
3rd Week 

Synopsis.  
• Circuit Complexity 
• Non-Uniform Complexity Classes 
• Parameterized Problems 
• Sub-Linear-Space Computability 
• Linear Space Hypothesis 

Space Complexity and the Linear 
Space Hypothesis 

April 23, 2018. 23:59 



Course Schedule: 16 Weeks 

• Week 1:  Basic Computation Models 
• Week 2:  NP-Completeness, Probabilistic and Counting Complexity Classes  
• Week 3:  Space Complexity and the Linear Space Hypothesis 
• Week 4:  Relativizations and Hierarchies 
• Week 5:  Structural Properties by Finite Automata 
• Week 6:  Stype-2 Computability, Multi-Valued Functions, and State Complexity 
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YouTube Videos 

• This lecture series is based on numerous papers of T. 
Yamakami. He gave conference talks (in English) and 
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.  

• Use the following keywords to find a playlist of those 
videos.  

• YouTube search keywords: 
    Tomoyuki Yamakami  conference  invited talk playlist 
 

Conference talk video 
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Boolean Circuits 

• A Boolean circuit is composed of logical gates and wires 
(or edges) as illustrated below.   
 

NOT gate AND gate OR gate 



A truth assignment (x1 = 1, x2 = 1, x3 = 0) causes the output to be 1. 

Truth Assignments of Boolean Circuits 



Circuit-SAT 

• A Boolean circuit C is called satisfiable if there exists a 
truth assignment by which C outputs 1. 
 

• We consider the following problem, called Circuit-SAT. 

• Circuit Satisfiability Problem (Circuit-SAT) 
 instance: a Boolean circuit C 
 question: is C satisfiable? 
 

• (Claim)  Circuit-SAT is NP-complete.  

• Hence, Circuit-SAT ∈ P ⇔  P = NP. 



Families of Circuits and Complexity Measures 

• We consider a family {Cn}n∈N of Boolean circuits, where 
each Cn denotes a Boolean circuit taking n-bit inputs. 
 
 

 

 
 

• We use the following complexity measures for circuits. 

• Circuit complexity measures:  
 size of circuit C = number of gates in C 
 depth of circuit C = number of logical gates in the 

longest path from an input to an output 

C0 C1 C2 Cn C3 

... 

... ... 

n 

We treat inputs 
and outputs as 
“gates” of indegree 
0 and outdegree 0, 
respectively. 



Polynomial-Size Circuits and Non-Uniformity 

• We are interested in non-uniform families of Boolean circuits 
of polynomial size.  

• A family {Cn}n∈N  of circuits computes (or recognizes) language 
L if, for any n∈N and for any Boolean values 
x=x1x2...xn∈{0,1}n, x∈L ⇔ C|x|(x) = 1. 
 

• A family {Cn}n∈N  of circuits is said to be of polynomial size if 
there exists a nonnegative polynomial p such that, for any 
length n, Cn has size at most p(n).  
 

• We say that a family  {Cn}n∈N of circuits is non-uniform if there 
is no specific algorithm to produce a description (or an 
encoding) of Cn from input 1n for every n∈N. 
 
 
 



Complexity Class P/poly 

• P/poly is the collection of all decision problems (or 
languages) computed by non-uniform families of 
Boolean circuits of polynomial size. 
 

More formally: 

• For any decision problem L,   
L ∈ P/poly  ⇔  there exist a constant k ≥ 1 and a non-
uniform family { Cn | n ≥ 1 } of Boolean circuits such that  

1) Size(Cn) = O(nk) for every n≥1, and  
2) x ∈ L ↔  Cn(x) = 1  for every x of length n. 

 

Such a family is called a non-
uniform family of circuits 



Advice and Advised Computation 

• P/poly can be characterized in terms of advice. 
• Advice is an external source that can provides with 

additional information to an underlying machine. 

• Karp and Lipton (1982) considered the situation where a 
single advice string is given to underlying machines for 
each input length n.    

• An advice function h: N→Σ* provides advice strings h(n) 
for each input length n.  

• An advised machine is a machine equipped with a read-
only advice tape and it takes two types of inputs, a 
standard input string and also an advice string. 

    (See the next slide.) 



Read-Only Advice Tapes 

We provide a machine with an extra read-only advice tape. 

q 

A read/write input tape 

Inner state q ∈ Q 

…... 

