ ∨ ∧

(1,0,0,1) (1 0) ((1 0) 0) 1
 (0 0) ((0 0) 0)
 0 (0 0)
 1 1
 1

ϕ ≡ ¬ ¬ ∨ ∧¬ ¬ ∧ ∨ ∧
= ¬ ∨ ∧¬ ∧ ∨
= ¬ ∧¬ ∨
= ∧
=

() ()1 2 3 4, , , 1,0,0,1x x x x =

SAT and 3SAT are NP-Complete

• SAT is the first problem to be shown as an NP-complete
problem.

• We restrict formulas to have 3-conjunctive normal form
(3CNF), which has at most 3 literals in each clause.

• 3-Satisfiability Problem (3SAT)
 instance: a 3CNF formula ϕ
 question: is ϕ satisfiable?

• E.g., 3CNF: ϕ ≡ (x1∨x2∨¬x3)∧(x1∨¬x3)∧(¬x2∨x3)

• (Claim) SAT and 3SAT are NP-complete. [Cook (1971)]

A literal is either a
variable or the negation
of a variable.

How to Prove the NP-Completeness

• Once we find some NP-complete problems, it is rather easy
to prove that other NP problems are also NP-complete.

• Her is a way to prove the NP-completeness of other
problems.

• (Claim) Assume that A is a known NP-complete problem.
If B is an NP problem and A ≤p

m B, then B is NP-complete.
 Proof Sketch:
• Let C be any NP problem. Since A is NP-complete, it

follows that C ≤p
m A.

• If B satisfies A ≤p
m B, then the transitivity property of ≤p

m
implies that C ≤p

m B.
• Hence, B is also NP-complete by definition. QED

1. Universal Turing Machines
2. Kolmogorov Complexity
3. Basic Properties
4. Compressibility and Incompressibility

III. Kolmogorov Complexity

Universal Turing Machines

• Let us consider a universal Turing machine, which can
simulates, on any input, any 1DTM equipped with an output
tape and produces the same outputs whenever the original
1DTM halts.

• More precisely, a universal Turing machine is a DTM with
an output tape that takes inputs of the form 〈e(M),x〉 and
simulates M on input x, where e(M) denotes an appropriate
binary encoding of a 1DTM M.

• We write U for a fixed universal Turing machine.
• Clearly, it follows that U(〈e(M),x〉) = M(x) for any 1DTM M

and any input x whenever M(x) halts.
• Note that U takes a standard input x and any binary input p,

which is considered to be a program (that is e(M)).

Kolmogorov Complexity

• Roughly, the Kolmogorov complexity of string x is the
minimal size |y| of any binary string y such that U(y) = x.

• In other words, the Kolmogorov complexity of x means
the size of the smallest program that produces x.

• bin(n) = binary representation of n∈N
• x=x1x2...xn ∈{0,1}n.
• self-delimiting code of x : xsdc = 1|bin(|x|)|0bin(|x|)x.

• Conditional Kolmogorov complexity of x conditioned to y:
 C(x|y) = min{ |p| : U(psdcy) = x, p ∈{0,1}* }
• Kolmogorov complexity of x:
 C(x) = C(x|λ)

Basic Properties

• Here are known properties of Kolmogorov complexity.
a. C(x|y) ≤ C(x) ≤ |x| + O(1)
b. C(f(x)|y) ≤ C(x|y) + O(1) for any recursive function f
c. C(x) ≤ C(x|y) + C(y) + O(min{ log|x|, log|y| })

• Examples:
 Let x = 1n.
 C(1n) = O(log(n)), compared to |1n|=n.
 To see this, consider the following program:
o on input λ, retrieve “n” (in binary) from CPU memory

(O(log(n) bits), and repeatedly output 1 for n times.

Compressibility and Incompressibility

• Let x be any binary string and let n∈N.

