
3rd Week

Synopsis.
• Circuit Complexity
• Non-Uniform Complexity Classes
• Parameterized Problems
• Sub-Linear-Space Computability
• Linear Space Hypothesis

Space Complexity and the Linear
Space Hypothesis

April 23, 2018. 23:59

Course Schedule: 16 Weeks

• Week 1: Basic Computation Models
• Week 2: NP-Completeness, Probabilistic and Counting Complexity Classes
• Week 3: Space Complexity and the Linear Space Hypothesis
• Week 4: Relativizations and Hierarchies
• Week 5: Structural Properties by Finite Automata
• Week 6: Stype-2 Computability, Multi-Valued Functions, and State Complexity
• Week 7: Cryptographic Concepts for Finite Automata
• Week 8: Constraint Satisfaction Problems
• Week 9: Combinatorial Optimization Problems
• Week 10: Average-Case Complexity
• Week 11: Basics of Quantum Information
• Week 12: BQP, NQP, Quantum NP, and Quantum Finite Automata
• Week 13: Quantum State Complexity and Advice
• Week 14: Quantum Cryptographic Systems
• Week 15: Quantum Interactive Proofs
• Week 16: Final Evaluation Day (no lecture)

Subject to Change

YouTube Videos

• This lecture series is based on numerous papers of T.
Yamakami. He gave conference talks (in English) and
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.

• Use the following keywords to find a playlist of those
videos.

• YouTube search keywords:
 Tomoyuki Yamakami conference invited talk playlist

Conference talk video

Main References by T. Yamakami

✎ T. Yamakami. Uniform-circuit and logarithmic-space
approximations of refined combinatorial optimization
problems. In Proc. of COCOA 2013, Lecture Notes in
Computer Science, vol. 8287, pp. 318-329 (2013)

✎ T. Yamakami. The 2CNF Boolean formula satisfiability
problem and the linear space hypothesis. In Proc. of MFCS
2017, LIPIcs 83, Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik 62:1-62:14 (2017)

✎ T. Yamakami. Parameterized graph connectivity and
polynomial-time sub-linear-space short reductions
(preliminary report). In Proc. of RP 2017, Lecture Notes in
Computer Science, vol. 10506, pp. 176-191 (2017)

1. Boolean Circuits
2. Families of Circuits and Complexity Measures
3. Polynomial-Size Circuits and Non-Uniformity
4. Complexity Class P/poly
5. Advice and Advised Computation
6. Advice Characterization of P/poly
7. Basic Properties of P/poly
8. Complexity Class L/poly

I. Non-Uniform Complexity Classes

Boolean Circuits

• A Boolean circuit is composed of logical gates and wires
(or edges) as illustrated below.

NOT gate AND gate OR gate

A truth assignment (x1 = 1, x2 = 1, x3 = 0) causes the output to be 1.

Truth Assignments of Boolean Circuits

Circuit-SAT

• A Boolean circuit C is called satisfiable if there exists a
truth assignment by which C outputs 1.

• We consider the following problem, called Circuit-SAT.

• Circuit Satisfiability Problem (Circuit-SAT)
 instance: a Boolean circuit C
 question: is C satisfiable?

• (Claim) Circuit-SAT is NP-complete.

• Hence, Circuit-SAT ∈ P ⇔ P = NP.

Families of Circuits and Complexity Measures

• We consider a family {Cn}n∈N of Boolean circuits, where
each Cn denotes a Boolean circuit taking n-bit inputs.

• We use the following complexity measures for circuits.

• Circuit complexity measures:
 size of circuit C = number of gates in C
 depth of circuit C = number of logical gates in the

longest path from an input to an output

C0 C1 C2 Cn C3

...

... ...

n

We treat inputs
and outputs as
“gates” of indegree
0 and outdegree 0,
respectively.

Polynomial-Size Circuits and Non-Uniformity

• We are interested in non-uniform families of Boolean circuits
of polynomial size.

• A family {Cn}n∈N of circuits computes (or recognizes) language
L if, for any n∈N and for any Boolean values
x=x1x2...xn∈{0,1}n, x∈L ⇔ C|x|(x) = 1.

• A family {Cn}n∈N of circuits is said to be of polynomial size if
there exists a nonnegative polynomial p such that, for any
length n, Cn has size at most p(n).

• We say that a family {Cn}n∈N of circuits is non-uniform if there
is no specific algorithm to produce a description (or an
encoding) of Cn from input 1n for every n∈N.

Complexity Class P/poly

• P/poly is the collection of all decision problems (or
languages) computed by non-uniform families of
Boolean circuits of polynomial size.