A read-only advice tape 

h(n) 

n = |x| for input x 

Input x is initially 
given here 

Advice string h(n) 
is given here 



Advice Characterization of P/poly  I 

• We give another characterization of P/poly using advised 
computation. 

• We consider only advice of polynomial length (or size). 
 

• For any decision problem L, 
L is in P/poly  ⇔   there exist a constant k≥1, a 
polynomial-time DTM M, an advice function h: N→Σ* for 
an advice alphabet such that  
1) |h(n)|=O(nk) for every input length n, and 
2) for every x,  x ∈ L ↔ M accepts input pair (x,h(|x|)) 

This is expressed as M(x,h(|x|)) = 1 



Advice Characterization of P/poly  II 

• In other words, for every language L, 

L is in P/poly  ⇔   there exist a language A ∈ P and an 
advice function h: N→Σ* such that, for every x,   
                  x ∈ L  ↔  〈x,h(|x|)〉 ∈ A. 
 
 

• By changing “P” in the above definition with other 
complexity classes C, we can define other advised 
complexity classes C/poly. 

• For example, we obtain NP/poly, BPP/poly, UP/poly, etc. 

This is an encoding pair of (x,h(|x|)). 

(*) UP will be discussed in Week 4. 



Basic Properties of P/poly 

• Note that P/poly contains non-recursive problems (that is, 
problems that cannot be solved by any algorithm) 
because advice functions may not generally be 
computable.  

• (Claim)  BPP ⊆ P/poly 
• (Claim)  If NP ⊆ P/poly, then PH=ZPPNP. 
                      [Köbler-Watanabe (1998)] 

 
• Open Problems: 
 Does NP ⊆ P/poly? 
 Does PSPACE ⊆ P/poly? 

P/poly 

P NP 

PSPACE 

Many researchers believe in this way. 



Complexity Class L/poly 

• The use of advice gives rise to many non-uniform 
complexity classes. 

• Here, we introduce another complexity class L/poly 
using log-space DTMs with polynomial-size advice. 

• Let S be any decision problem or a language.   

S is in L/poly  ⇔   there exist a constant k≥1, a log-
space DTM M, an advice function h: N→Σ* such that  
1) |h(n)|=O(nk) for every input length n, and 
2) for any x,  x ∈ S ↔ M(x,h(|x|)) = 1. 

• (Claim)  L ⊆ L/poly 

• Open Problem:  Is NL ⊆ L/poly? 
Log-space DTMs will be 
explained shortly. 
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II. Space-Bounded Computation 



Space-Bounded Computation 

• Earlier, we have discussed time-bounded computation 
and time-bounded solvable problems. 

• Here, we are focused on space-bounded computation 
and associated problems. 

• Let s be a space-bounding function from N to N such 
that s(n) ≥ log(n) for all n≥1. 

• We say that an algorithm (i.e., a DTM) solves a 
(decision) problem using space O(s(n)) if, when it is 
provided a problem instance x of length n, the algorithm 
can produce the solution using O(s(n)) space.  

• There is no bound for running time but the algorithm 
must halt eventually. 



Polynomial-Space Solvable Problems 

• A problem is said to be s(n)-space solvable if there 
exists an algorithm to solve it using space O(s(n)). 

• When s(n) is a polynomial (i.e., s(n)=O(nk) for some 
constant k), a problem is said to be polynomial-space 
solvable. 

• Note that any algorithm that runs in time t(n) also uses 
space at most t(n). 

• Hence, polynomial-time solvable problems are also 
polynomial-space solvable. 

• However, the converse does not hold in general.  



How to Solve NP-Complete Problems 

• Using polynomial-space, we can 
easily solve NP-complete 
problems. 

• Take Circuit-SAT as an example 
of NP-complete problems. 

• Consider this algorithm.  ⇒ 
 

• This algorithm uses only O(n) bits 
to remember v and O(|code(C)|2) 
bits to simulate C(v).  

• Hence, Circuit-SAT is polynomial-
space solvable. 

Algorithm for Circuit-SAT 
 
1. Take Boolean circuit C 

as an input. 
2. Set v=0n. 
3. Check if C(v) = 1. 
4. If so, accept and halt. 
5. Else, if v = 1n, reject 

and halt. 
6. Else, increment v by 

one and go to Step 3. 