• x is compressible ⇔ C(x)<|x|.
 Otherwise, x is incompressible.
• n is compressible ⇔ C(bin(n))<log(n).
 Otherwise, n is incompressible.

• (Claim) For any (sufficiently) large n, there exists an
incompressible string of length n.

• An incompressible string is sometimes called
algorithmically random, which is different from “statistical
randomness.”

• (*) Kolmogorov complexity will be used shortly.

1. 2-Way Probabilistic Finite (State) Automata
2. Probabilistic Computation
3. Cut-Point Criteria and Bounded-Error Criteria
4. 1-Way Probabilistic Pushdown Automata
5. Probabilistic 1-Tape Turing Machines
6. Complexity Class PP
7. Complexity Class BPP
8. Complexity Class ZPP

IV. Probabilistic Complexity Classes

2-Way Probabilistic Finite Automata
Let us review a model of 2-way probabilistic finite
automaton (or simply, 2pfa) with endmarkers.

¢ $ σ

q

Head direction: 2-way

End-marker End-marker Infinite read-only input tape

M = (Q,Σ,{ȼ,$},δ,q0, Qacc,Qrej)
Σ = input alphabet

Inner state q ∈ Q

… ….......

Qacc∪ Qrej ⊆ Q

δ : a probabilistic
transition function

This is
quite
different

Formal Definition of 2pfa’s

A 2pfa M = (Q,Σ,{ȼ,$},δ,q0,Qacc,Qrej) has a read-only input tape
and a probabilistic transition function δ of the form:

• Stochastic Requirement:
• Endmarker condition:
 No tape head should move out of the region marked

between ȼ and $.

• Similarly, we can define 1pfa’s.
 (See the next slide.)

: [0,1]Q Q Dδ ×Σ× × →


All probabilities sum up to 1.

Σ =


Σ ∪ { ₵, $ } D = { -1, 0, +1 }

(,)
(,) (, , ,) 1

p d
q q p dσ δ σ ∀ = ∑

Examples of 1pfa’s (one-way case)

• As an example of 1pfa, let us consider the following simple
1pfa and its transition function (expressed as matrices).

a,b/0.5

a/0.5

b/0.7

q0

q1

q2

qf

b/0.5

a/0.5

a,b/1.0

a/0.5
b/1.0

a/0.5

a/0.5

0.5 0.5 0 0
0.5 0.5 0 0.5
0 0 0 0
0 0 1.0 0.5 a

 
 
 
 
 
 

0 0.5 0 0
0.3 0 0 5
0.7 0 0 0
0 0.5 1.0 1.0 b

 
 
 
 
 
 

=1

b/0.3

x′ = Ax 0

1

2

f

q
q
q
q

x A

Probabilistic Computation
• A 2pfa produces accepting/non-accepting computation

paths (which may or may not halt).

input x

accepted not accepted

input x
2pfa M

probabilistic
computation

probabilistic
computation

M accepts x M does not accept x

or

accepted not accepted

Cut-Point Criteria
• Rabin (1963) introduced a notion of “cut point”.

• Let M be a 2pfa, let η∈[0,1], and let L⊆Σ*.

• pM,acc(x) = acceptance probability of M on input x

• A 2pfa recognizes language L with cut point η ⇔ for all
x∈Σ*, x∈L ↔ pM,acc(x) ≥ η

• A 2pfa M is said to have an isolated cut point η for
language L ⇔ there exists a constant ε∈[0,1/2) s.t., for
all x∈Σ*, (1) x∈L → pM,acc(x) ≥ η+ε and (2) x∉L →
pM,acc(x) ≤ η-ε

• A 2pfa M is said to have an exact cut point η for
language L ⇔ for all x∈Σ*, x∈L ↔ pM,acc(x) = η

Bounded-Error Criteria
• Let M be a 2pfa, let η∈[0,1], and let L⊆Σ*.

