
4th Week 

Synopsis.  
• Oracle Turing Machines and Relativization 
• The Polynomial Hierarchy 
• Generic Oracles 
• Collapsing Recursive Oracles 
• The CFL Hierarchy 

Relativizations and Hierarchies 

April 30, 2018. 23:59 



Course Schedule: 16 Weeks 

• Week 1:  Basic Computation Models 
• Week 2:  NP-Completeness, Probabilistic and Counting Complexity Classes  
• Week 3:  Space Complexity and the Linear Space Hypothesis 
• Week 4:  Relativizations and Hierarchies 
• Week 5:  Structural Properties by Finite Automata 
• Week 6:  Stype-2 Computability, Multi-Valued Functions, and State Complexity 
• Week 7:  Cryptographic Concepts for  Finite Automata 
• Week 8:  Constraint Satisfaction Problems 
• Week 9:  Combinatorial Optimization Problems 
• Week 10:  Average-Case Complexity 
• Week 11:  Basics of Quantum Information 
• Week 12:  BQP, NQP, Quantum NP, and Quantum Finite Automata 
• Week 13:  Quantum State Complexity and Advice 
• Week 14:  Quantum Cryptographic Systems 
• Week 15:  Quantum Interactive Proofs 
• Week 16:  Final Evaluation Day (no lecture) 

Subject to Change 



YouTube Videos 

• This lecture series is based on numerous papers of T. 
Yamakami. He gave conference talks (in English) and 
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.  

• Use the following keywords to find a playlist of those 
videos.  

• YouTube search keywords: 
    Tomoyuki Yamakami  conference  invited talk playlist 
 

Conference talk video 



Main References by T. Yamakami 

✎ L. Fortnow and T. Yamakami. Generic separation. Journal of 
Computer and System Sciences, Vol. 52, pp. 191-197 (1996) 

✎ S. A. Cook, R. Impagliazzo, and T. Yamakami. A tight 
relationship between generic oracles and type-2 complexity 
Theory. Inf. Comput. 137(2): 159-170 (1997) 

✎ T. Yamakami. Collapsing Recursive Oracles for Relativized 
Polynomial Hierarchies. In the Proc. of FCT 2005, Lecture Notes 
in Computer Science, vol. 3623, pp. 149-160 (2005)  

✎ T. Yamakami and Y. Kato. The dissecting power of regular 
languages. Inf. Process. Lett. 113(4): 116-122 (2013) 

✎ T. Yamakami. Oracle pushdown automata, nondeterministic 
reducibilities, and the hierarchy over the family of context-free 
languages. In Proc. of SOFSEM 2014, Lecture Notes in 
Computer Science, vol. 8327, pp. 514-525 (2014). Complete 
version is available at  arXiv:1303.1717. 
 



1. Oracle Turing Machines 
2. Oracle Computation 
3. Turing Reductions 
4. Turing Complete Problems 
5. Relativizations and Relativized Worlds 

I. Oracle Turing Machines 



Oracle Turing Machines I  (revisited) 

• An oracle is an external information source, which can 
provide an underlying machine with necessary 
information via a process of query and answer. 
 

• An oracle Turing machine (OTM) is equipped with an 
extra one-way write-only tape, called a query tape, by 
which the machine make a query to an oracle. 

query tape 

query word y 

y 

one-way: write-only 

oracle  query  y 



Oracle Turing Machines II  (revisited) 

Input/work  tape 

Inner 
state 

query tape 
(write-only) 

oracle 
answer 

query 

two way 

one way 



Oracle Computation I 
• Let M be an oracle Turing machine (OTM).  
• Let x be any string in Σ*. 
• Let B be an oracle (which is now a language). 

1. M starts with input x. 
2. Whenever M writes a query word y on its query tape 

and enters a query state qquery, y is automatically sent 
to oracle B. 

3. The oracle B returns its answer (YES/NO) by changing 
M’s inner state from qquery to either qyes or qno, 
depending on whether y∈B or y∉B, respectively. 

4. M resumes its computation, starting with  qyes or qno. 
5. If M halts, output M(x).  Otherwise, go to Step 2. 



Oracle Computation II (revisited) 

query y1 

answer qNO 

query y2 

answer qYES 

input x 

output M(x) 

1. M starts with input x. 
2. Whenever M writes a query 

word y on its query tape and 
enters a query state qquery, y 
is automatically sent to B. 

3. The oracle B returns its 
answer (YES/NO) by 
changing M’s inner state from  
qquery, to either qyes or qno. 

4. M resumes its computation, 
starting with  qyes or qno. 

5. If M halts, output M(x).  
Otherwise, go to Step 2. 

B 

Σ* 

y1 

y2 

• M: OTM,  B: oracle 



Languages Recognized by OTMs 

• Let M be an OTM.  
• Let B be an oracle (which is a language). 

 
• We define a language recognized by M relative to B. 
    L(M,B) = { x∈Σ* | MB accepts x with oracle B }. 

 
• Note that L(M,B) is depending on the choice of oracle B. 
• If we choose a different oracle, say, C, then L(M,C) may 

be different from L(M,B).  
 



Turing Reductions 

• We have already defined polynomial-time many-one 
reductions.  

• Here, we define polynomial-time Turing reductions. 

• For two languages A and B, we say that A is polynomial-
time Turing reducible (p-T-reducible or  ≤T

p -reducible) to 
B (written as A ≤T

p B) if there is an OTM M such that 
 A = L(M,B); that is, for every input x, x∈A ↔ MB 

accepts x via making queries to the oracle B, 
 M runs in polynomial time.    

• In other words, 
            A ≤T

p B  ⇔  ∃ M: p-time OTM [ A = L(M,B) ] 



Turing Complete Problems  I 

• Similar to ≤m
p-educibility,  ≤T

p -reducibility gives rise to a 
notion of completeness for a complexity class. 

• To emphasize the use of Turing reductions, we often call 
this completeness notion by Turing completeness.  
 