00......00 
00......01 
00......10 
 
11.......11 

.... 

v = 
incre
ment 



Complexity Class PSPACE 

• We introduce a complexity class defined by deterministic 
polynomial-space computations. 

• A decision problem L is in PSPACE if there is a DTM M 
such that, for any input x, 
1. x∈L → M accepts x,  
2. x∉L → M rejects x, and 
3. M uses polynomial space. 

 
 

• (Claim)  P ⊆ NP ⊆ PSPACE ⊆ EXP. 
 

• (Claim)  PSPACE = NPSPACE. [Savitch (1970)] 

PSPACE = NPSPACE 

NP 

P 



Function Class FPSPACE 

• Next, we consider functions f : Σ* → Σ* (where Σ is an 
alphabet). 
 

• A function f : Σ* → Σ* is in FPSPACE  ⇔    
1. f is p-bounded (i.e., |f(x)|=O(|x|k) for some k≥1, and 
2. there is a DTM M such that, for any input x, M 

produces f(x) on the output tape using space 
O(log(|x|)).  

 
• (Claim)  PF ⊆ FPSPACE. 

 



Random Access Model with Index Tapes 
• To consider logarithmic-space computation, we need a 

random access model of multi-tape Turing machines.  

¢ $ xk 

q Random access  read-only input tape 

… …....... 

Read/write work tape 

Maximum space usage 

¢ $ k   (in binary) Index tape 

k 0 n+2 



How to Operate a Machine 

• To read each symbol written on an input tape, we need 
to take  a series of steps described below. 

1. A machine M writes down an index k in binary on the 
index tape. 

2. M enters a special state, called an index state qindex, to 
initiate the process of random accessing. 

3. An input-tape head of M jumps to the cell indexed k. 
4. M scans the k-th tape cell and then the index tape is 

automatically become empty.   

• This process is repeatedly taken to read all or some 
input symbols. 



Logarithmic-Space Solvable Problems 

• Here, when we consider the space usage of a machine, 
we do not include any read/write work tape.  
 

• Let s be a function from N to N. 
• We say that an algorithm (or a deterministic Turing 

machine) solves a problem A using space O(s(n)) if, for 
any instance x of length n, the algorithm can produce a  
solution of A using O(s(n)) space.  
 

• A problem is logarithmic-space (or log-space) solvable if 
there exists an algorithm to solve it using  O(log n) space. 



Complexity Class L 

• A decision problem (or a language) A is in L if 
there is a DTM M such that, for any input x, 
1. x∈A → M accepts x,  
2. x∉A → M rejects x, and 
3. M uses logarithmic space (or log space). 

• It is possible to trim the running time of a 
machine to “polynomial time.” 
 

• (Claim) REG ⊆ L ⊆ P. 
• (Claim) L ≠ PSPACE. [Savitch (1970)] 

P 

L 

REG 

PSPACE 



USTCON: Typical Problem in L 

• Complexity class L contains the following problem. 
 

• Undirected s-t Connectivity Problem (USTCON) 
 instance: an undirected graph G and two vertices s,t 
 question: Is there a path between s and t? 
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v5 

t = v8 

s = v1 

v9 

v4 

v7 

v3 
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v4 
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Complexity Class NL 

• A decision problem (or a language) L is in NL if there is an 
NTM (nondeterministic Turing machine) M such that, for 
any input x, 
1. x∈L ↔ there exists an accepting computation path of 

M on x (or x is accepted by M), and 
2. M uses logarithmic space (or log space) on all inputs. 

 
• (Claim)  L ⊆ NL ⊆ P 

• (Claim)  NL = co-NL 
 
 

• Hence, NL looks different from NP.  
 

NL = co-NL 

L 

P 

[Immerman (1988), 
Szelepcsényi (1988)] 



Function Class FL 

• Let us recall the function class FP from Week 1.  
• Here, we consider a log-space version of FP.  

• Let f: Σ*→Σ* be any function, where Σ is an alphabet. 

• This function f: Σ*→Σ* is called log-space computable if  
1. f is p-bounded (i.e., |f(x)|=O(|x|k) for some k>0), 
2. there exists a DTM M with an output tape such that, on 

each input x∈Σ*, M produces f(x) on its output tape, and  
3. on input x, M uses only O(log(n)) space on the work tape 

(but no space bound is imposed on the output tape).  

