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Course Schedule: 16 Weeks 

• Week 1:  Basic Computation Models 
• Week 2:  NP-Completeness, Probabilistic and Counting Complexity Classes  
• Week 3:  Space Complexity and the Linear Space Hypothesis 
• Week 4:  Relativizations and Hierarchies 
• Week 5:  Structural Properties by Finite Automata 
• Week 6:  Stype-2 Computability, Multi-Valued Functions, and State Complexity 
• Week 7:  Cryptographic Concepts for  Finite Automata 
• Week 8:  Constraint Satisfaction Problems 
• Week 9:  Combinatorial Optimization Problems 
• Week 10:  Average-Case Complexity 
• Week 11:  Basics of Quantum Information 
• Week 12:  BQP, NQP, Quantum NP, and Quantum Finite Automata 
• Week 13:  Quantum State Complexity and Advice 
• Week 14:  Quantum Cryptographic Systems 
• Week 15:  Quantum Interactive Proofs 
• Week 16:  Final Evaluation Day (no lecture) 

Subject to Change 



YouTube Videos 

• This lecture series is based on numerous papers of T. 
Yamakami. He gave conference talks (in English) and 
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.  

• Use the following keywords to find a playlist of those 
videos.  

• YouTube search keywords: 
    Tomoyuki Yamakami  conference  invited talk playlist 
 

Conference talk video 
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1. Oracle Turing Machines 
2. Oracle Computation 
3. Turing Reductions 
4. Turing Complete Problems 
5. Relativizations and Relativized Worlds 

I. Oracle Turing Machines 



Oracle Turing Machines I  (revisited) 

• An oracle is an external information source, which can 
provide an underlying machine with necessary 
information via a process of query and answer. 
 

• An oracle Turing machine (OTM) is equipped with an 
extra one-way write-only tape, called a query tape, by 
which the machine make a query to an oracle. 

query tape 

query word y 

y 

one-way: write-only 

oracle  query  y 



Oracle Turing Machines II  (revisited) 

Input/work  tape 

Inner 
state 

query tape 
(write-only) 

oracle 
answer 

query 

two way 

one way 



Oracle Computation I 
• Let M be an oracle Turing machine (OTM).  
• Let x be any string in Σ*. 
• Let B be an oracle (which is now a language). 

1. M starts with input x. 
2. Whenever M writes a query word y on its query tape 

and enters a query state qquery, y is automatically sent 
to oracle B. 

3. The oracle B returns its answer (YES/NO) by changing 
M’s inner state from qquery to either qyes or qno, 
depending on whether y∈B or y∉B, respectively. 

4. M resumes its computation, starting with  qyes or qno. 
5. If M halts, output M(x).  Otherwise, go to Step 2. 



Oracle Computation II (revisited) 

query y1 

answer qNO 

query y2 

answer qYES 

input x 

output M(x) 

1. M starts with input x. 
2. Whenever M writes a query 

word y on its query tape and 
enters a query state qquery, y 
is automatically sent to B. 

3. The oracle B returns its 
answer (YES/NO) by 
changing M’s inner state from  
qquery, to either qyes or qno. 

4. M resumes its computation, 
starting with  qyes or qno. 

5. If M halts, output M(x).  
Otherwise, go to Step 2. 

B 

Σ* 

y1 

y2 

• M: OTM,  B: oracle 



Languages Recognized by OTMs 

• Let M be an OTM.  
• Let B be an oracle (which is a language). 

 
• We define a language recognized by M relative to B. 
    L(M,B) = { x∈Σ* | MB accepts x with oracle B }. 

 
• Note that L(M,B) is depending on the choice of oracle B. 
• If we choose a different oracle, say, C, then L(M,C) may 

be different from L(M,B).  
 



Turing Reductions 

• We have already defined polynomial-time many-one 
reductions.  

• Here, we define polynomial-time Turing reductions. 

• For two languages A and B, we say that A is polynomial-
time Turing reducible (p-T-reducible or  ≤T

p -reducible) to 
B (written as A ≤T

p B) if there is an OTM M such that 
 A = L(M,B); that is, for every input x, x∈A ↔ MB 

accepts x via making queries to the oracle B, 
 M runs in polynomial time.    