• A decision problem (or a language) L is said to be Turing 
complete for NP (p-T-complete for NP or ≤T

p -complete 
for NP) if 
1) L ∈ NP, and 
2) A ≤T

p L holds for every language A ∈ NP. 
 



Turing Complete Problems  II 

• Note that all ≤T
p -complete problems are also ≤m

p -
complete, because polynomial-time many-one 
reductions are also polynomial-time Turing reductions. 

• However, the converse does not hold; namely, 
              ∃ X,Y  s.t.  X ≰m

p Y and  X ≤T
p  Y. 

 
• (Claim) SAT is Turing complete for NP. [Cook (1971)] 

 
• Open Problem: are all p-T-complete problems for NP 

also p-m-complete for NP? 



Relativizations and Relativized Worlds 

• Providing an oracle to an underlying OTM M (resp., a 
complexity class C defined by OTMs) is called a 
relativization of M (resp., C). 

• An informal term “relativized world” means a situation 
that is caused by a certain oracle.  
 

• PB = collection of all languages L(M,B) for polynomial-
time deterministic oracle Turing machines M  

• NPB = collection of all languages L(M,B) for polynomial-
time nondeterministic oracle Turing machines M  
 

• We will see later a relativized world where P = NP and 
another relativized word where P ≠ NP.  



1. Relativizations of P and NP 
2. Relativized Worlds for P, NP, and co-NP 
3. The Polynomial Hierarchy 
4. Properties of the Polynomial Hierarchy 
5. Complexity Class Θk

p 

6. Advised Complexity Classes 

II. Relativizations and the Hierarchy 



Relativizations of P and NP I 

• Recall that “relativization” means that we replace the 
original machines by oracle machines of the same types.  

• Recall that PB and NPB  are relativizations of P and NP 
relative to oracle B, respectively.  

• Baker, Gill, and Solvay (1975) proved the following 
conflicting results. 

1) (Claim) There exists an oracle A s.t. PA = NPA. 
2) (Claim) There exists an oracle B s.t. PB ≠ NPB.  
 

• Next, we will explain why these claims are true. 
• However, the above claims do not imply P = NP or P ≠ 

NP. 



Relativizations of P and NP II 

• (Claim) There exists an oracle A s.t. PA = NPA. 
 

 Proof Sketch:  
• Choose a PSPACE-complete set A.  
• Note that PA = PPSPACE = PSPACE because PSPACE is 

closed under polynomial-time Turing reductions.  
• Similarly, NPA = NPPSPACE = PSPACE by the same 

reasoning and NP ⊆ PSPACE.  
• Therefore, PA = NPA follows.  

 
QED 



Relativizations of P and NP III 

• (Claim) There exists an oracle B s.t. PB ≠ NPB.  
 

 Proof Sketch 
1. Enumerate all polynomial-time DTMs as M1,M2,… 
2. Let pi be a polynomial that bounds the runtime of Mi. 
3. Define an example language LA as  
             LA = { x | ∃y [ |y|=|x| ∧ y ∈ A ] }  
     for any oracle A. 
4. Note that LA ∈ NPA for any A (by guessing y and 

querying it to A). 
5. We want to construct the desired set B in the following 

way.  



Relativizations of P and NP VI 

6. Let  B0 = ∅  and let t(1) = p1(1)+1. 
7. For each n ≥ 1, run Mn on input 1t(n) with oracle  Bn-1.  
8. Mn makes only pn(t(n)) queries to  Bn-1. Let Q be the set 

of all queried words. Note that |Q∩Σt(n)| ≤ pn(t(n)) < 2t(n). 
9. There is a y0 such that y0 ∈ {0,1}t(n)  but y0 ∉ Q. 
10.Define  Bn = Bn-1 ∪ { y0 } if Mn rejects 1t(n) with  Bn-1, and 

Bn = Bn-1 otherwise. 
11.Thus, x∈L(Mi,Bn) ↔ x ∉ LBn.   
12.Define t(n+1)  s.t. t(n+1) > t(n) and  2t(n+1) > pn+1(t(n+1)). 
13.This means that  Mi on input 1t(n) cannot query strings in 

{ y | y ∈ {0,1}t(n+1) }. 
14.Finally, we set  

1
n

n

B B
≥

=
 QED 



Relativized Worlds for P, NP, and co-NP 

• Three oracles A,B,C below provide quite different 
relativized worlds. 

• (Claims)  [Baker-Gill-Solvay (1975)] 
1) There is an oracle A s.t.  PA ≠ NPA ∩coNPA ≠ NPA. 
2) There is an oracle B s.t.  PB ≠ NPB = coNPB. 
3) There is an oracle C s.t.  PC = NPC ∩coNPC ≠ NPA. 

P 

NP co-NP 

P 

NP = co-NP 

P = NP∩co-NP 

NP co-NP 

1) 2) 3) 



The Polynomial Hierarchy I 

• Meyer and Stockmeyer (1972,1973) introduced a notion 
of the polynomial-time hierarchy over NP. 

• Customarily nowadays, we drop the word “-time” and call 
this hierarchy the polynomial hierarchy. 

• The polynomial hierarchy consists of the following 
complexity classes: for every index k ≥ 1,  
 

1 1 1

1 1

;    ;    -

;    ;    -
p p
k k

p p p

p p p p
k k k k

P NP co NP

P NP coΣ Σ
+ +

∆ = Σ = Π =

∆ = Σ = Π = Σ

relativizations complementation 



The Polynomial Hierarchy II 

Σ1
p = NP Π1

p = coNP 

∆1
p = P 

Σ3
p  Π3

p  

∆3
p 

Σ2
p  Π2

p  

∆2
p 

←  inclusion 
Level 1 

Level 2 

Level 3 

…
. 

…
. 



Properties of the Polynomial Hierarchy 

• We define the complexity class PH as follows: 
 
 

• The complexity class PH includes all classes in the 
polynomial hierarchy. 