• Let FL denote the collection of all p-bounded log-space 
computable functions. 



Log-Space Many-One Reductions 

• A language A is log-space many-one reducible (L-m-
reducible or ≤m

L-reducible) to language B if there exists a 
log-space DTM M such that, for any input x, 
o x∈A ⇔ M on input x produces y, which is p-bounded, 

and y∈B. 

• In this case, we write A ≤m
L B.  

• In other words,  
          A ≤m

L B  ⇔  ∃f∈FL ∀x∈Σ* [ x∈A ↔ f(x)∈ B ] 
f 

Σ* Σ* 
A 

B 
x f(x) 
y 

z f(z) 



2SAT is NL-Complete 

• Recall from Week 2 that 3SAT is NP-complete. 
• Complexity class NL contains the following problem. 

 
• 2-Satisfiability Problem (2SAT) 
 instance: a Boolean formula ϕ of 2CNF (2-conjunctive 

normal form) 
 question: Is ϕ satisfiable? 
 

• E.g., 2CNF: ϕ ≡ (x1∨x2)∧(x1∨¬x3)∧(¬x2∨x3) 
 

• (Claim)  2SAT is NL-complete. [Jones (1975)] 
 

2 literals 



2SATk is also NL-Complete 

• It turns out that 2SAT is not suitable for our purpose.  
• Thus, we consider a restricted variant of 2SAT. 

 
• 2SATk is the set of all 2SAT formula, each variable of 

which appears as literals at most k times.  
• Example: k=3 
       ϕ ≡ (x1 ∨ ¬x6 ) ∧ (x2 ∨ x3) ∧ (¬x5 ∨ x2) ∧ (¬x4 ∨ ¬x2) 
       mvbl(ϕ) = 6, mcls(ϕ) = 4 

 
 

• (Claim)  2SATk (k≥3) is NL-complete. 
• However, it is not known that 2SATk ∉ L. 

Each xi appears at most 
3 times 



DSTCON is NL-complete 

• Complexity class NL contains the following problems. 
 

• Directed s-t Connectivity Problem (DSTCON) 
 instance: a directed graph G and two vertices s,t 
 question: Is there a path from s to t?  

v2 

v5 

v8 

s = v1 

v9 

v4 

t = v7 

v3 

v6 

• (Claim) DSTCON is NL-
complete. [Jones (1975)] 
 



kDSTCON is also NL-complete 

• Consider a restricted variant of DSTCON. 
• The degree of a vertex (or a node) is the number of 

edges connected to the vertex. 
 

• kDSTCON consists of DSTCON instances whose graphs 
have degree at most k at all vertices. 

v2 

v5 

v8 

s = v1 

v9 

v4 

t = v7 

v3 

v6 

• (Claim)  For any constant k≥3, 
kDSTCON is NL-complete.  
 

• However, it is not known that 
3DSTCON ∉ L. 

degree 5 



Open Problems 

• The following questions 
regarding L, NL, and PSPACE 
are not yet answered. 
 
 Is P = PSPACE? 
 Is NP = PSPACE? 
 Is L = P? 
 Is L = NL? 
 Is NL = NP? 
 Is CFL ⊆ L? 

NL = co-NL 

L 

P 

PSPACE = NPSPACE 

NP 

P 



1. Space Usage for Solving DSTCON 
2. Parameterized Problems 
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8. Short SLRF-T-Reducibility 
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III. Sub-Liner-Space Computability 



Space Usage for Solving DSTCON 

• Consider the following directed s-t connectivity problem. 

• DSTCON(m,n)  
 instance: a directed graph G of n vertices and m edges, 

and two vertices s, t 
 question: is there any path from s to t? 

• Barnes, Buss, Ruzzo, and Schieber (1998) gave an 
algorithm that solves DSTCON(m,n) in O(m+n) time using 
n1-c/√log(n)  space for an appropriate constant c>0. 

• Open Problem: 
Can we improve the above space bound down to  

             O(nε polylog(m+n)) for certain ε∈[0,1)? 



Size Parameters 

• It is useful to parameterize problems by taking 
appropriate size parameters. 

• A size parameter m: Σ*→N is a function that gives a 
“size” m(x) of an input x (e.g., m(x) = |x|).  