More formally:

• For any decision problem L,
L ∈ P/poly ⇔ there exist a constant k ≥ 1 and a non-
uniform family { Cn | n ≥ 1 } of Boolean circuits such that

1) Size(Cn) = O(nk) for every n≥1, and
2) x ∈ L ↔ Cn(x) = 1 for every x of length n.

Such a family is called a non-
uniform family of circuits

Advice and Advised Computation

• P/poly can be characterized in terms of advice.
• Advice is an external source that can provides with

additional information to an underlying machine.

• Karp and Lipton (1982) considered the situation where a
single advice string is given to underlying machines for
each input length n.

• An advice function h: N→Σ* provides advice strings h(n)
for each input length n.

• An advised machine is a machine equipped with a read-
only advice tape and it takes two types of inputs, a
standard input string and also an advice string.

 (See the next slide.)

Read-Only Advice Tapes

We provide a machine with an extra read-only advice tape.

q

A read/write input tape

Inner state q ∈ Q

…...

A read-only advice tape

h(n)

n = |x| for input x

Input x is initially
given here

Advice string h(n)
is given here

Advice Characterization of P/poly I

• We give another characterization of P/poly using advised
computation.

• We consider only advice of polynomial length (or size).

• For any decision problem L,
L is in P/poly ⇔ there exist a constant k≥1, a
polynomial-time DTM M, an advice function h: N→Σ* for
an advice alphabet such that
1) |h(n)|=O(nk) for every input length n, and
2) for every x, x ∈ L ↔ M accepts input pair (x,h(|x|))

This is expressed as M(x,h(|x|)) = 1

Advice Characterization of P/poly II

• In other words, for every language L,

L is in P/poly ⇔ there exist a language A ∈ P and an
advice function h: N→Σ* such that, for every x,
 x ∈ L ↔ 〈x,h(|x|)〉 ∈ A.

• By changing “P” in the above definition with other
complexity classes C, we can define other advised
complexity classes C/poly.

• For example, we obtain NP/poly, BPP/poly, UP/poly, etc.

This is an encoding pair of (x,h(|x|)).

(*) UP will be discussed in Week 4.

Basic Properties of P/poly

• Note that P/poly contains non-recursive problems (that is,
problems that cannot be solved by any algorithm)
because advice functions may not generally be
computable.

• (Claim) BPP ⊆ P/poly
• (Claim) If NP ⊆ P/poly, then PH=ZPPNP.
 [Köbler-Watanabe (1998)]

• Open Problems:
 Does NP ⊆ P/poly?
 Does PSPACE ⊆ P/poly?

P/poly

P NP

PSPACE

Many researchers believe in this way.

Complexity Class L/poly

• The use of advice gives rise to many non-uniform
complexity classes.

• Here, we introduce another complexity class L/poly
using log-space DTMs with polynomial-size advice.

• Let S be any decision problem or a language.

S is in L/poly ⇔ there exist a constant k≥1, a log-
space DTM M, an advice function h: N→Σ* such that
1) |h(n)|=O(nk) for every input length n, and
2) for any x, x ∈ S ↔ M(x,h(|x|)) = 1.

• (Claim) L ⊆ L/poly

• Open Problem: Is NL ⊆ L/poly?
Log-space DTMs will be
explained shortly.

1. Space-Bounded Computation
2. Polynomial-Space Solvable Problems
3. Complexity Class PSPACE
4. Random Access Model with Index Tapes
5. Logarithmic-Space Solvable Problems
6. Complexity Class L
7. Complexity Class NL
8. Function Class FL
9. Log-Space Many-One Reductions

II. Space-Bounded Computation

Space-Bounded Computation

• Earlier, we have discussed time-bounded computation
and time-bounded solvable problems.

• Here, we are focused on space-bounded computation
and associated problems.

• Let s be a space-bounding function from N to N such
that s(n) ≥ log(n) for all n≥1.

• We say that an algorithm (i.e., a DTM) solves a
(decision) problem using space O(s(n)) if, when it is
provided a problem instance x of length n, the algorithm
can produce the solution using O(s(n)) space.

• There is no bound for running time but the algorithm
must halt eventually.

Polynomial-Space Solvable Problems

• A problem is said to be s(n)-space solvable if there
exists an algorithm to solve it using space O(s(n)).

• When s(n) is a polynomial (i.e., s(n)=O(nk) for some
constant k), a problem is said to be polynomial-space
solvable.

• Note that any algorithm that runs in time t(n) also uses
space at most t(n).

• Hence, polynomial-time solvable problems are also
polynomial-space solvable.

• However, the converse does not hold in general.

How to Solve NP-Complete Problems

• Using polynomial-space, we can
easily solve NP-complete
problems.