• (Claim)  NP ⊆ PH ⊆ PSPACE  
• (Claim)  If P = NP, then P = PH. 
• (Claim)  PPH = NPPH = PH. 

• Open Problems 
 Is ∆k

p = Σk
p  for each k≥1? 

 Is ∆k
p = Σk

p ∩ Πk
p  for each k≥1? 

 
 
 

( )p pPH k k
k∈

= Σ Π






NP 

PH 

PSPACE 



Complexity Class Θk
p 

• Wagner (1987) introduced the complexity class Θ2
p. 

• A language A is in Θ2
p  ⇔  there exist a polynomial-time 

deterministic OTM M, and a language B∈NP such that 
1. A = L(M,B) , and  
2. on each input x, M makes queries O(log(|x|)) times. 

• We can naturally extend Θ2
p  to Θk

p  for any k ≥ 2 by 
setting  Θ1

p  = P and by replacing NP (= Σ1
p) in the above 

definition with Σk-1
p. 

• (Claim)  For any k≥2,  Σk-1
p ∪Πk-1

p ⊆ Θk
p  ⊆ ∆k

p . 
• (Claim)  Θ2

p   ⊆  PP.  
                 [Beigel-Hemachandra-Wechsung (1991)] 



Advised Complexity Classes 

• We have seen the notion of advice in Week 3. 
• Let us supply advice to the polynomial-time hierarchy. 
• For any index k ≥ 1 and for any language L, 

L ∈ ∆k
p/poly  ⇔  there exists a language A ∈ ∆k

p and an 
advice function h such that 
1) |h(n)| = nO(1)  for any n ∈ N, and  
2) L = { x | 〈x,h(|x|)〉 ∈ A }. 

• Similarly, we can define  Σk
p/poly  and  Θk

p/poly.  

• (Claim)  ∆k
p/poly ⊆ Θk

p/poly ⊆ Σk
p/poly  for every k ≥ 1. 



1. Relativized Polynomial Hierarchies 
2. Basic Oracle Separations and Collapses 
3. Collapsing Recursive Oracles 
4. Separations and Collapses 
5. Sparse Sets 

III. Collapsing Recursive Oracles 



Relativized Polynomial Hierarchies 

• We can relativize the polynomial hierarchy by taking an  
oracle A.  

• We write ∆k
p (A), Σk

p (A), and Πk
p (A) as relativizations of 

∆k
p , Σk

p, and Πk
p, respectively, with respect to oracle A.  

• More formally, for every index k ≥ 1, we define:  
 
 
 

• A relativized polynomial hierarchy relative to A is  
            { ∆k

p (A), Σk
p (A), Πk

p (A) | k≥1 }. 
 

• We can also relativize Θk
p  to oracle A and obtain Θk

p (A).   

1 1 1

( ) ( )
1 1

( ) ;    ( ) ;    ( ) -

( ) ;    ( ) ;    ( ) - ( )
p p
k k

p A p A p A

A Ap p p p
k k k k

A P A NP A co NP

A P A NP A co AΣ Σ
+ +

∆ = Σ = Π =

∆ = Σ = Π = Σ



Basic Oracle Separations and Collapses 

• Yao (1985) constructed a recursive oracle A s.t. 
 (Claim)  ∆k

p (A) ≠ Σk
p (A) ≠ Πk

p (A)  for all k≥1. 
• Ko (1989)  
 (Claim)  Σk

p (Bk) ≠ Σk+1
p (Bk) = Σk+2

p (Bk) for each k≥1. 
• Heller (1984) 
 (Claim)  ∆2

p (C) ≠ Σ2
p (C) = Π2

p (C).  
 (Claim)  Σ1

p (D) ≠ ∆2
p (D) = Σ2

p (D).  
• Bruschi (1992) 
 (Claim)  ∆k

p (E) ≠ Σk
p (E) = Πk

p (E)  for all k≥3.   
 (Claim)  Σk-1

p (F) ≠ ∆k
p (F) = Σk

p (F) for all k≥3.   
• Sheu and Long (1994) 
 (Claim)  Θk

p (H) ≠ ∆k
p (H) ≠ Σk

p (H)  for all k≥2.   
 (Claim)  Σk-1

p (J) ≠ Θk
p (J) = Σk

p (J) for all k≥2.  



Collapsing Recursive Oracles 

• As we have seen earlier, Ko (1989) constructed 
recursive oracles (i.e., computable oracle) that force a 
relativized polynomial-time hierarchy to collapse to any 
fixed level.   

• We call such oracles collapsing oracles for simplicity. 

• Yamakami (2005) defined the collapsing recursive oracle 
polynomial (CROP) hierarchy as: 

 CROΣk
p  ={ A∈REC | Σk

p (A) = Σk+1
p (A) } 

 CRO∆k
p  ={ A∈REC | ∆k

p (A) = ∆k+1
p (A) } 

 CROΘk
p  ={ A∈REC | Θk

p (A) = Θk+1
p (A) } 

 CROPH  = ∪i≥1 CRO∆i
p 

REC = class 
of recursive 
languages 



Basic Properties 

•  (Claim) For any k≥1, it follows that 
               CRO∆k

p  ⊆ CROΣk
p  ⊆ CROΘk

p  ⊆ CROΠk
p . 

• (Claim)  All PSPACE-complete problems are in CRO∆1
p . 

 
• A set is said to be coinfinite if its complement (with 

respect to a fixed universe) is infinite. 
   
• Lemma:  [Yamakami (2005)] 

Let k≥1 and assume that  ∆k
p  ≠ Σk

p . If A∈CROΣk
p , then 

A is infinite and coinfinite.   



Separations and Collapses 

• Yamakami (2005) showed the following properties of the 
CROP hierarchy.  
 

• Theorem:  [Yamakami (2005)]  Let  k≥1. 
    CRO∆k

p  ≠ CROΣk
p  ≠ CROΘk

p  ≠ CROΠk
p . 