• In other words, 
            A ≤T

p B  ⇔  ∃ M: p-time OTM [ A = L(M,B) ] 



Turing Complete Problems  I 

• Similar to ≤m
p-educibility,  ≤T

p -reducibility gives rise to a 
notion of completeness for a complexity class. 

• To emphasize the use of Turing reductions, we often call 
this completeness notion by Turing completeness.  
 

• A decision problem (or a language) L is said to be Turing 
complete for NP (p-T-complete for NP or ≤T

p -complete 
for NP) if 
1) L ∈ NP, and 
2) A ≤T

p L holds for every language A ∈ NP. 
 



Turing Complete Problems  II 

• Note that all ≤T
p -complete problems are also ≤m

p -
complete, because polynomial-time many-one 
reductions are also polynomial-time Turing reductions. 

• However, the converse does not hold; namely, 
              ∃ X,Y  s.t.  X ≰m

p Y and  X ≤T
p  Y. 

 
• (Claim) SAT is Turing complete for NP. [Cook (1971)] 

 
• Open Problem: are all p-T-complete problems for NP 

also p-m-complete for NP? 



Relativizations and Relativized Worlds 

• Providing an oracle to an underlying OTM M (resp., a 
complexity class C defined by OTMs) is called a 
relativization of M (resp., C). 

• An informal term “relativized world” means a situation 
that is caused by a certain oracle.  
 

• PB = collection of all languages L(M,B) for polynomial-
time deterministic oracle Turing machines M  

• NPB = collection of all languages L(M,B) for polynomial-
time nondeterministic oracle Turing machines M  
 

• We will see later a relativized world where P = NP and 
another relativized word where P ≠ NP.  



1. Relativizations of P and NP 
2. Relativized Worlds for P, NP, and co-NP 
3. The Polynomial Hierarchy 
4. Properties of the Polynomial Hierarchy 
5. Complexity Class Θk

p 

6. Advised Complexity Classes 

II. Relativizations and the Hierarchy 



Relativizations of P and NP I 

• Recall that “relativization” means that we replace the 
original machines by oracle machines of the same types.  

• Recall that PB and NPB  are relativizations of P and NP 
relative to oracle B, respectively.  

• Baker, Gill, and Solvay (1975) proved the following 
conflicting results. 

1) (Claim) There exists an oracle A s.t. PA = NPA. 
2) (Claim) There exists an oracle B s.t. PB ≠ NPB.  
 

• Next, we will explain why these claims are true. 
• However, the above claims do not imply P = NP or P ≠ 

NP. 



Relativizations of P and NP II 

• (Claim) There exists an oracle A s.t. PA = NPA. 
 

 Proof Sketch:  
• Choose a PSPACE-complete set A.  
• Note that PA = PPSPACE = PSPACE because PSPACE is 

closed under polynomial-time Turing reductions.  
• Similarly, NPA = NPPSPACE = PSPACE by the same 

reasoning and NP ⊆ PSPACE.  
• Therefore, PA = NPA follows.  

 
QED 



Relativizations of P and NP III 

• (Claim) There exists an oracle B s.t. PB ≠ NPB.  
 

 Proof Sketch 
1. Enumerate all polynomial-time DTMs as M1,M2,… 
2. Let pi be a polynomial that bounds the runtime of Mi. 
3. Define an example language LA as  
             LA = { x | ∃y [ |y|=|x| ∧ y ∈ A ] }  
     for any oracle A. 
4. Note that LA ∈ NPA for any A (by guessing y and 

querying it to A). 
5. We want to construct the desired set B in the following 

way.  



Relativizations of P and NP VI 

6. Let  B0 = ∅  and let t(1) = p1(1)+1. 
7. For each n ≥ 1, run Mn on input 1t(n) with oracle  Bn-1.  
8. Mn makes only pn(t(n)) queries to  Bn-1. Let Q be the set 

of all queried words. Note that |Q∩Σt(n)| ≤ pn(t(n)) < 2t(n). 
9. There is a y0 such that y0 ∈ {0,1}t(n)  but y0 ∉ Q. 
10.Define  Bn = Bn-1 ∪ { y0 } if Mn rejects 1t(n) with  Bn-1, and 

Bn = Bn-1 otherwise. 
11.Thus, x∈L(Mi,Bn) ↔ x ∉ LBn.   
12.Define t(n+1)  s.t. t(n+1) > t(n) and  2t(n+1) > pn+1(t(n+1)). 
13.This means that  Mi on input 1t(n) cannot query strings in 

{ y | y ∈ {0,1}t(n+1) }. 
14.Finally, we set  

1
n

n

B B
≥

=
 QED 



Relativized Worlds for P, NP, and co-NP 

• Three oracles A,B,C below provide quite different 
relativized worlds. 