• pM,rej(x) = rejection probability of M on input x

• A 2pfa M is said to have a bounded-error probability for
language L ⇔ there exists a constant ε∈[0,1/2) s.t., for
all x∈Σ*, (1) x∈L → pM,acc(x) ≥ 1/2+ε and (2) x∉L →
pM,rej(x) ≥ 1/2+ε

• A 2pfa recognizes language L with unbounded-error
probability ⇔ for all x∈Σ*, (1’) x∈L → pM,acc(x) > 1/2 and
(2’) x∉L → pM,rej(x) ≥ 1/2

• “Bounded-error probability” is, in essence, equivalent to
“isolated cut point,” but “unbounded-error probability”
slightly deviates from “cut point.”

Probabilistic Language Families

• rat-1pfa = one-way rational probabilistic finite automaton
• SLrat = collection of all languages recognized by rat-1pfa’s

with cut point ½. Such languages are called stochastic
languages.

• SL=
rat = collection of all languages L recognized by rat-

1pfa’s s.t. ∀x [x∈L ↔ M accepts x with exact cut point ½]

• (Claim) REG ⊆ SL=
rat ⊆ SLrat

• (Claim) SLrat is also defined by rat-2pfa’s with cut point ½.
[Kaņeps (1989)]
 This means that there is no difference between 1pfa’s

and 2pfa’s in case of cut point ½.
• Later, we will connect them to 1-tape linear-time classes.

1-Way Probabilistic Pushdown Automata
Let us review a model of 1-way (one head) probabilistic
pushdown automaton (or 1ppda).

σ

q
Head direction: one-way

Infinite read-only input tape

M = (Q,Σ,{ȼ,$}, Γ,ΘΓ,δ,q0,Z0,F)

Inner state q ∈ Q

… ….......

Z0

τ

Bottom-
marker

Stack

......

Q,q0,F: standard notation
Σ = input alphabet
Γ = stack alphabet
ΘΓ = a finite subset of Γ*

δ : transition function
Z0 : stack’s bottom marker

L(M) = set of strings
accepted by M

¢ $

Probabilistic Transition Functions

• A 1ppda M uses a probabilistic transition function δ of the
form:

 where = Σ ∪ {ȼ,$}.

• The notation σ(q,σ,a|p,u) = γ means the following:
 γ is the transition probability that M is currently in

state q, scanning σ on an input tape and symbol a at
the top of a stack, and M makes a move of replacing a
by u with entering state p.

: ({ }) [0,1]Q Qδ λ Γ× Σ∪ ×Γ× ×Θ →


Σ


Formal Definition of 1ppda’s

A 1ppda M = (Q,Σ,Γ,ΘΓ,δ,q0,Qacc) has a read-only input tape, a
stack, and a probabilistic transition function δ of the form:

• Let

• Probability Requirement:

• This extends the deterministic requirement for 1dpda’s.

: ({ }) [0,1]Q Qδ λ Γ× Σ∪ ×Γ× ×Θ →


All probabilities sum up to 1.

Σ =


Σ ∪ { ₵, $ }

[](, ,) [, ,] [, ,] 1q a q a q aσ δ σ δ λ∀ + =

(, , | ,) [0,1]q a p uδ σ ∈

(,)

[, ,] (, , | ,)
p u Q

q a q a p uδ σ δ σ
Γ∈ ×Θ

= ∑

Probabilistic Language Families

• Similarly to CFL, we define PCFL and BPCFL.

• PCFL = collection of all languages recognized by
1ppda’s with unbounded-error probability

• BPCFL = collection of all languages L recognized by
1ppda’s with bounded-error probability

• Let ε∈[0,1/2) be any error bound.
• BPCFLε = class of languages recognized by 1ppda’s

with error probability at most ε
• In particular, BPCFL0 = DCFL
• BPCFL = ∪ε∈[0,1/2) BPCFLε

Basic Relationships

• Here are simple known relationships among DCFL,
BPCFL, and PCFL.