 
• Proposition:  [Yamakami (2005)] 
    Let k≥1. The following equivalences hold. 
 NP ⊆ CRO∆k

p   ⇔  ∆k
p  = Σk

p .  
 NP ⊆ CROΣk

p   ⇔  Σk
p  = Πk

p .  
 NP ⊆ CROΘk

p   ⇔  Θk
p  = Σk

p .  
 
 



Sparse Sets 

• A set S over alphabet Σ is called polynomially sparse (or 
simply sparse) if there is a polynomial p such that  

                            | S ∩ Σ≤n | ≤ p(|x|)  
    for all n ∈ N, where Σ≤n  = { x∈Σ* | |x| ≤ n }. 
• Let  rSPARSE = { A | A is recursive and sparse }. 

 
• Proposition:  [Yamakami (2005)] 
    Let k ≥2. 

1. rSPARSE ∩ CRO∆k
p  ≠∅  ⇔ Σk

p ⊆ ∆k
p/poly 

2. rSPARSE ∩ CROΣk
p  ≠∅  ⇔ Πk

p ⊆ Σk
p/poly 

3. rSPARSE ∩ CROΘk
p  ≠∅  ⇔ Σk

p ⊆ Θk
p/poly 



1. Conditions and Extensions 
2. Generic Oracles 
3. Complexity Class UP 
4. Separations by Generic Oracles 
5. Extension of UP to U∆k

p 

6. Generic Separations 
7. Proof Ideas 

IV. Generic Oracles 



Conditions and Extensions  I 

• Blum and Impagliazzo (1987) considered a class of 
oracles, which are called generic oracles. 

• Recall that χA denotes the characteristic function of 
language A  (i.e., ∀x [(x∈A→χA(x)=1)∧ [(x∉A→χA(x)=0)]). 
 

• A condition σ is a partial function from { 0,1 }* to { 0,1 } 
with a finite domain dom(σ).  

• Hence, a condition is often identified with a string. 
• A condition τ extends σ (denoted by σ ⊑ τ) if dom(σ) ⊆ 

dom(τ) and σ(x) = τ(x) for every x ∈ dom(σ). 
• A set A extends σ (denoted by σ ⊑ A) if χA(x) = σ(x) for 

every x ∈ dom(σ). 



Conditions and Extensions  II 
• Consider the following example for (σ,τ,A). 

       x:   λ   0   1   00   01   10   11   000   001    ..... 

      σ:    *   *    *    1     0      *     *       1      *       ..... 
       τ:   0   *    *    1     0     1     *       1      0       ...... 

     χA:   0   1    1    1    0     1     0      1      0       ......  

      dom(σ) = { 00, 01, 000, ... } 
      dom(τ) = { λ, 00, 01, 10, 000, 001, ... } 

• (Claim) σ ⊑ τ ⊑ A, because: 
       1.  dom(σ) ⊆ dom(τ)                      ←  blue & red circles 
       2.  σ(x) = τ(x) for all x∈dom(σ)      ←  red circles 
       3.  τ(x) = χA(x) for all x∈ dom(τ)  ← blue & red circles  

A = { 0, 1, 00, 10, 000, ... } 



Generic Oracles  I 

• For an oracle Turing machine M, the machine Mσ 
behaves like M with access to the oracle { x | σ(x)=1 } 
and all queries may be made within dom(σ). 

• When some queries are made outsides of dom(σ), we 
treat  Mσ as being undefined. 

 

queries ∈ dom(σ) 

answers 

oracle { x | σ(x)=1 }  

Σ* 

M: OTM 



Generic Oracles  II 

• A set S of conditions is dense if, for every condition σ, 
there is another condition τ ∈ S such that τ extends σ. 

• A set A ⊆ Σ* meets a set S of conditions if there is a 
condition σ ∈ S such that A extends σ. 

• A set S is arithmetical if S is exactly definable in first-
order arithmetic.  

• A set G is (Cohen) generic if G meets every dense 
arithmetic set of conditions.  
 meaning: easy to define 

in an arithmetic way S: dense 

∀σ ∃τ  s.t. σ ⊑ τ 

S 



Complexity Class UP 

• We introduce a complexity class called UP. 

• For any language L, 
    L ∈ UP  ⇔  there exists an NTM M such that, for any x, 

1. x ∈ L →  M accepts x, 
2. x ∉ L →  M rejects x, and  
3. M has at most one accepting path on input x. 

• We can relativize UP to UPA, using oracle A. 

accept reject reject 

x ∈ L x ∉ L 

a unique 
accepting path 



Separations by Generic Oracles 

• With generic oracles, we do not have conflicting results for 
most complexity classes. 

• For example:  
 If a single generic oracle G satisfies PG = NPG or PG ≠ 

NPG, then, for all generic oracles H, we obtain PH = NPH 
or PH ≠ NPH, respectively  

• (Claim)  [Blum-Impagliazzo (1987)] 
 For any generic oracle G,  PG ≠ NPG.  
 If P = NP, then PG = UPG = NPG∩co-NPG for any generic 

oracle G. 

• (*) Can we extend this result to any higher level of the  
polynomial hierarchy? 



The Polynomial Hierarchy (revisited) 

Σ1
p = NP Π1

p = coNP 

∆1
p = P 

Σ3
p  Π3

p  

∆3
p 

Σ2
p  Π2

p  

∆2
p 

←  inclusion 
Level 1 

Level 2 

Level 3 

…
. 

…
. 



Extension of UP to U∆k
p 

• We have already defined the complexity class UP.  

• Here, we extend it to fit into the k-th level of the 
polynomial hierarchy. 

 

• Fortnow and Yamakami (1996) defined the following  
extension of UP. 

 

 

• (Claim)   ∆k
p ⊆ U∆k

p ⊆ Σk
p  ∩ Π kp  for each index k ≥ 1. 

 

 

 

1 1;     for any 1.
p
kp p

kU P U UP kΣ
+∆ = ∆ = ≥



Generic Separations 

• Fortnow and Yamakami (1996) proved that the 
polynomial hierarchy is infinite regarding generic oracles. 
 