• (Claims)  [Baker-Gill-Solvay (1975)] 
1) There is an oracle A s.t.  PA ≠ NPA ∩coNPA ≠ NPA. 
2) There is an oracle B s.t.  PB ≠ NPB = coNPB. 
3) There is an oracle C s.t.  PC = NPC ∩coNPC ≠ NPA. 

P 

NP co-NP 

P 

NP = co-NP 

P = NP∩co-NP 

NP co-NP 

1) 2) 3) 



The Polynomial Hierarchy I 

• Meyer and Stockmeyer (1972,1973) introduced a notion 
of the polynomial-time hierarchy over NP. 

• Customarily nowadays, we drop the word “-time” and call 
this hierarchy the polynomial hierarchy. 

• The polynomial hierarchy consists of the following 
complexity classes: for every index k ≥ 1,  
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relativizations complementation 



The Polynomial Hierarchy II 

Σ1
p = NP Π1

p = coNP 

∆1
p = P 

Σ3
p  Π3

p  

∆3
p 

Σ2
p  Π2

p  

∆2
p 

←  inclusion 
Level 1 

Level 2 

Level 3 

…
. 

…
. 



Properties of the Polynomial Hierarchy 

• We define the complexity class PH as follows: 
 
 

• The complexity class PH includes all classes in the 
polynomial hierarchy. 

• (Claim)  NP ⊆ PH ⊆ PSPACE  
• (Claim)  If P = NP, then P = PH. 
• (Claim)  PPH = NPPH = PH. 

• Open Problems 
 Is ∆k

p = Σk
p  for each k≥1? 

 Is ∆k
p = Σk

p ∩ Πk
p  for each k≥1? 

 
 
 

( )p pPH k k
k∈

= Σ Π






NP 

PH 

PSPACE 



Complexity Class Θk
p 

• Wagner (1987) introduced the complexity class Θ2
p. 

• A language A is in Θ2
p  ⇔  there exist a polynomial-time 

deterministic OTM M, and a language B∈NP such that 
1. A = L(M,B) , and  
2. on each input x, M makes queries O(log(|x|)) times. 

• We can naturally extend Θ2
p  to Θk

p  for any k ≥ 2 by 
setting  Θ1

p  = P and by replacing NP (= Σ1
p) in the above 

definition with Σk-1
p. 

• (Claim)  For any k≥2,  Σk-1
p ∪Πk-1

p ⊆ Θk
p  ⊆ ∆k

p . 
• (Claim)  Θ2

p   ⊆  PP.  
                 [Beigel-Hemachandra-Wechsung (1991)] 



Advised Complexity Classes 

• We have seen the notion of advice in Week 3. 
• Let us supply advice to the polynomial-time hierarchy. 
• For any index k ≥ 1 and for any language L, 

L ∈ ∆k
p/poly  ⇔  there exists a language A ∈ ∆k

p and an 
advice function h such that 
1) |h(n)| = nO(1)  for any n ∈ N, and  
2) L = { x | 〈x,h(|x|)〉 ∈ A }. 

• Similarly, we can define  Σk
p/poly  and  Θk

p/poly.  

• (Claim)  ∆k
p/poly ⊆ Θk

p/poly ⊆ Σk
p/poly  for every k ≥ 1. 
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Relativized Polynomial Hierarchies 

• We can relativize the polynomial hierarchy by taking an  
oracle A.  

• We write ∆k
p (A), Σk

p (A), and Πk
p (A) as relativizations of 

∆k
p , Σk

p, and Πk
p, respectively, with respect to oracle A.  

• More formally, for every index k ≥ 1, we define:  
 
 
 

• A relativized polynomial hierarchy relative to A is  
            { ∆k

p (A), Σk
p (A), Πk

p (A) | k≥1 }. 
 

• We can also relativize Θk
p  to oracle A and obtain Θk

p (A).   