• (Claim) DCF ⊆ BPCFL ⊆ PCFL
• (Claim) BPCFL ⊄ CFL and CFL ⊄ BPCFL

 [Hromkovič-Schnitger (2010)]

DCFL

CFL
BPCFL

PCFL

CFL BPCFL

DCFL

Many believe in this way

Example Lkeq I
• We see a simple example of BPCFL-languages.
• Let Σk = { a1, a2, ..., ak } for a constant k ≥ 1.
• Lkeq = { a1

na2
n...ak

n | n ≥ 1 }. (bounded language)

(Claim) Lkeq ∉ CFL for any k ≥ 3 (by the pumping
lemma or the swapping lemma (see Week 5)).

• (Claim) Lkeq is in BPCFL for k ≥ 1. [Hromkovič-Schnitger
(2010)]

 Proof Sketch:
• Case k=1,2: Trivial because L1eq ∈ REG and L2eq ∈ DCFL.

a1a1......a1 a2a2......a2 akak......ak input

Example Lkeq II

• Case k=3: The following algorithm places L3eq into
BPCFL. The case of k≥4 is similar.
1. Fix a sufficiently large constant t ≥ 1.
2. Let w be any nonempty input (i.e., w ≠ λ).
3. Check if w = a1

ia2
ja3

k for certain i,j,k ≥ 1. If not, reject
w. Otherwise, proceed with i,j,k ≥ 1.

4. Pick s ∈ {1,2,...,t } uniformly at random.
4. While reading one a1, push s+1 0’s.
5. While reading one a2, pop s 0s.
6. While reading one a3, pop one 0.
7. If w is completely read and the stack is empty, then

accept; otherwise, reject.

Example Lkeq III

• Analysis:
1. If i=j=k≥1, then M accepts for all s∈[t].
2. Assume that i≠j or i≠k. If, for example, M accepts w

for a pair s1,s2 (s1≠ s2), then we obtain (sa+1)i-saj-k =0
for a=1,2; that is,

3. If i=j, then we obtain i=k, a contradiction. Thus, i≠j.
4. Since i≠j, (*) then leads to s1=s2, a contradiction.
5. Hence, there is no such pair s1,s2 (s1≠ s2).
6. This implies that M accepts w with prob. ≤ 1/t.

1

2

() () 0
() () 0

s i j i k
s i j i k

− + − =
 − + − =

QED

(*)

Known Results

• Freivalds
 Σk = { a1, a2, ..., ak, b1, b2, ..., bk } for each k ≥ 1
 #a(w) = # of occurrences of a in w
 kEqual = { w∈Σ* | ∀i∈[k] #ai(w) = #bi(w) }
 kEqual ∈ BPCFL for all k ≥ 3.

• Kaņeps, Geidmanis, Freivalds (1997)
 TALLY ∩ BPCFL ⊆ REG

• Yamakami (2014)
 BPCFL ⊄ CFL/n (with advice)
 ∃ A: oracle s.t. BPCFLA ⊄ ΣCFL,A

2 (see next slide)

2nd level of the
CFL hierarchy
(see Week 4)

TALLY = class of languages over single-letter alphabets

REG

 co-CFL = ΠCFL
1

ΣCFL
2

ΣCFL
1 = CFL

CFL2

ΣCFL
3

ΠCFL
2

ΠCFL
3

DSPACE(O(n))

CSL

inclusion

proper inclusion

CFLH

CFL(2)

CFL(3)

AC0(CFL)
= LOGCFL

= SAC1

CFLm
CFL(1)

 = CFLm[1]
CFL

CFLm
CFL(ω)

REG/n

CFL/n
L

no inclusion

NL
CFL(ω)

BHCFL

CFL3

NC2

CFLm
CFL(2)

 = CFLm[2]
CFL

PCFL

BPCFL

TC1

AC0(REG)
= NC1

Inclusion Relations among Language Families

Complexity of Palindromes

• Theorem: [Yamakami (2017)]
 Pal = { w ∈{0,1}* | w = wR } is not in BPCFL.