• Theorem:  [Fortnow-Yamakami (1996)]  Let k ≥ 2. 
 U∆k

p(G) ∩Πk
p(G) ≠ ∆k

p(G) for any generic oracle G. 
 

• As a result, we obtain   Σk
p(G) ∩Πk

p(G) ≠ ∆k
p(G). 

 
 Proof Idea:    
• Let A be any oracle. 
• We define a function  fnA: {0,1}n → {0,1}  as follows. 



Proof Idea  I 

• This a new function fnA is defined as: 
 
 
 

• Here, we define a permutation as a bijection (i.e., a one-
one and onto function) on all binary strings of length n. 

• Let  PERMA = { 1n | f2n
A  is a permutation } 

• Let  S2n = 1n(0+1)n+(0+1)n-10n+1  (regular expression) 
• Define  L(A) = { 1n∈ PERMA |  
                            ∃y∈{0,1}n ∀z∈{0,1}n [ f2n

A(yz) ∈ S2n ] } 
   

 
 

| 1 | 2 2 1( ) ( 0 ) ( 0 1) ( 0 1 ) ( 01 )A n n n n
n A A A Af x x x x xχ χ χ χ− − −= 



Proof Idea  II 

• It suffices to prove that, for any k ≥ 2,   
1) L(A) ∈ U∆k

p(A) ∩Πk
p(A)  for any oracle A, and  

2) L(G) ∉ ∆k
p(G)  for any generic oracle G. 

 
• Item 1) can be shown directly. 
• For the case of k = 2, item 2) can be directly proven.  
• When k ≥ 3, the proof of 2) requires the notion of random 

restrictions and Håstad’s switching lemma for circuits.  
 QED 



Open Problems 

• Concerning generic oracles, there is still a wide room to 
obtain interesting results. 

 

1. Is it true that  ∆k
p(G)  ≠ U∆k

p(G) ∩ co-U∆k
p(G) for any k 

≥2 and for any generic oracle G? 

2. Prove more separations and collapses of complexity 
classes relative to generic oracles. 

 

• (*) The notion of generic oracle turns out to be closely 
related to type-2 computability.  This subject will be 
discussed in Week 6. 



1. m-Reduction 1npda’s as Oracle 1npda’s 
2. Nondeterministic Pushdown Automata with 

Query Tapes 
3. Many-One CFL-Reducibility 
4. Examples  
5. Characterization by Dyck Languages 
6. K-Fold Application of Reductions 

V. Many-One Reductions by 1npda’s 



m-Reduction 1npda’s as Oracle 1npda’s 

• Yamakami (2014) considered nondeterministic many-one 
reducibility based on 1npda’s.  

• An m-reduction 1npda or an oracle 1npda M 
• M = (Q,Σ,{¢,$},Θ,Γ,δ,q0,Z0,Qacc,Qrej) is a standard 1npda 

plus a write-only query tape and a special transition 
function δ: 
 

• Termination condition of M: 
• All computation paths (both accepting and rejecting) 

should terminate (reaching halting states) within O(n) 
steps. 

• ACCM(x) = set of accepting computation paths of M on x 

*: ( ) ( { }) ( ( { }))haltQ Q P Qδ λ λ− × Σ∪ ×Γ→ ×Γ × Θ∪


This is because all context-free languages 
are recognized by O(n)-time 1npda’s.  



One-Way Nondeterministic Pushdown 
Automata with Query Tapes 

input tape 
(read-only) 

Inner 
state 

query tape 
(write-only) stack 

(write/read) 

oracle 
answer 

query 

one way 

one way 

alphabet  Γ 

alphabet  Σ 

alphabet  Θ 



Many-One CFL-Reducibility 

• Let L be a language over Σ and A be a language over Θ. 

• L is many-one CFL-reducible to A ⇔ 
     ∃ M (m-reduction 1npda)   s.t.    ∀x∈Σ* 

1) along any accepting path p, M on x produces a valid 
string yp∈Θ* (called a query word) on a query tape, and  

2) x ∈ L ⇔ ∃ p ∈ ACCM(x) [ yp ∈ A ]. 

• In this case, we write  L∈ CFLm
A  or  L∈CFLm(A). 

• The language A is customarily called an oracle.   

• Given a language family F,  
CFLm

F = CFLm(F) = union of CFLm
A for all A∈F. 



Example: Dup2  I 

• Consider the following language Dup2. 

• Dup2 = { xx | x∈Σ* } (duplication) over alphabet Σ 
• Is not context-free 
• Is many-one CFL-reducible to A = { xR#x | x∈Σ* }∈CFL.  
• Belongs to CFLm

A ⊆ CFLm
CFL . 

• A reduction is made by the following oracle 1npda M. 
1. On input w, nondeterministically split it into xy.  
2. Using a stack, produce xR#y on a query tape, where # is 

a special symbol not in Σ. 
3. Make a query to oracle. 
4. If oracle answers “yes,” accept w; otherwise, reject w.  

• (*) See the next slide for illustration. 



Example: Dup2  II 

• The oracle 1npda M works as 
follows with oracle A. (again) 
1. On input w, 

nondeterministically split it 
into xy.  

2. Using a stack, produce 
xR#y on a query tape, 
where # is a special symbol 
not in Σ. 

3. Make a query to oracle. 
4. If oracle A answers “yes,” 

accept w; otherwise, reject 
w.  

w = 1010 

λ#1010 1#010 01#10 …… 

query 

∉ A ∉ A ∈ A 

answer 

no no yes 

reject reject accept 

input 

A = { xR#x | x∈Σ* }  

split & 
reverse 



Example: Dup2  III 

• The oracle npda M for Dup2 (again) 
1. On input w, nondeterministically split it into xy.  
2. Using a stack, produce xR#y on a query tape, where # is a 

special symbol. 
3. Make a query to oracle. 
4. If oracle answers “yes,” accept w; otherwise, reject w.  