• Take Circuit-SAT as an example
of NP-complete problems.

• Consider this algorithm. ⇒

• This algorithm uses only O(n) bits
to remember v and O(|code(C)|2)
bits to simulate C(v).

• Hence, Circuit-SAT is polynomial-
space solvable.

Algorithm for Circuit-SAT

1. Take Boolean circuit C

as an input.
2. Set v=0n.
3. Check if C(v) = 1.
4. If so, accept and halt.
5. Else, if v = 1n, reject

and halt.
6. Else, increment v by

one and go to Step 3.

00......00
00......01
00......10

11.......11

....

v =
incre
ment

Complexity Class PSPACE

• We introduce a complexity class defined by deterministic
polynomial-space computations.

• A decision problem L is in PSPACE if there is a DTM M
such that, for any input x,
1. x∈L → M accepts x,
2. x∉L → M rejects x, and
3. M uses polynomial space.

• (Claim) P ⊆ NP ⊆ PSPACE ⊆ EXP.

• (Claim) PSPACE = NPSPACE. [Savitch (1970)]

PSPACE = NPSPACE

NP

P

Function Class FPSPACE

• Next, we consider functions f : Σ* → Σ* (where Σ is an
alphabet).

• A function f : Σ* → Σ* is in FPSPACE ⇔
1. f is p-bounded (i.e., |f(x)|=O(|x|k) for some k≥1, and
2. there is a DTM M such that, for any input x, M

produces f(x) on the output tape using space
O(log(|x|)).

• (Claim) PF ⊆ FPSPACE.

Random Access Model with Index Tapes
• To consider logarithmic-space computation, we need a

random access model of multi-tape Turing machines.

¢ $ xk

q Random access read-only input tape

… ….......

Read/write work tape

Maximum space usage

¢ $ k (in binary) Index tape

k 0 n+2

How to Operate a Machine

• To read each symbol written on an input tape, we need
to take a series of steps described below.

1. A machine M writes down an index k in binary on the
index tape.

2. M enters a special state, called an index state qindex, to
initiate the process of random accessing.

3. An input-tape head of M jumps to the cell indexed k.
4. M scans the k-th tape cell and then the index tape is

automatically become empty.

• This process is repeatedly taken to read all or some
input symbols.

Logarithmic-Space Solvable Problems

• Here, when we consider the space usage of a machine,
we do not include any read/write work tape.

• Let s be a function from N to N.
• We say that an algorithm (or a deterministic Turing

machine) solves a problem A using space O(s(n)) if, for
any instance x of length n, the algorithm can produce a
solution of A using O(s(n)) space.

• A problem is logarithmic-space (or log-space) solvable if
there exists an algorithm to solve it using O(log n) space.

Complexity Class L

• A decision problem (or a language) A is in L if
there is a DTM M such that, for any input x,
1. x∈A → M accepts x,
2. x∉A → M rejects x, and
3. M uses logarithmic space (or log space).

• It is possible to trim the running time of a
machine to “polynomial time.”

• (Claim) REG ⊆ L ⊆ P.
• (Claim) L ≠ PSPACE. [Savitch (1970)]

P

L

REG

PSPACE

USTCON: Typical Problem in L

• Complexity class L contains the following problem.

• Undirected s-t Connectivity Problem (USTCON)
 instance: an undirected graph G and two vertices s,t
 question: Is there a path between s and t?

v2

v5

t = v8

s = v1

v9

v4

v7

v3

v6

v2

v5

t = v8

s = v1

v9

v4

v7

v3

v6

Complexity Class NL

• A decision problem (or a language) L is in NL if there is an
NTM (nondeterministic Turing machine) M such that, for
any input x,
1. x∈L ↔ there exists an accepting computation path of

M on x (or x is accepted by M), and
2. M uses logarithmic space (or log space) on all inputs.

• (Claim) L ⊆ NL ⊆ P

• (Claim) NL = co-NL

• Hence, NL looks different from NP.

NL = co-NL

L

P

[Immerman (1988),
Szelepcsényi (1988)]

Function Class FL

• Let us recall the function class FP from Week 1.
• Here, we consider a log-space version of FP.

• Let f: Σ*→Σ* be any function, where Σ is an alphabet.

• This function f: Σ*→Σ* is called log-space computable if
1. f is p-bounded (i.e., |f(x)|=O(|x|k) for some k>0),
2. there exists a DTM M with an output tape such that, on

each input x∈Σ*, M produces f(x) on its output tape, and
3. on input x, M uses only O(log(n)) space on the work tape

(but no space bound is imposed on the output tape).