 Proof Idea:
• The proof of the theorem uses Kolmogorov complexity.
• Li and Vitányi (1995) first proposed Kolmogorov

complexity versions of the pumping lemmas for 1dfa’s
and 1dpda’s.

• Glier (2003) gave a (corrected form of) Kolmogorov
complexity version of the pumping lemma for 1dpda’s.

• We extend Glier’s result to handle 1ppda’s and obtain a
new pumping lemma for 1ppda’s.

QED

Open Problems

• There are a number of problems left unsolved.

• Here is an open problem given by Hromkovič and
Schnitger (2010).
 Question: DISJ = { x#y | x ∩ y = ∅ }∉BPCFL?
 Here, x and y are seen as sets of indices of “1”. For

example, y=0100101 means {2,5,7}.

• We can ask the following question.
 Let Center = { u1w | u,w ∈{0,1}*, |u|=|w| }.
 Question: Is it true that Center ∉ BPCFL?

Probabilistic 1-Tape Turing Machines

• 1PTM = 1-tape probabilistic Turing machine using the strong
definition for its running time

• 1-BPLIN = collection of all languages recognized by linear-
time 1PTMs with bounded error (i.e., error < ½ -ε)

• 1-PLIN = collection of all languages recognized by linear-time
1PTMs with unbounded error (i.e., error < ½)

• 1-C=LIN = collection of all languages L that are recognized by
linear-time 1PTMs such that

∀x [x∈L ↔ M accepts x with probability exactly ½].

• (Claim)
1. 1-BPLIN ∪ 1-C=LIN ⊆ 1-PLIN.
2. 1-DLIN ⊆ 1-BPLIN ∩ 1-C=LIN.

Typical Examples

• The complexity classes 1-PLIN, 1-BPLIN, and 1-C=LIN
contain the following problems.

• Problems in 1-PLIN
Let Diff< = { anbm | 1 ≤ n < m }.
 (Claim) Diff< ∈ CFL – REG.

• Problems in 1-C=LIN
Let Equal = { anbn | n ≥ 1 }.
 (Claim) Equal ∈ DCFL – REG.

• We can use the pumping lemma for regular languages to

show that Diff< and Equal are not in REG.

Relationships among Complexity Classes

• Here is a short list of known results regarding the
aforementioned complexity classes.

• Collapse results
 1-DLIN = 1-NLIN = 1-BPLIN = REG

[Hennie65,Kobayashi85,Tadaki-Yamakami-Lin04]
 1-C=LIN = SL=

rat [Tadaki-Yamakami-Lin (2004)]
 1-PLIN = SLrat [Tadaki-Yamakami-Lin (2004)]

• Separation results
 1-C=LIN ≠ 1-PLIN [Turakainen (1969)]
 1-C=LIN ≠ co-1-C=LIN [Dieu (1971)]

Complexity Class PP

• We introduce a complexity class defined by probabilistic
Turing machines (or PTMs).

• A decision problem (or a language) L is in PP if there is a
probabilistic Turing machine M such that, for any input x,
1. x∈L → M accepts x with probability > 1/2,
2. x∉L → M rejects x with probability ≥ 1/2, and
3. M halts in polynomial time.

• When M satisfies Conditions 1-2, we say that M makes

unbounded-error probability.

Natural Problems in PP

• Complexity class PP contains the following problems.

• Majority Satisfiability Problem (Majority-SAT)
 instance: a Boolean formula ϕ
 question: YES if more than half of all assignments

make ϕ true; NO otherwise.