1 1 1

( ) ( )
1 1

( ) ;    ( ) ;    ( ) -

( ) ;    ( ) ;    ( ) - ( )
p p
k k

p A p A p A

A Ap p p p
k k k k

A P A NP A co NP

A P A NP A co AΣ Σ
+ +

∆ = Σ = Π =

∆ = Σ = Π = Σ



Basic Oracle Separations and Collapses 

• Yao (1985) constructed a recursive oracle A s.t. 
 (Claim)  ∆k

p (A) ≠ Σk
p (A) ≠ Πk

p (A)  for all k≥1. 
• Ko (1989)  
 (Claim)  Σk

p (Bk) ≠ Σk+1
p (Bk) = Σk+2

p (Bk) for each k≥1. 
• Heller (1984) 
 (Claim)  ∆2

p (C) ≠ Σ2
p (C) = Π2

p (C).  
 (Claim)  Σ1

p (D) ≠ ∆2
p (D) = Σ2

p (D).  
• Bruschi (1992) 
 (Claim)  ∆k

p (E) ≠ Σk
p (E) = Πk

p (E)  for all k≥3.   
 (Claim)  Σk-1

p (F) ≠ ∆k
p (F) = Σk

p (F) for all k≥3.   
• Sheu and Long (1994) 
 (Claim)  Θk

p (H) ≠ ∆k
p (H) ≠ Σk

p (H)  for all k≥2.   
 (Claim)  Σk-1

p (J) ≠ Θk
p (J) = Σk

p (J) for all k≥2.  



Collapsing Recursive Oracles 

• As we have seen earlier, Ko (1989) constructed 
recursive oracles (i.e., computable oracle) that force a 
relativized polynomial-time hierarchy to collapse to any 
fixed level.   

• We call such oracles collapsing oracles for simplicity. 

• Yamakami (2005) defined the collapsing recursive oracle 
polynomial (CROP) hierarchy as: 

 CROΣk
p  ={ A∈REC | Σk

p (A) = Σk+1
p (A) } 

 CRO∆k
p  ={ A∈REC | ∆k

p (A) = ∆k+1
p (A) } 

 CROΘk
p  ={ A∈REC | Θk

p (A) = Θk+1
p (A) } 

 CROPH  = ∪i≥1 CRO∆i
p 

REC = class 
of recursive 
languages 



Basic Properties 

•  (Claim) For any k≥1, it follows that 
               CRO∆k

p  ⊆ CROΣk
p  ⊆ CROΘk

p  ⊆ CROΠk
p . 

• (Claim)  All PSPACE-complete problems are in CRO∆1
p . 

 
• A set is said to be coinfinite if its complement (with 

respect to a fixed universe) is infinite. 
   
• Lemma:  [Yamakami (2005)] 

Let k≥1 and assume that  ∆k
p  ≠ Σk

p . If A∈CROΣk
p , then 

A is infinite and coinfinite.   



Separations and Collapses 

• Yamakami (2005) showed the following properties of the 
CROP hierarchy.  
 

• Theorem:  [Yamakami (2005)]  Let  k≥1. 
    CRO∆k

p  ≠ CROΣk
p  ≠ CROΘk

p  ≠ CROΠk
p . 

 
• Proposition:  [Yamakami (2005)] 
    Let k≥1. The following equivalences hold. 
 NP ⊆ CRO∆k

p   ⇔  ∆k
p  = Σk

p .  
 NP ⊆ CROΣk

p   ⇔  Σk
p  = Πk

p .  
 NP ⊆ CROΘk

p   ⇔  Θk
p  = Σk

p .  
 
 



Sparse Sets 

• A set S over alphabet Σ is called polynomially sparse (or 
simply sparse) if there is a polynomial p such that  

                            | S ∩ Σ≤n | ≤ p(|x|)  
    for all n ∈ N, where Σ≤n  = { x∈Σ* | |x| ≤ n }. 
• Let  rSPARSE = { A | A is recursive and sparse }. 

 
• Proposition:  [Yamakami (2005)] 
    Let k ≥2. 

1. rSPARSE ∩ CRO∆k
p  ≠∅  ⇔ Σk

p ⊆ ∆k
p/poly 

2. rSPARSE ∩ CROΣk
p  ≠∅  ⇔ Πk

p ⊆ Σk
p/poly 

3. rSPARSE ∩ CROΘk
p  ≠∅  ⇔ Σk

p ⊆ Θk
p/poly 
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Conditions and Extensions  I 

• Blum and Impagliazzo (1987) considered a class of 
oracles, which are called generic oracles. 