• Here are 2 simple examples.   
• For a CNF Boolean formula ϕ: 
 mvbl(ϕ) = number of different variables in ϕ 
 mcls(ϕ) = number of clauses in ϕ 

• For a directed/undirected graph G: 
 mver(G) = number of vertices in G 
 medg(G) = number of edges in G  



Size Parameter Matters 

 mver(G) = number of vertices in G 
 medg(G) = number of edges in G  

v2 
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v1 
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≤

≤

if there is no isolated vertex 

• How different is the gap between mver(G) and medg(G)?  

A huge difference! 



Parameterized Problems 

• In practice, execution time and space usage are often 
measured according to size m(x) of input x.   

• Impagliazzo, Paturi, and Zane (2001) took a new 
approach toward kSAT and Search-kSAT, 
parameterized by mvbl and mcls. 

• A parameterized decision problem is a pair (A,m) of a 
(standard) decision problem A⊆Σ* and a size parameter 
m: Σ*→N. 

 
• Parameterized decision problem (A,m) 
 instance: x with size m(x) 
question: is x∈A? 



Poly-Time Sub-Linear-Space Computability 

• We use deterministic Turing machines (DTMs), each of 
which has an input tape and a work tape. 

• We are interested in DTMs that use only O(nc) time and 
restricted space to solve given decision problems. 

• Let m be a size parameter. 

• An informal term “sub linear w.r.t. m” means  

                              m(x)ε polylog(|x|)  

for a fixed constant ε∈[0,1) and a polylogarithmic function 
polylog(n) (i.e., clogk(n)+d for some c>0 and k≥0). 

• Here, we are focused on deterministic algorithms that 
run in polynomial time using only sub-linear space. 



PTIME,SPACE(...) 

• It is useful in practice to introduce a new notation.  
• Let (L,m) denote a parameterized problem, where L is a 

decision problem and m is a size parameter. 
 

• (L,m) ∈PTIME,SPACE(f(n)) ⇔  
∃M:DTM s.t.  ∀x 
1) x∈L → M accepts x 
2) x∉L → M rejects x 
3) M runs in time polynomial in |x| using O(f(m(x))) 

space. 
O(|x|k) time for some k>0 



Complexity of 2SAT(m,n) 

• Theorem: [Yamakami (2017)] 
     ∃c>0 ∃l:polylog function s.t.  
                2SAT(m,n) ∈PTIME,SPACE(n1-c/√log(n) l(m+n)), 

where a 2SAT(m,n)-instance has n variables and m 
clauses.  
 

• The proof of the above theorem follows directly from  
Barnes, Buss, Ruzzo, and Schiebe’s (1998) fast 
algorithm for DSTCON. 
 

• Open Problem: 
Is it true that 2SAT(m,n) ∈PTIME,SPACE(nε) for a 
constant ε∈(0,1)? 



Complexity Class PsubLIN 

• We define a new practical complexity class called 
PsubLIN. 
 “P” stands for “polynomial-time.” 
 “subLIN” stands for “sub-linear space.” 

• PsubLIN = class of (parameterized) decision problems or 
search problems (L,m) such that L is solved in time 
polynomial in |x| using sub-linear space (w.r.t. m) 

• That is,  
       PsubLIN = ∪0≤ε<1 PTIME,SPACE(m(x)εpolylog(|x|)) 

 
• (Claim)  L ⊆ PsubLIN ⊆ P. 

 



Reductions for Parameterized Problems 

• Reductions or reducibility has been so successful to 
discuss “complete” problems, such as NP-complete 
problems. 

• Now, our goal is to define suitable reductions among 
parameterized problems in PsubLIN. 

• First of all, for a wider rage of application, we expand 
“many-one reduction” to “Turing reduction.”  

• To define Turing reduction, we need to introduce a 
notion of oracle Turing machine and a notion of oracle.  
 



Oracle Turing Machines I 

• Here, we give briefly general notions of oracle Turing 
machine and oracle. 

• (*) The notion of OTMs will be discussed extensively in 
Week 4. 
 

• An oracle Turing machine (OTM) is equipped with an 
additional tape, called a query tape, in which the 
machine make a query to an oracle. 

• An oracle is an external information source, which can 
provide the machine with necessary information via a 
process of query and answer. 