• More formally, we define M as follows: 

 
 
 

0 0 0 0

0 0 0

0 0 1 0

1 1 2

( , , ) {( , , )}
( ,$, ) {( , ,#)}
( , , ) {( , , )}
( , , ) {( , , ), ( , , )}

acc

q c Z q Z
q Z q Z
q Z q Z
q q q

δ λ
δ
δ σ σ λ
δ σ τ στ λ στ λ

=
=
=

=

2 2

2 0 3 0

3 0 3 0

3 0 0

( , , ) {( , , )}
( , , ) {( , ,#)}
( , , ) {( , , )}
( ,$, ) {( , , )}acc

q q
q Z q Z
q Z q Z
q Z q Z

δ λ τ λ τ
δ λ
δ σ σ
δ λ

=
=
=
=

where  ,σ τ ∈Σ

*: ( ) ( { }) ( ( { }))haltQ Q P Qδ λ λ− × Σ∪ ×Γ→ ×Γ × Θ∪




Similar Examples 

• Let us consider other but similar languages. 

• Dup3 = { xxx | x∈Σ* } (3 copies) over Σ 
• Is not context-free 
• Is many-one CFL-reducible to B = { xR#x#x#xR | x∈Σ* }.  
• Belongs to CFLm

B ⊆ CFLm
CFL.  

• Match = { x#w | ∃u,v∈Σ* [ w = uxv ] } (matching) over Σ 
• Is not context-free 
• Is many-one CFL-reducible to C = { xR#x | x∈Σ* }  
• Belongs to CFLm

C ⊆ CFLm
CFL.  

• Consequence:  CFL ≠ CFLm
CFL. 

Compare this with NP = NPm
NP. 



Example: Sq  I 

• Consider a slightly more complex language. 

•                               (squared length) over alphabet {0,1} 
 Is not context-free 
 Is CFL-m-reducible to  

 
 
 
 

 Belongs to CFLm
D ⊆ CFLm

CFL.  

• The second item shown above can be proven by the 
following oracle 1npda M using D as an oracle. 

 

2

{0 1 | 1}n nSq n= ≥

1 2

2 3 4 5

{ 0 #1 #1 # #1 |  (i)  and  (ii) },   where
          (i)  , ,
          (ii)     

kjj jiD w
j j j j
i k

′= =
= =
=





D∈CFL 



Example: Sq  II 

• The desired oracle 1npda M works as follows. 
1. On input w, check if w is of the form 0i1j for some i,j ≥ 0. 
2. Simultaneously, guess (j1,j2,…,jk) to satisfy:  

    
 
 

3. Produce w′ (shown in the above box) on a query tape.  
4. Make a query to oracle D. 
5. If “yes,” then accept w; otherwise, reject w. 

1 2

2 3 4 5

{ 0 #1 #1 # #1 |  (i)  and  (ii) },   
   where  (i)  , ,    (ii)     

kjj jiD w
j j j j i k

′= =
= = =





1 2

1 2 3 4

(1)  
(2)  , ,

kj j j j
j j j j
= + + +
= =







Characterization by Dyck Languages 

• Dyck languages over Σ = { σ1,σ2,…,σd } ∪ { σ′1,σ′2,…,σ′d }  
A Dyck language L is generated by a context-free 

grammar with the following production set:  
  

 
E.g., When d = 2, L is a set of all balanced parentheses.  
DYCK = set of all Dyck languages 

• Proposition:   [Yamakami (2014)] 
    CFLm

CFL = CFLm
DCFL = CFLm

DYCK = NFAm
DYCK = CFLm(NFAm

DYCK). 

• This lemma suggest that DYCK may be considered as the 
most difficult language in CFL under many-one CFL 
reductions. 

{ | | : 1,2,...,  }i iS SS S i dλ σ σ ′→ =



K-Fold Application of Reductions 

• Many-one CFL-reducibility lacks the transitivity property. 

• K-fold application of reductions 
 CFLm[1]

A = CFLm
A 

 CFLm[k+1]
A = CFLm(CFLm[k]

A)  
 CFLm[k]

F = union of CFLm[k]
A for all A∈F. 

• K-conjunctive closure of CFL 
CFL(k) = { A | ∃ B1,B2,…,Bk∈CFL [ A = B1∩B2∩…∩Bk ] } 
CFL(ω) = CFL(1) ∪ CFL(2) ∪…  
 { CFL(k) | k∈ℕ+ } is an infinite hierarchy. [Liu-Weiner 

(1973)] 
• Lemma:   [Yamakami (2014)] 

CFLm[k]
CFL = CFLm

CFL(k) and Uk≥1CFLm[k]
CFL = CFLm

CFL(ω). 

Namely,  CFLm
CFL ≠ CFL. 



REG 

 co-CFL = ΠCFL
1 

ΣCFL
2 

ΣCFL
1 = CFL 

CFL2 

ΣCFL
3 

ΠCFL
2 

ΠCFL
3 

DSPACE(O(n)) 

CSL  

inclusion 

proper inclusion 

CFLH 

CFL(2) 

CFL(3) 

AC0(CFL) 
= LOGCFL 

= SAC1 

CFLm
CFL(1)  

  = CFLm[1]
CFL 

CFLm
CFL(ω) 

REG/n 

CFL/n 
L 

no inclusion 

NL 
CFL(ω) 

BHCFL 

CFL3 

NC2  

CFLm
CFL(2)  

  = CFLm[2]
CFL 

PCFL 

BPCFL  

TC1  

AC0(REG) 
= NC1  

Inclusion Relations among Language Families 



1. T-Reduction 1npda’s as Oracle 1npda’s 
2. Adaptive Queries in Nondeterministic 

Computation 
3. Turing CFL-Reducibility 
4. Example 
5. The Boolean Hierarchy over CFL 

 

VI. Turing Reductions by 1npda’s 



T-Reduction 1npda’s as Oracle 1npda’s 

• Similarly to m-reductions, Yamakami (2014) considered 
Turing reductions. 