• Let FL denote the collection of all p-bounded log-space
computable functions.

Log-Space Many-One Reductions

• A language A is log-space many-one reducible (L-m-
reducible or ≤m

L-reducible) to language B if there exists a
log-space DTM M such that, for any input x,
o x∈A ⇔ M on input x produces y, which is p-bounded,

and y∈B.

• In this case, we write A ≤m
L B.

• In other words,
 A ≤m

L B ⇔ ∃f∈FL ∀x∈Σ* [x∈A ↔ f(x)∈ B]
f

Σ* Σ*
A

B
x f(x)
y

z f(z)

2SAT is NL-Complete

• Recall from Week 2 that 3SAT is NP-complete.
• Complexity class NL contains the following problem.

• 2-Satisfiability Problem (2SAT)
 instance: a Boolean formula ϕ of 2CNF (2-conjunctive

normal form)
 question: Is ϕ satisfiable?

• E.g., 2CNF: ϕ ≡ (x1∨x2)∧(x1∨¬x3)∧(¬x2∨x3)

• (Claim) 2SAT is NL-complete. [Jones (1975)]

2 literals

2SATk is also NL-Complete

• It turns out that 2SAT is not suitable for our purpose.
• Thus, we consider a restricted variant of 2SAT.

• 2SATk is the set of all 2SAT formula, each variable of

which appears as literals at most k times.
• Example: k=3
 ϕ ≡ (x1 ∨ ¬x6) ∧ (x2 ∨ x3) ∧ (¬x5 ∨ x2) ∧ (¬x4 ∨ ¬x2)
 mvbl(ϕ) = 6, mcls(ϕ) = 4

• (Claim) 2SATk (k≥3) is NL-complete.
• However, it is not known that 2SATk ∉ L.

Each xi appears at most
3 times

DSTCON is NL-complete

• Complexity class NL contains the following problems.

• Directed s-t Connectivity Problem (DSTCON)
 instance: a directed graph G and two vertices s,t
 question: Is there a path from s to t?

v2

v5

v8

s = v1

v9

v4

t = v7

v3

v6

• (Claim) DSTCON is NL-
complete. [Jones (1975)]

kDSTCON is also NL-complete

• Consider a restricted variant of DSTCON.
• The degree of a vertex (or a node) is the number of

edges connected to the vertex.

• kDSTCON consists of DSTCON instances whose graphs
have degree at most k at all vertices.

v2

v5

v8

s = v1

v9

v4

t = v7

v3

v6

• (Claim) For any constant k≥3,
kDSTCON is NL-complete.

• However, it is not known that
3DSTCON ∉ L.

degree 5

Open Problems

• The following questions
regarding L, NL, and PSPACE
are not yet answered.

 Is P = PSPACE?
 Is NP = PSPACE?
 Is L = P?
 Is L = NL?
 Is NL = NP?
 Is CFL ⊆ L?

NL = co-NL

L

P

PSPACE = NPSPACE

NP

P

1. Space Usage for Solving DSTCON
2. Parameterized Problems
3. Size Parameter Matters
4. Poly-Time Sub-Linear-Space Computability
5. Complexity Class PsubLIN
6. Oracle Turing Machines
7. SLRF-T-Reducibility
8. Short SLRF-T-Reducibility
9. Relationships by Short Reductions

III. Sub-Liner-Space Computability

Space Usage for Solving DSTCON

• Consider the following directed s-t connectivity problem.

• DSTCON(m,n)
 instance: a directed graph G of n vertices and m edges,

and two vertices s, t
 question: is there any path from s to t?

• Barnes, Buss, Ruzzo, and Schieber (1998) gave an
algorithm that solves DSTCON(m,n) in O(m+n) time using
n1-c/√log(n) space for an appropriate constant c>0.

• Open Problem:
Can we improve the above space bound down to

 O(nε polylog(m+n)) for certain ε∈[0,1)?

Size Parameters

• It is useful to parameterize problems by taking
appropriate size parameters.

• A size parameter m: Σ*→N is a function that gives a
“size” m(x) of an input x (e.g., m(x) = |x|).

• Here are 2 simple examples.
• For a CNF Boolean formula ϕ:
 mvbl(ϕ) = number of different variables in ϕ
 mcls(ϕ) = number of clauses in ϕ

• For a directed/undirected graph G:
 mver(G) = number of vertices in G
 medg(G) = number of edges in G

Size Parameter Matters

 mver(G) = number of vertices in G
 medg(G) = number of edges in G

v2

v5

v8

v1

v9

v4

v7

v3

v6

v2

v5

v8

v1

v9

v4

v7

v3

v6

2

() 2 ()

() ()
ver edg

edg ver

m G m G

m G m G

≤

≤

if there is no isolated vertex

• How different is the gap between mver(G) and medg(G)?