Oracle Turing Machines II 

input tape 
(read-only) 

Inner 
state 

query tape 
(write-only) 

oracle 
answer 

query 

two way 

one way 



Oracle Computation 

query z1 

answer qNO 

query z2 

answer qYES 

input x 

output A(x) 

B 

Σ* 

z1 

z2 

• M: OTM for A 
• B: oracle 

1. M starts with input x. 
2. Whenever M writes a query 

word z on its query tape and 
enters a query state qquery, z 
is automatically sent to B. 

3. The oracle B returns its 
answer (YES/NO) by 
changing M’s inner state to 
either qyes or qno. 

4. M resumes its computation, 
starting with  qyes or qno. 

5. If M halts, output M(x).  
Otherwise, go to Step 2. 



SLRF-T-Reducibility 

• We define a notion of (polynomial-time) sub-linear-space 
reduction family (SLRF). 
 

• (P1,m1)≤SLRF
T (P2,m2) ⇔  

   ∀ε>0∃M:oracle DTM∃l:polylog∃k1,k2>0 s.t. 
1. MP2(x) runs in ≤ p(|x|) time and ≤ m1(x)εl(|x|) space 
2. Whenever M makes a query to oracle P2, M receives 

its answer and continues a computation. 
3. If M make a query z to P2, then m2(z) ≤ m1(x)k1+k1 and 

|z| ≤ |x|k2+k2. 

• All queried words z have size polynomial in the size of 
inputs (w.r.t. size parameters). 



Short Reductions are Needed 

• Unfortunately, in SLRF-T-reduction, query words are too 
long to make functional composition for sub-linear-space 
machines.  

• This raises a serious question whether PsubLIN may not 
be closed under ≤m

L-reductions. 
• This forces us to look for a more restricted notion of 

reductions to discuss the computational complexity of 
PsubLIN. 

• A simple remedy is to make only “short” queries.  
• Namely, we demand that the size of queried word is 

linear in the size of input (w.r.t. given size parameters). 



Short SLRF-T-Reductions 

• We say that (P1,m1) is short SLRF-T-reducible to 
(P2,m2), denoted by (P1,m1)≤sSLRF

T (P2,m2),  if the 
following hold. 

• (P1,m1)≤sSLRF
T (P2,m2)   ⇔  

   ∀ε>0∃M:oracle TM∃l:polylog∃k1,k2>0 s.t. 
1. MP2(x) runs in ≤ p(|x|) time and ≤ m1(x)εl(|x|) space 
2. Follow the same oracle mechanism 
3. If MP2 queries z to P2, then m2(z) ≤ k1m1(x)+k1 and |z| 

≤ |x|k2+k2. 

• A ≡r B ⇔ A ≤r B and B ≤r A  for any reduction type r 

This bound is different 
from SFRF-T-reductions 



Comparison of Query Size 

query words  z oracle 
oracle machine 

1
2 1 1( ) ( )km z m x k≤ +

query words  z oracle 
oracle machine 

2 1 1 1( ) ( )m z k m x k≤ +

input  x 

input  x 



Properties of Short Reductions 

• Proposition: [Yamakami (2017)] 
1) ≤SLRF

T and ≤sSLRF
T : reflexive and transitive. 

2) PsubLIN is closed under ≤sSLRF
T-reductions. 

3) ∃X,Y: recursive s.t. X ≤SLRF
T Y but  X ≰sSLRF

T Y. 
 

• Proposition: [Yamakami (2017)] 
   ∀m∈{mvbl,mcls} ∀k≥3  

1) (2SATk,m) ≡sSLRF
m (2SAT3,m) 

2) (2SAT3,mvbl) ≡sSLRF
m (2SAT3,mcls) 

 
• Hence, it suffices to focus only on (2SAT3,mvbl). 

However, we don’t 
know if we can 
replace 2SAT3 by 
2SAT. 



Relationships by Short Reductions 

• As a simple example of ≤sSLRF
T,  let us consider the 

directed s-t connectivity problem (DSTCON) and its 
variants. 

• The next slide will illustrate certain known relationships 
among numerous variants of DSTCON problems 
associated with acyclic graph, planar graph, shortest-
path, etc. 
 

• (*) In the next slide, “Search-C” means a search problem 
in which we are asked to find (and output) a solution to 
the original decision problem C. 