• Recall that χA denotes the characteristic function of 
language A  (i.e., ∀x [(x∈A→χA(x)=1)∧ [(x∉A→χA(x)=0)]). 
 

• A condition σ is a partial function from { 0,1 }* to { 0,1 } 
with a finite domain dom(σ).  

• Hence, a condition is often identified with a string. 
• A condition τ extends σ (denoted by σ ⊑ τ) if dom(σ) ⊆ 

dom(τ) and σ(x) = τ(x) for every x ∈ dom(σ). 
• A set A extends σ (denoted by σ ⊑ A) if χA(x) = σ(x) for 

every x ∈ dom(σ). 



Conditions and Extensions  II 
• Consider the following example for (σ,τ,A). 

       x:   λ   0   1   00   01   10   11   000   001    ..... 

      σ:    *   *    *    1     0      *     *       1      *       ..... 
       τ:   0   *    *    1     0     1     *       1      0       ...... 

     χA:   0   1    1    1    0     1     0      1      0       ......  

      dom(σ) = { 00, 01, 000, ... } 
      dom(τ) = { λ, 00, 01, 10, 000, 001, ... } 

• (Claim) σ ⊑ τ ⊑ A, because: 
       1.  dom(σ) ⊆ dom(τ)                      ←  blue & red circles 
       2.  σ(x) = τ(x) for all x∈dom(σ)      ←  red circles 
       3.  τ(x) = χA(x) for all x∈ dom(τ)  ← blue & red circles  

A = { 0, 1, 00, 10, 000, ... } 



Generic Oracles  I 

• For an oracle Turing machine M, the machine Mσ 
behaves like M with access to the oracle { x | σ(x)=1 } 
and all queries may be made within dom(σ). 

• When some queries are made outsides of dom(σ), we 
treat  Mσ as being undefined. 

 

queries ∈ dom(σ) 

answers 

oracle { x | σ(x)=1 }  

Σ* 

M: OTM 



Generic Oracles  II 

• A set S of conditions is dense if, for every condition σ, 
there is another condition τ ∈ S such that τ extends σ. 

• A set A ⊆ Σ* meets a set S of conditions if there is a 
condition σ ∈ S such that A extends σ. 

• A set S is arithmetical if S is exactly definable in first-
order arithmetic.  

• A set G is (Cohen) generic if G meets every dense 
arithmetic set of conditions.  
 meaning: easy to define 

in an arithmetic way S: dense 

∀σ ∃τ  s.t. σ ⊑ τ 

S 



Complexity Class UP 

• We introduce a complexity class called UP. 

• For any language L, 
    L ∈ UP  ⇔  there exists an NTM M such that, for any x, 

1. x ∈ L →  M accepts x, 
2. x ∉ L →  M rejects x, and  
3. M has at most one accepting path on input x. 

• We can relativize UP to UPA, using oracle A. 

accept reject reject 

x ∈ L x ∉ L 

a unique 
accepting path 



Separations by Generic Oracles 

• With generic oracles, we do not have conflicting results for 
most complexity classes. 

• For example:  
 If a single generic oracle G satisfies PG = NPG or PG ≠ 

NPG, then, for all generic oracles H, we obtain PH = NPH 
or PH ≠ NPH, respectively  

• (Claim)  [Blum-Impagliazzo (1987)] 
 For any generic oracle G,  PG ≠ NPG.  
 If P = NP, then PG = UPG = NPG∩co-NPG for any generic 

oracle G. 

• (*) Can we extend this result to any higher level of the  
polynomial hierarchy? 



The Polynomial Hierarchy (revisited) 

Σ1
p = NP Π1

p = coNP 

∆1
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Σ3
p  Π3

p  

∆3
p 
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p  Π2

p  

∆2
p 

←  inclusion 
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…
. 

…
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Extension of UP to U∆k
p 

• We have already defined the complexity class UP.  

• Here, we extend it to fit into the k-th level of the 
polynomial hierarchy. 

 

• Fortnow and Yamakami (1996) defined the following  
extension of UP. 