A huge difference!

Parameterized Problems

• In practice, execution time and space usage are often
measured according to size m(x) of input x.

• Impagliazzo, Paturi, and Zane (2001) took a new
approach toward kSAT and Search-kSAT,
parameterized by mvbl and mcls.

• A parameterized decision problem is a pair (A,m) of a
(standard) decision problem A⊆Σ* and a size parameter
m: Σ*→N.

• Parameterized decision problem (A,m)
 instance: x with size m(x)
question: is x∈A?

Poly-Time Sub-Linear-Space Computability

• We use deterministic Turing machines (DTMs), each of
which has an input tape and a work tape.

• We are interested in DTMs that use only O(nc) time and
restricted space to solve given decision problems.

• Let m be a size parameter.

• An informal term “sub linear w.r.t. m” means

 m(x)ε polylog(|x|)

for a fixed constant ε∈[0,1) and a polylogarithmic function
polylog(n) (i.e., clogk(n)+d for some c>0 and k≥0).

• Here, we are focused on deterministic algorithms that
run in polynomial time using only sub-linear space.

PTIME,SPACE(...)

• It is useful in practice to introduce a new notation.
• Let (L,m) denote a parameterized problem, where L is a

decision problem and m is a size parameter.

• (L,m) ∈PTIME,SPACE(f(n)) ⇔
∃M:DTM s.t. ∀x
1) x∈L → M accepts x
2) x∉L → M rejects x
3) M runs in time polynomial in |x| using O(f(m(x)))

space.
O(|x|k) time for some k>0

Complexity of 2SAT(m,n)

• Theorem: [Yamakami (2017)]
 ∃c>0 ∃l:polylog function s.t.
 2SAT(m,n) ∈PTIME,SPACE(n1-c/√log(n) l(m+n)),

where a 2SAT(m,n)-instance has n variables and m
clauses.

• The proof of the above theorem follows directly from
Barnes, Buss, Ruzzo, and Schiebe’s (1998) fast
algorithm for DSTCON.

• Open Problem:
Is it true that 2SAT(m,n) ∈PTIME,SPACE(nε) for a
constant ε∈(0,1)?

Complexity Class PsubLIN

• We define a new practical complexity class called
PsubLIN.
 “P” stands for “polynomial-time.”
 “subLIN” stands for “sub-linear space.”

• PsubLIN = class of (parameterized) decision problems or
search problems (L,m) such that L is solved in time
polynomial in |x| using sub-linear space (w.r.t. m)

• That is,
 PsubLIN = ∪0≤ε<1 PTIME,SPACE(m(x)εpolylog(|x|))

• (Claim) L ⊆ PsubLIN ⊆ P.

Reductions for Parameterized Problems

• Reductions or reducibility has been so successful to
discuss “complete” problems, such as NP-complete
problems.

• Now, our goal is to define suitable reductions among
parameterized problems in PsubLIN.

• First of all, for a wider rage of application, we expand
“many-one reduction” to “Turing reduction.”

• To define Turing reduction, we need to introduce a
notion of oracle Turing machine and a notion of oracle.

Oracle Turing Machines I

• Here, we give briefly general notions of oracle Turing
machine and oracle.

• (*) The notion of OTMs will be discussed extensively in
Week 4.

• An oracle Turing machine (OTM) is equipped with an
additional tape, called a query tape, in which the
machine make a query to an oracle.

• An oracle is an external information source, which can
provide the machine with necessary information via a
process of query and answer.

Oracle Turing Machines II

input tape
(read-only)

Inner
state

query tape
(write-only)

oracle
answer

query

two way

one way

Oracle Computation

query z1

answer qNO

query z2

answer qYES

input x

output A(x)

B

Σ*

z1

z2

• M: OTM for A
• B: oracle

1. M starts with input x.
2. Whenever M writes a query

word z on its query tape and
enters a query state qquery, z
is automatically sent to B.

3. The oracle B returns its
answer (YES/NO) by
changing M’s inner state to
either qyes or qno.

4. M resumes its computation,
starting with qyes or qno.

5. If M halts, output M(x).
Otherwise, go to Step 2.

SLRF-T-Reducibility

• We define a notion of (polynomial-time) sub-linear-space
reduction family (SLRF).

• (P1,m1)≤SLRF
T (P2,m2) ⇔

 ∀ε>0∃M:oracle DTM∃l:polylog∃k1,k2>0 s.t.
1. MP2(x) runs in ≤ p(|x|) time and ≤ m1(x)εl(|x|) space
2. Whenever M makes a query to oracle P2, M receives

its answer and continues a computation.
3. If M make a query z to P2, then m2(z) ≤ m1(x)k1+k1 and

|z| ≤ |x|k2+k2.