Search-BFT, Search-SPT, MinPath, Search-BDSTCON, BDSTCON 

Search-DSTCON 

Search-3DSTCON 

Search-DST 

Search-ADST, TOPSORT 

Search-Unique-DSTCON 

Search-Unique-DCYCLE 

Search-ADSTCON, ADSTCON 

Search-Planar-DSTCON 

Search-Planar-3DSTCON 

Search-DGGSTCON 

Search-LDGGSTCON, Search-Planar-3LDSTCON 

Search-TOPDCON 

Search-3TOPDCON 

DSTCON 

Search-DCYCLE 

3DSTCON, 2SAT3 

PsubLIN 

Size parameter: mver(x) = # of vertices 
Ordered by sSLRF-
reductions 



1. New, Practical Working Hypothesis 
2. The Linear Space Hypothesis (LSH) 
3. Other NL-Complete Problems 
4. Other Characterizations of LSH 

IV. Linear Space Hypothesis 



New, Practical Working Hypothesis 

• As noted earlier, 2SAT with n variables and m clauses is 
solvable in polynomial time using at most  

                  n1-c/√log(n) × polylog(m+n) space. 
• However, we do not know whether 2SAT (even 2SAT3) 

is solved in polynomial time using nε × polylog(m+n) 
space for a fixed constant ε∈[0,1). 
 

• We want to propose a new, practical working hypothesis, 
which is expected to serve as a driving force to obtain 
better lower bounds of the computational complexity of 
various problems.  



The Linear Space Hypothesis (LSH)  I 

• We introduce a working hypothesis called the linear 
space hypothesis (LSH). 

• LSH (or LSH for 2SAT3) states: 
There is no deterministic algorithm that solves 2SAT3 in 
time p(|x|) using at most mvbl(x)εl(|x|) space on instance 
x for a certain polynomial p, a certain polylog function l, 
and a certain constant ε∈[0,1). 
 

 
• Open Problem 
    Prove or disprove that LSH for 2SAT3 ↔ LSH for 2SAT. 



The Linear Space Hypothesis (LSH)  II 

• The previous definition uses the parameterized problem 
(2SAT3,mvbl). How about (2SAT3,mcls)? 
 

• (Claim)  We can replace mvbl in the above by mcls. 

 Proof Sketch:  
This is because (2SAT3,mvbl) ≡sSLRF

m (2SAT3,mcls) and 
PsubLIN is closed under ≤sSLRF

m-reductions. 
 

• Theorem: [Yamakmai (2017)] 
    If LSH for 2SAT3 holds, then L ≠ NL. 

• The converse is not yet known. 



Other NL-Complete Problems I 

• For two column vectors  x = (x1,x2,...,xn)T and 
y=(y1,y2,...yn)T, we define  

                  x ≥ y  ⇔  xi ≥ yi  for all index i∈{1,2,...,n}. 
• LP2,k  (linear programming problem) 
 instance: a rational m×n matrix A, a rational column 

vector b∈Qn, where each row of A has at most two non-
zero entries and each column of A has at most k non-
zero entries 

 question: is there any {0,1}-vector x s.t. Ax ≥ b? 
mcol(x) = # of columns in A 
mrow(x) = # of rows in A 

 
• (Claim) LP2,k  is NL-complete for any k≥3. 

See the next slide. 



Other NL-Complete Problems II 
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Other Characterizations of LSH 

• We have seen 2SAT3, 3DSTCON, and LP2,3 so far. 
• Interestingly, those three NL-complete problems have a 

common feature.  
 

• Theorem:  [Yamakami (2017)] 
     The following three statements are logically equivalent. 
 LSH for 2SAT3  (with mvbl or mcls) 
 LSH for LP2,3 (with mrow or mcol) 
 LSH for 3DSTCON (with mver or medg) 

 
• However, not all NL-complete problems seem to share 

the above special property concerning LSH.    
 



1. NL Search Problems 
2. Complexity of Search-UOCK 
3. NL Optimization Problems 
4. Complexity of Max-HPP 
5. Topological Sort 
6. Complexity of TOPSORT 

V. Applications of LSH 



NL Search Problems 
• The first application is in the field of NL search problems. 