• E.g., ϕ ≡ (x1∨x2)∧(x1∨x3∨¬x4)∧(x2∨¬x3∨¬x4)

 question:

• (Claim) PP is closed under union, intersection, and
complementation. [Beigel-Reinold-Spielman (1991)]

{ } 4
1 2 3 4 1 2 3 4(, , ,) | (, , ,) 1 2 2 ?α α α α ϕ α α α α ≡ >

Complexity Class BPP

• A decision problem (or a language) L is in BPP if there
are a PTM M and a constant (an error bound) ε∈[0,1/2)
such that, for any input x,
1. x∈L → M accepts x with probability ≥ 1–ε,
2. x∉L → M rejects x with probability ≥ 1–ε, and
3. M halts in polynomial time.

• When M satisfies Conditions 1-2, we say that M makes
bounded-error probability.

• (Claim) P ⊆ BPP ⊆ PP.
• (Claim) P ⊆ NP ⊆ PP.

PP

NP
BPP

P

Many believe in this way

Zero-Error Probabilistic Computation

• Here, we consider a slightly different probabilistic model.
• We allow PTMs to reach three distinguished outcomes along

each computation path: “accept,” “reject,” and “don’t know.”
• The “don’t know” state is treated as a halting state but neither

accepting states nor rejecting states.

input x

accepted don’t know

input x
PTM M

probabilistic
computation

probabilistic
computation

or

don’t know rejected

Complexity Class ZPP

• A decision problem L is in ZPP if there are a PTM M and
a constant ε∈[0,1/2) such that, for any input x,
1. x∈L → M outputs either “accept” or “don’t know,”
2. x∉L → M outputs either “reject” or “don’t know,”
3. The probability of producing “don’t know” on each

input is at most 1/2, and
4. M terminates in polynomial time.

• When M satisfies Conditions 1-3, we say that M makes
zero-error probability.

• (Claim) P ⊆ ZPP ⊆ BPP.
• (Claim) ZPP ⊆ NP ∩ co-NP.

Other Well-Known Complexity Classes

• There are a number of complexity classes that are well-
known in use. Here is two of them.

• RP = one-sided version of PP
• co-RP = complement class of RP
• Note that ZPP = RP ∩ co-RP.

• For more complexity classes, see Complexity Zoo:
 https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Known Results

• There are numerous results known for probabilistic
complexity classes.

• (Claims)
1. If NP ⊆ BPP, then RP = NP. [Ko (1982)]
2. If NP ⊆ BPP, then PH ⊆ BPP. [Zachos (1988)]
3. BPP ⊆ Σ2

p ∩ Π2
p. [Sipser-Gacs (1983)]

4. BPPBPP = BPP. [Ko (1982), Zachos (1982)]
5. PPPH ⊆ BPPC=P ⊆ PPP. [Toda (1991)]

• (*) Relativizations and the polynomial hierarchy will be
discussed in Week 4.

Open Problems

• There are a number of problems that have not been
solved in the past literature.

• We list some of them below.

 Is P = BPP?
 Is NP ⊆ BPP?
 Is P = PP?
 Is BPP = PP?

• A certain number of researchers nowadays believe that

P = BPP, that is, the use of probabilistic computation
does not help.

PP

NP
BPP

P

Many believe in this way.

1. Complexity Class C=P
2. PP as a Counting Complexity Class
3. Simple Inclusion Relationships

V. Counting Complexity Classes

Complexity Class C=P

• A decision problem (or a language) L is in C=P if there
are an NTM M and a function f : Σ* → N in FP such that,
for any input x,
1. x∈L ↔ the number of accepting computation paths

of M on x is f(x), and
2. M halts in polynomial time.

• In other words, L = { x | #M(x) = f(x) }, where #M(x)
denotes the number of accepting computation paths of M
on input x.

• Surprisingly, it is possible to fix f as
 f(x) = #M(x)/2.

C=P co-C=P

P

Natural Problems in C=P

• Complexity class C=P was first defined by Wagner
(1986).

• This complexity class contains the following problems.

• Equality Satisfiability Problem (Equal-SAT)
 instance: a Boolean formula ϕ
 question: YES if exactly half of all assignments make

ϕ true; NO otherwise.