• All queried words z have size polynomial in the size of
inputs (w.r.t. size parameters).

Short Reductions are Needed

• Unfortunately, in SLRF-T-reduction, query words are too
long to make functional composition for sub-linear-space
machines.

• This raises a serious question whether PsubLIN may not
be closed under ≤m

L-reductions.
• This forces us to look for a more restricted notion of

reductions to discuss the computational complexity of
PsubLIN.

• A simple remedy is to make only “short” queries.
• Namely, we demand that the size of queried word is

linear in the size of input (w.r.t. given size parameters).

Short SLRF-T-Reductions

• We say that (P1,m1) is short SLRF-T-reducible to
(P2,m2), denoted by (P1,m1)≤sSLRF

T (P2,m2), if the
following hold.

• (P1,m1)≤sSLRF
T (P2,m2) ⇔

 ∀ε>0∃M:oracle TM∃l:polylog∃k1,k2>0 s.t.
1. MP2(x) runs in ≤ p(|x|) time and ≤ m1(x)εl(|x|) space
2. Follow the same oracle mechanism
3. If MP2 queries z to P2, then m2(z) ≤ k1m1(x)+k1 and |z|

≤ |x|k2+k2.

• A ≡r B ⇔ A ≤r B and B ≤r A for any reduction type r

This bound is different
from SFRF-T-reductions

Comparison of Query Size

query words z oracle
oracle machine

1
2 1 1() ()km z m x k≤ +

query words z oracle
oracle machine

2 1 1 1() ()m z k m x k≤ +

input x

input x

Properties of Short Reductions

• Proposition: [Yamakami (2017)]
1) ≤SLRF

T and ≤sSLRF
T : reflexive and transitive.

2) PsubLIN is closed under ≤sSLRF
T-reductions.

3) ∃X,Y: recursive s.t. X ≤SLRF
T Y but X ≰sSLRF

T Y.

• Proposition: [Yamakami (2017)]
 ∀m∈{mvbl,mcls} ∀k≥3

1) (2SATk,m) ≡sSLRF
m (2SAT3,m)

2) (2SAT3,mvbl) ≡sSLRF
m (2SAT3,mcls)

• Hence, it suffices to focus only on (2SAT3,mvbl).

However, we don’t
know if we can
replace 2SAT3 by
2SAT.

Relationships by Short Reductions

• As a simple example of ≤sSLRF
T, let us consider the

directed s-t connectivity problem (DSTCON) and its
variants.

• The next slide will illustrate certain known relationships
among numerous variants of DSTCON problems
associated with acyclic graph, planar graph, shortest-
path, etc.

• (*) In the next slide, “Search-C” means a search problem
in which we are asked to find (and output) a solution to
the original decision problem C.

Search-BFT, Search-SPT, MinPath, Search-BDSTCON, BDSTCON

Search-DSTCON

Search-3DSTCON

Search-DST

Search-ADST, TOPSORT

Search-Unique-DSTCON

Search-Unique-DCYCLE

Search-ADSTCON, ADSTCON

Search-Planar-DSTCON

Search-Planar-3DSTCON

Search-DGGSTCON

Search-LDGGSTCON, Search-Planar-3LDSTCON

Search-TOPDCON

Search-3TOPDCON

DSTCON

Search-DCYCLE

3DSTCON, 2SAT3

PsubLIN

Size parameter: mver(x) = # of vertices
Ordered by sSLRF-
reductions

1. New, Practical Working Hypothesis
2. The Linear Space Hypothesis (LSH)
3. Other NL-Complete Problems
4. Other Characterizations of LSH

IV. Linear Space Hypothesis

New, Practical Working Hypothesis

• As noted earlier, 2SAT with n variables and m clauses is
solvable in polynomial time using at most

 n1-c/√log(n) × polylog(m+n) space.
• However, we do not know whether 2SAT (even 2SAT3)

is solved in polynomial time using nε × polylog(m+n)
space for a fixed constant ε∈[0,1).

• We want to propose a new, practical working hypothesis,
which is expected to serve as a driving force to obtain
better lower bounds of the computational complexity of
various problems.

The Linear Space Hypothesis (LSH) I

• We introduce a working hypothesis called the linear
space hypothesis (LSH).

• LSH (or LSH for 2SAT3) states:
There is no deterministic algorithm that solves 2SAT3 in
time p(|x|) using at most mvbl(x)εl(|x|) space on instance
x for a certain polynomial p, a certain polylog function l,
and a certain constant ε∈[0,1).