 
 

• Search-UOCK (a variant of Knapsack Problem) 
 instance: a string w, a sequence (w1,w2,...,wn) of strings s.t., 
∀i∈[n], if wi is a substring of w then wi is unique 

 solution: a sequence (i1,i2,...,ik) of indices with k ≥ 1 s.t. 1 ≤ 
i1< i2 < ... < ik ≤ n and w = wi1wi2...wik. 

0010 

w1 

11 

w2 

010 

w3 

0111 

w4 

1010 

w5 

0 0 1 0 0 1 0 1 0 1 0 

0010 

w1 

010 

w3 

1010 

w5 

input 
sequence 

input 
string w =  

output  (1, 3, 5) 
= 



Complexity of Search-UOCK 

• Search-UOCK (again) 
 instance: a string w, a sequence (w1,w2,...,wn) of 

strings over alphabet Σ s.t., ∀i∈[n], if wi is a substring 
of w then wi is unique 

 solution: a sequence (i1,i2,...,ik) of indices with k ≥ 1 
s.t. 1 ≤ i1< i2 < ... < ik ≤ n and w = wi1wi2...wik. 

• size parameter: melm(x) = n  (the number of elements) 

• Theorem:  [Yamakami (2017)] 
If LSH (for 2SAT3) holds, then, for ∀ε>0, there is no 
polynomial-time O(n1/2-ε)-space algorithm for (Search-
UOCK,melm). 



NL Optimization Problems  I 

• The second application is in the field of NL optimization 
problems. 

• In an optimization problem, intuitively speaking, we are 
asked to search for optimal solutions satisfying certain 
predetermined properties for each given input, where 
“optimality” is measured by cost functions m.  
 

• NLO = class of NL optimization problems [Tantau (2007),  
Yamakami (2013)] 
 

• (*) We will discuss optimization problems extensively in 
Week 9. 



NL Optimization Problems  II 

• We further define an approximation class. 
 

• LSASNLO = class of NLO problems that have log-space 
approximation schemes [Tantau (2007), Yamakami (2013)] 

• A log-space approximation scheme for problem P is a DTM 
M that takes (x,k) as input and outputs a solution y of P 
using at most  f(k)log(|x|) space with performance ratio 
R(x,y) ≤ 1+1/k, where f ∈ FL. Such y is called a (1+1/k)-
approximate solution. 

• Performance ratio R(x,y)  =  max{ |m(x,y)/m*(x)|, 
|m*(x)/m(x,y)| }, where m*(x) = max{ m(x,y) | y is a solution 
for input x }.  



Complexity of Max-HPP 
• Max-HPP (maximum hot potato)  [Tantau (2007)] 
 instance: an n×n matrix A whose entries are in [n], a 

d∈[n], a start index i1∈[n] for n∈N+ 

 solution: an index sequence S = (i1,i2,...,id) with ij∈[n] 
 measure: total weight   

• size parameter: mcol(x) = n 
• Max-HPP is in LSASNLO [Tantau (2007)] but it is hard for 

LONLO under approximation-preserving exact NC1-reduction 
[Yamakami (2013)]. 

• Theorem:  [Yamakami (2017)] 
If LSH for 2SAT3 holds, then, for ∀ε>0, there is no 
polynomial-time O(k1/3log(mcol(x)))-space algorithm finding 
(1+1/k)-approximate solutions of (Max-HPP,mcol). 
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Topological Sort 
• Topological sorting problem (TOPSORT) 
 instance: an acyclic directed graph G and a source s in G 
 output: a topological sort of G starting from s 

 

input 

output 

“Topological sort” means that every 
arrow does not go backward! 

s 

s 



Complexity of TOPSORT 

• LSH can tell how difficult to solve TOPSORT.  
• More precisely, we obtain the following result. 

 
• Theorem:  [Yamakami (2017)] 

If LSH (for 2SAT3) holds, then no DTM solves 
(TOPSORT,mver) in polynomial-time using O(mver(x)ε/2) 
space on instances x for any fixed constant ε∈[0,1)  



Open Problems 

• There are numerous problems that have been left 
unsolved concerning LSH. 
 

• Here are several important questions. 
1. Find more interesting and practical applications of 

LSH. 
2. Prove or disprove that LSH is true. 
3. Discuss the relationships between LSH for 2SAT3 

and LSH for 2SAT. 
 

• (*) We will return to a discussion on LSH in Week 6. 





Q & A 
I’m happy to take your question! 



 
 

                                 END 
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