• E.g., ϕ ≡ ((x1∧x2)∨((¬x1∨x3)∨¬x4))∧(x2∨¬x3∨¬x4)
 question: { } 4

1 2 3 4 1 2 3 4(, , ,) | (, , ,) 1 2 2 ?α α α α ϕ α α α α ≡ =

PP as a Counting Complexity Class

• We have already seen the complexity class PP.
• This complexity class PP is also considered as a

counting complexity class.

• (Claim) P ⊆ C=P∩co-C=P.
• (Claim) C=P∪co-C=P ⊆ PP.
 [Simon (1975)] PP

C=P co-C=P

P

Many believe in this way.

Simple Inclusion Relationships

P

BPP C=P co-NP

PP

co-C=P NP

inclusion

• Here are class inclusions among the
aforementioned complexity classes.

Open Problems

• The following questions are not
yet answered.

 Is P = C=P or P = co-C=P?
 Is C=P∪co-C=P = PP?
 Is C=P = co-C=P?
 Is NP = C=P?
 Is P = BPP?
 Is NP ⊆ BPP?

PP

C=P co-C=P

P

PP

NP BPP

Many believe in this way.

Other Well-Known Complexity Classes

• There are a number of complexity classes that are well-
known for use and analysis.

• US, FewP, SPP, ⊕P
• IP, MIP, P-sel, AM, MA
• OptP

• For more complexity classes, see Complexity Zoo:
 https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Q & A
I’m happy to take your question!

 END

	2nd Week
	Course Schedule: 16 Weeks
	YouTube Videos
	Main References by T. Yamakami
	I. Basic Complexity Classes
	Complexity Measures
	Complexity Classes
	Complexity Class P
	Who Introduced Class P?
	Closure Properties of P
	Acceptance vs Rejection for NTMs (revisited)
	Complexity Class NP
	Natural NP Problems I
	Natural NP Problems II
	Another Formulation of NP
	Who Introduced Class NP?
	Complexity Class co-NP
	Relationships among P, NP, and co-NP
	The P = NP Problem
	Slide Number 20
	Open Problems
	II. NP-Complete Problems
	Polynomial-Time Many-One Reductions
	Slide Number 24
	Closure Properties of P and NP under pm
	NP-Complete Problems I
	NP-Complete Problems II
	Slide Number 28
	Formula Satisfiability
	Satisfiability Problem SAT
	Example: Satisfying Assignments
	SAT and 3SAT are NP-Complete
	How to Prove the NP-Completeness
	III. Kolmogorov Complexity
	Universal Turing Machines
	Kolmogorov Complexity
	Basic Properties
	Compressibility and Incompressibility
	IV. Probabilistic Complexity Classes
	2-Way Probabilistic Finite Automata
	Formal Definition of 2pfa’s
	Examples of 1pfa’s (one-way case)
	Probabilistic Computation
	Cut-Point Criteria
	Bounded-Error Criteria
	Probabilistic Language Families
	1-Way Probabilistic Pushdown Automata
	Probabilistic Transition Functions
	Formal Definition of 1ppda’s
	Probabilistic Language Families
	Basic Relationships
	Example Lkeq I
	Example Lkeq II
	Example Lkeq III
	Known Results
	Slide Number 56
	Complexity of Palindromes
	Open Problems
	Probabilistic 1-Tape Turing Machines
	Typical Examples
	Relationships among Complexity Classes
	Complexity Class PP
	Natural Problems in PP
	Complexity Class BPP
	Zero-Error Probabilistic Computation
	Complexity Class ZPP
	Other Well-Known Complexity Classes
	Known Results
	Open Problems
	V. Counting Complexity Classes
	Complexity Class C=P
	Natural Problems in C=P
	PP as a Counting Complexity Class
	Simple Inclusion Relationships
	Open Problems
	Other Well-Known Complexity Classes
	Slide Number 77
	Slide Number 78
	Slide Number 79