• Open Problem
 Prove or disprove that LSH for 2SAT3 ↔ LSH for 2SAT.

The Linear Space Hypothesis (LSH) II

• The previous definition uses the parameterized problem
(2SAT3,mvbl). How about (2SAT3,mcls)?

• (Claim) We can replace mvbl in the above by mcls.

 Proof Sketch:
This is because (2SAT3,mvbl) ≡sSLRF

m (2SAT3,mcls) and
PsubLIN is closed under ≤sSLRF

m-reductions.

• Theorem: [Yamakmai (2017)]
 If LSH for 2SAT3 holds, then L ≠ NL.

• The converse is not yet known.

Other NL-Complete Problems I

• For two column vectors x = (x1,x2,...,xn)T and
y=(y1,y2,...yn)T, we define

 x ≥ y ⇔ xi ≥ yi for all index i∈{1,2,...,n}.
• LP2,k (linear programming problem)
 instance: a rational m×n matrix A, a rational column

vector b∈Qn, where each row of A has at most two non-
zero entries and each column of A has at most k non-
zero entries

 question: is there any {0,1}-vector x s.t. Ax ≥ b?
mcol(x) = # of columns in A
mrow(x) = # of rows in A

• (Claim) LP2,k is NL-complete for any k≥3.

See the next slide.

Other NL-Complete Problems II

11 12 1 1 1

21 22 2 2 2

1 2

n

n

m m mn n n

a a a x b
a a a x b

a a a x b

     
     
     ≥
     
     
     





     



• A: m×n matrix
• x: n-dimensional

column vector
• b: n-dimensional

column vector

A x b

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

m m mn n m

a x a x a x b
a x a x a x b

a x a x a x b

+ + + ≥
 + + + ≥


 + + + ≥









Other Characterizations of LSH

• We have seen 2SAT3, 3DSTCON, and LP2,3 so far.
• Interestingly, those three NL-complete problems have a

common feature.

• Theorem: [Yamakami (2017)]
 The following three statements are logically equivalent.
 LSH for 2SAT3 (with mvbl or mcls)
 LSH for LP2,3 (with mrow or mcol)
 LSH for 3DSTCON (with mver or medg)

• However, not all NL-complete problems seem to share

the above special property concerning LSH.

1. NL Search Problems
2. Complexity of Search-UOCK
3. NL Optimization Problems
4. Complexity of Max-HPP
5. Topological Sort
6. Complexity of TOPSORT

V. Applications of LSH

NL Search Problems
• The first application is in the field of NL search problems.

• Search-UOCK (a variant of Knapsack Problem)
 instance: a string w, a sequence (w1,w2,...,wn) of strings s.t.,
∀i∈[n], if wi is a substring of w then wi is unique

 solution: a sequence (i1,i2,...,ik) of indices with k ≥ 1 s.t. 1 ≤
i1< i2 < ... < ik ≤ n and w = wi1wi2...wik.

0010

w1

11

w2

010

w3

0111

w4

1010

w5

0 0 1 0 0 1 0 1 0 1 0

0010

w1

010

w3

1010

w5

input
sequence

input
string w =

output (1, 3, 5)
=

Complexity of Search-UOCK

• Search-UOCK (again)
 instance: a string w, a sequence (w1,w2,...,wn) of

strings over alphabet Σ s.t., ∀i∈[n], if wi is a substring
of w then wi is unique

 solution: a sequence (i1,i2,...,ik) of indices with k ≥ 1
s.t. 1 ≤ i1< i2 < ... < ik ≤ n and w = wi1wi2...wik.

• size parameter: melm(x) = n (the number of elements)

• Theorem: [Yamakami (2017)]
If LSH (for 2SAT3) holds, then, for ∀ε>0, there is no
polynomial-time O(n1/2-ε)-space algorithm for (Search-
UOCK,melm).

NL Optimization Problems I

• The second application is in the field of NL optimization
problems.

• In an optimization problem, intuitively speaking, we are
asked to search for optimal solutions satisfying certain
predetermined properties for each given input, where
“optimality” is measured by cost functions m.

• NLO = class of NL optimization problems [Tantau (2007),
Yamakami (2013)]

• (*) We will discuss optimization problems extensively in
Week 9.

NL Optimization Problems II

• We further define an approximation class.

• LSASNLO = class of NLO problems that have log-space
approximation schemes [Tantau (2007), Yamakami (2013)]

• A log-space approximation scheme for problem P is a DTM
M that takes (x,k) as input and outputs a solution y of P
using at most f(k)log(|x|) space with performance ratio
R(x,y) ≤ 1+1/k, where f ∈ FL. Such y is called a (1+1/k)-
approximate solution.