• A T-reduction 1npda or an oracle 1npda M 
• M = (Q,Σ,{¢,$},Θ,Γ,δ,q0,Z0, Qoracle,Qacc,Qrej) is a standard 

1npda with a write-only query tape, a special state set 
Qoracle, and δ such that  

 
 

• Termination condition of M: 
All computation paths (both accepting and rejecting 

paths) should terminate (reaching halting states) within 
O(n) time, no matter what oracle is provided. 

*: ( { }) ( { }) (( { , }) ( { }))halt query yes noQ Q q P Q q qδ λ λ− ∪ × Σ∪ ×Γ→ − ×Γ × Θ∪


{ , , }oracle query yes noQ q q q=



Adaptive Queries in Nondeterministic Computation 

• Let M be an oracle 1npda. 
• Input x is given. 
• M queries y1 along a 

computation path p. 
• The query tape is 

automatically reset. 
• Depending on an oracle 

answer, M makes another 
query on y2 along path p. 

• M continues making queries. 
• At the time when path p 

terminates, M must enter a 
halting state.  
 
 
 

x 

y1 y′1 

y2 y′2 

A query 

answer 

A query 

answer 

accept reject 

path p 

oracle 



Turing CFL-Reducibility 

• Let L be a language over Σ and A be a language over Θ. 

• L is Turing CFL-reducible to A     ⇔ 
∃ M (T-reduction 1npda)   s.t.   ∀x∈Σ* 
x ∈ L ⇔ M accepts x using oracle A 
 termination condition of M 

 
• In the above case, we write   
 L∈ CFLT

A  or  L∈CFLT(A). 
• Given a language family F,  let 
CFLT

F = CFLT(F) = union of CFLT
A for all A∈F. 

All computation paths 
(both accepting and 
rejecting) should 
terminate (reaching 
halting states) within 
O(n) time, no matter 
what oracle is 
provided. 



The Boolean Hierarchy over CFL 

• There is a nice relationship between CFLT
A and CFLm

A (as 
well as NFAm

A ). 

• Proposition   [Yamakami (2014)] 
   CFLT

CFL = CFLm(CFL2) = NFAm(CFL2). 

• We define the notation of the Boolean hierarchy (over CFL). 
• Boolean hierarchy over CFL [Yamakami-Kato (2013)] 

• CFL1 = CFL 
• CFL2k = { A ∩ B | A ∈ CFL2k-1 ∧ B ∈ co-CFL } 
• CFL2k+1 = { A ∪ B | A ∈ CFL2k ∧ B ∈ CFL }  
• BHCFL = CFL1 ∪ CFL2 ∪ CFL3 ∪…… 
• E.g.,  2CFL { | CFL, co-CFL }A B A B= ∩ ∈ ∈

Since co-CFL⊆CFL2, 
we obtain CFL ≠ CFL2. 



REG 

 co-CFL = ΠCFL
1 

ΣCFL
2 

ΣCFL
1 = CFL 

CFL2 

ΣCFL
3 

ΠCFL
2 

ΠCFL
3 

DSPACE(O(n)) 

CSL  

inclusion 

proper inclusion 

CFLH 

CFL(2) 

CFL(3) 

AC0(CFL) 
= LOGCFL 

= SAC1 

CFLm
CFL(1)  

  = CFLm[1]
CFL 

CFLm
CFL(ω) 

REG/n 

CFL/n 
L 

no inclusion 

NL 
CFL(ω) 

BHCFL 

CFL3 

NC2  

CFLm
CFL(2)  

  = CFLm[2]
CFL 

PCFL 

BPCFL  

TC1  

AC0(REG) 
= NC1  

Inclusion Relations among Language Families 



1. The CFL Hierarchy (CFLH) 
2. Closure Properties of CFLH 
3. Examples 
4. Structural Properties of CFLH 
5. Relationships to the Polynomial Hierarchy 

VII. The CFL Hierarchy 



The CFL Hierarchy (CFLH)  I 

• Yamakami (2014) defined a hierarchy over CFL using 
oracle 1npda’s.  

• The CFL hierarchy is { ∆k
CFL , Σk

CFL, Πk
CFL | k∈ℕ } whose 

elements are defined as follows. 
 ∆1

CFL  = DCFL  
 Σ1

CFL  = CFL 
 ∆k+1

CFL  = DCFLT(Σk
CFL)  for any k ≥ 1 

 Σk+1
CFL  = CFLT(Σk

CFL)  for any k ≥ 1 
 Πk

CFL  = co- Σk
CFL   for any k ≥ 1 

 We further define CFLH as 
           CFLH = Σ1

CFL ∪ Σ2
CFL ∪ Σ3

CFL ∪ …. 



The CFL Hierarchy (CFLH)  II 

• The CFL hierarch satisfies the following basic properties. 

 

• Proposition:   [Yamakami (2014)]  Let k ≥ 1. 
1) CFLT(Σk

CFL) = CFLT(Πk
CFL)   

2) DCFLT(Σk
CFL) = DCFLT(Πk

CFL) 
3) Σk

CFL ∪ Πk
CFL ⊆ ∆k+1

CFL ⊆ Σk+1
CFL ∩ Πk+1

CFL 
4) CFLH ⊆ DSPACE(O(n))  
 

• NOTE: item 4) comes from the termination condition of 
oracle 1npda’s. 

 



Closure Properties of CFLH 

• Each Σk
CFL  (k≥1) is closed under the following operations. 

 Length-nondecreasing substitution 
Concatenation 
Union 
Reversal 
Kleene closure 
 λ-free homomorphism 
 Inverse homomorphism 

• Σ1
CFL  is not closed under intersection nor complementation, 

because   Σ1
CFL  = CFL. 

A substitution s:Σ→P(Θ*) is 
length nondecreasing  ⇔  s(σ) 
≠ ∅  and  λ ∉ s(σ)  for all σ∈Σ. 

A homomorphism h:Σ→Θ* is λ-
free  ⇔  h(σ) ≠ λ  for all σ∈Σ. 