• Performance ratio R(x,y) = max{ |m(x,y)/m*(x)|,
|m*(x)/m(x,y)| }, where m*(x) = max{ m(x,y) | y is a solution
for input x }.

Complexity of Max-HPP
• Max-HPP (maximum hot potato) [Tantau (2007)]
 instance: an n×n matrix A whose entries are in [n], a

d∈[n], a start index i1∈[n] for n∈N+

 solution: an index sequence S = (i1,i2,...,id) with ij∈[n]
 measure: total weight

• size parameter: mcol(x) = n
• Max-HPP is in LSASNLO [Tantau (2007)] but it is hard for

LONLO under approximation-preserving exact NC1-reduction
[Yamakami (2013)].

• Theorem: [Yamakami (2017)]
If LSH for 2SAT3 holds, then, for ∀ε>0, there is no
polynomial-time O(k1/3log(mcol(x)))-space algorithm finding
(1+1/k)-approximate solutions of (Max-HPP,mcol).

1

1

,
1

()
j j

d

i i
j

w S A
+

−

=

= ∑

Topological Sort
• Topological sorting problem (TOPSORT)
 instance: an acyclic directed graph G and a source s in G
 output: a topological sort of G starting from s

input

output

“Topological sort” means that every
arrow does not go backward!

s

s

Complexity of TOPSORT

• LSH can tell how difficult to solve TOPSORT.
• More precisely, we obtain the following result.

• Theorem: [Yamakami (2017)]

If LSH (for 2SAT3) holds, then no DTM solves
(TOPSORT,mver) in polynomial-time using O(mver(x)ε/2)
space on instances x for any fixed constant ε∈[0,1)

Open Problems

• There are numerous problems that have been left
unsolved concerning LSH.

• Here are several important questions.
1. Find more interesting and practical applications of

LSH.
2. Prove or disprove that LSH is true.
3. Discuss the relationships between LSH for 2SAT3

and LSH for 2SAT.

• (*) We will return to a discussion on LSH in Week 6.

Q & A
I’m happy to take your question!

 END

	3rd Week
	Course Schedule: 16 Weeks
	YouTube Videos
	Main References by T. Yamakami
	I. Non-Uniform Complexity Classes
	Boolean Circuits
	Truth Assignments of Boolean Circuits
	Circuit-SAT
	Families of Circuits and Complexity Measures
	Polynomial-Size Circuits and Non-Uniformity
	Complexity Class P/poly
	Advice and Advised Computation
	Read-Only Advice Tapes
	Advice Characterization of P/poly I
	Advice Characterization of P/poly II
	Basic Properties of P/poly
	Complexity Class L/poly
	II. Space-Bounded Computation
	Space-Bounded Computation
	Polynomial-Space Solvable Problems
	How to Solve NP-Complete Problems
	Complexity Class PSPACE
	Function Class FPSPACE
	Random Access Model with Index Tapes
	How to Operate a Machine
	Logarithmic-Space Solvable Problems
	Complexity Class L
	USTCON: Typical Problem in L
	Complexity Class NL
	Function Class FL
	Log-Space Many-One Reductions
	2SAT is NL-Complete
	2SATk is also NL-Complete
	DSTCON is NL-complete
	kDSTCON is also NL-complete
	Open Problems
	III. Sub-Liner-Space Computability
	Space Usage for Solving DSTCON
	Size Parameters
	Size Parameter Matters
	Parameterized Problems
	Poly-Time Sub-Linear-Space Computability
	PTIME,SPACE(...)
	Complexity of 2SAT(m,n)
	Complexity Class PsubLIN
	Reductions for Parameterized Problems
	Oracle Turing Machines I
	Oracle Turing Machines II
	Oracle Computation
	SLRF-T-Reducibility
	Short Reductions are Needed
	Short SLRF-T-Reductions
	Comparison of Query Size
	Properties of Short Reductions
	Relationships by Short Reductions
	Slide Number 56
	IV. Linear Space Hypothesis
	New, Practical Working Hypothesis
	The Linear Space Hypothesis (LSH) I
	The Linear Space Hypothesis (LSH) II
	Other NL-Complete Problems I
	Other NL-Complete Problems II
	Other Characterizations of LSH
	V. Applications of LSH
	NL Search Problems
	Complexity of Search-UOCK
	NL Optimization Problems I
	NL Optimization Problems II
	Complexity of Max-HPP
	Topological Sort
	Complexity of TOPSORT
	Open Problems
	Slide Number 73
	Slide Number 74
	Slide Number 75