Examples of Languages 

• Some languages are nicely placed in the CFL hierarchy. 
 

CFL
2Π

CFL
1Σ

CFL
1Π

• Dup2 = { xx | x∈{0,1}* } (duplication) 
• Dup3 = { xxx | x∈{0,1}* } (3 copies) 
• Sq = { 0n1k | k = n2, n∈ℕ } (squared length) 

• Prim = { 0n | n is a prime } 
(prime length) 

CFL
2Σ

CFL
1Σ

CFL
1Π



REG 

 co-CFL = ΠCFL
1 

ΣCFL
2 

ΣCFL
1 = CFL 

CFL2 

ΣCFL
3 

ΠCFL
2 

ΠCFL
3 

DSPACE(O(n)) 

CSL  

inclusion 

proper inclusion 

CFLH 

CFL(2) 

CFL(3) 

AC0(CFL) 
= LOGCFL 

= SAC1 

CFLm
CFL(1)  

  = CFLm[1]
CFL 

CFLm
CFL(ω) 

REG/n 

CFL/n 
L 

no inclusion 

NL 
CFL(ω) 

BHCFL 

CFL3 

NC2  

CFLm
CFL(2)  

  = CFLm[2]
CFL 

PCFL 

BPCFL  

TC1  

AC0(REG) 
= NC1  

Inclusion Relations among Language Families 



Structural Properties of CFLH 

• The CFL hierarchy has the following properties. 

• Theorem (upward collapse properties):  [Yamakami (2014)] 
     Let   k≥2 

1. Σk
CFL  = Σk+1

CFL  ⇔  CFLH = Σk
CFL. 

2. Σk
CFL  = Πk

CFL  ⇔  BHΣk
CFL = Σk

CFL. 
3. Σk

CFL  = Πk
CFL  ⇔  Σk

CFL = Σk+1
CFL.  

• Similarly to CFLe and BHCFL, Yamakami (2014) defined:  

• Boolean Hierarchy over Σk
CFL  

 Σk,e
CFL  = e-th level of the Boolean hierarchy over Σk

CFL. 
BHΣk

CFL  = union of Σk,e
CFL for all e∈ℕ. 



Relationships to the Polynomial Hierarchy 

• The CFL hierarchy has a close connection to the 
polynomial hierarchy. 
 

• Theorem:  [Yamakami (2014)] 
     Let k≥1.  If Σk+1

CFL = Σk+2
CFL, then Σk

p = Σk+1
p. 

• In other words,  if the polynomial hierarchy is truly an 
infinite hierarchy, then so is the CFL hierarchy.  

 Proof Idea:  
• It suffices to show that each Σk+1

CFL contains a language 
that is p-T-complete for Σk

p. 



Open problems 
 

• Prove that Σk+1
CFL ≠ Σk+2

CFL for all k≥1. 
• Note that proving that Σk+1

CFL = Σk+2
CFL is much more 

difficult because this implies Σk
P = Σk+1

P. 
• Find interesting relativized worlds regarding Σk

CFL. 
• E.g., BPCFLA ⊄ Σ2

CFL(A) ∩ Π2
CFL(A) for some A.  

•  Prove the REG-dissectability of Σk+1
CFL .  

• The dissectability will be discussed in Week 5. 





Q & A 
I’m happy to take your question! 



 
 

                                 END 
 
   
                        


	4th Week
	Course Schedule: 16 Weeks
	YouTube Videos
	Main References by T. Yamakami
	I. Oracle Turing Machines
	Oracle Turing Machines I  (revisited)
	Oracle Turing Machines II  (revisited)
	Oracle Computation I
	Oracle Computation II (revisited)
	Languages Recognized by OTMs
	Turing Reductions
	Turing Complete Problems  I
	Turing Complete Problems  II
	Relativizations and Relativized Worlds
	II. Relativizations and the Hierarchy
	Relativizations of P and NP I
	Relativizations of P and NP II
	Relativizations of P and NP III
	Relativizations of P and NP VI
	Relativized Worlds for P, NP, and co-NP
	The Polynomial Hierarchy I
	The Polynomial Hierarchy II
	Properties of the Polynomial Hierarchy
	Complexity Class kp
	Advised Complexity Classes
	III. Collapsing Recursive Oracles
	Relativized Polynomial Hierarchies
	Basic Oracle Separations and Collapses
	Collapsing Recursive Oracles
	Basic Properties
	Separations and Collapses
	Sparse Sets
	IV. Generic Oracles
	Conditions and Extensions  I
	Conditions and Extensions  II
	Generic Oracles  I
	Generic Oracles  II
	Complexity Class UP
	Separations by Generic Oracles
	The Polynomial Hierarchy (revisited)
	Extension of UP to Ukp
	Generic Separations
	Proof Idea  I
	Proof Idea  II
	Open Problems
	V. Many-One Reductions by 1npda’s
	m-Reduction 1npda’s as Oracle 1npda’s
	One-Way Nondeterministic Pushdown Automata with Query Tapes
	Many-One CFL-Reducibility
	Example: Dup2  I
	Example: Dup2  II
	Example: Dup2  III
	Similar Examples
	Example: Sq  I
	Example: Sq  II
	Characterization by Dyck Languages
	K-Fold Application of Reductions
	Slide Number 58
	VI. Turing Reductions by 1npda’s
	T-Reduction 1npda’s as Oracle 1npda’s
	Adaptive Queries in Nondeterministic Computation
	Turing CFL-Reducibility
	The Boolean Hierarchy over CFL
	Slide Number 64
	VII. The CFL Hierarchy
	The CFL Hierarchy (CFLH)  I
	The CFL Hierarchy (CFLH)  II
	Closure Properties of CFLH
	Examples of Languages
	Slide Number 70
	Structural Properties of CFLH
	Relationships to the Polynomial Hierarchy
	Open problems
	Slide Number 74
	Slide Number 75
	Slide Number 76