 

 

• (Claim)   ∆k
p ⊆ U∆k

p ⊆ Σk
p  ∩ Π kp  for each index k ≥ 1. 

 

 

 

1 1;     for any 1.
p
kp p

kU P U UP kΣ
+∆ = ∆ = ≥



Generic Separations 

• Fortnow and Yamakami (1996) proved that the 
polynomial hierarchy is infinite regarding generic oracles. 
 

• Theorem:  [Fortnow-Yamakami (1996)]  Let k ≥ 2. 
 U∆k

p(G) ∩Πk
p(G) ≠ ∆k

p(G) for any generic oracle G. 
 

• As a result, we obtain   Σk
p(G) ∩Πk

p(G) ≠ ∆k
p(G). 

 
 Proof Idea:    
• Let A be any oracle. 
• We define a function  fnA: {0,1}n → {0,1}  as follows. 



Proof Idea  I 

• This a new function fnA is defined as: 
 
 
 

• Here, we define a permutation as a bijection (i.e., a one-
one and onto function) on all binary strings of length n. 

• Let  PERMA = { 1n | f2n
A  is a permutation } 

• Let  S2n = 1n(0+1)n+(0+1)n-10n+1  (regular expression) 
• Define  L(A) = { 1n∈ PERMA |  
                            ∃y∈{0,1}n ∀z∈{0,1}n [ f2n

A(yz) ∈ S2n ] } 
   

 
 

| 1 | 2 2 1( ) ( 0 ) ( 0 1) ( 0 1 ) ( 01 )A n n n n
n A A A Af x x x x xχ χ χ χ− − −= 



Proof Idea  II 

• It suffices to prove that, for any k ≥ 2,   
1) L(A) ∈ U∆k

p(A) ∩Πk
p(A)  for any oracle A, and  

2) L(G) ∉ ∆k
p(G)  for any generic oracle G. 

 
• Item 1) can be shown directly. 
• For the case of k = 2, item 2) can be directly proven.  
• When k ≥ 3, the proof of 2) requires the notion of random 

restrictions and Håstad’s switching lemma for circuits.  
 QED 



Open Problems 

• Concerning generic oracles, there is still a wide room to 
obtain interesting results. 

 

1. Is it true that  ∆k
p(G)  ≠ U∆k

p(G) ∩ co-U∆k
p(G) for any k 

≥2 and for any generic oracle G? 

2. Prove more separations and collapses of complexity 
classes relative to generic oracles. 

 

• (*) The notion of generic oracle turns out to be closely 
related to type-2 computability.  This subject will be 
discussed in Week 6. 
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V. Many-One Reductions by 1npda’s 



m-Reduction 1npda’s as Oracle 1npda’s 

• Yamakami (2014) considered nondeterministic many-one 
reducibility based on 1npda’s.  

• An m-reduction 1npda or an oracle 1npda M 
• M = (Q,Σ,{¢,$},Θ,Γ,δ,q0,Z0,Qacc,Qrej) is a standard 1npda 

plus a write-only query tape and a special transition 
function δ: 
 

• Termination condition of M: 
• All computation paths (both accepting and rejecting) 

should terminate (reaching halting states) within O(n) 
steps. 

• ACCM(x) = set of accepting computation paths of M on x 

*: ( ) ( { }) ( ( { }))haltQ Q P Qδ λ λ− × Σ∪ ×Γ→ ×Γ × Θ∪


This is because all context-free languages 
are recognized by O(n)-time 1npda’s.  



One-Way Nondeterministic Pushdown 
Automata with Query Tapes 

input tape 
(read-only) 

Inner 
state 

query tape 
(write-only) stack 

(write/read) 

oracle 
answer 

query 

one way 

one way 

alphabet  Γ 

alphabet  Σ 

alphabet  Θ 



Many-One CFL-Reducibility 

• Let L be a language over Σ and A be a language over Θ. 

• L is many-one CFL-reducible to A ⇔ 
     ∃ M (m-reduction 1npda)   s.t.    ∀x∈Σ* 

1) along any accepting path p, M on x produces a valid 
string yp∈Θ* (called a query word) on a query tape, and  

2) x ∈ L ⇔ ∃ p ∈ ACCM(x) [ yp ∈ A ]. 

• In this case, we write  L∈ CFLm
A  or  L∈CFLm(A). 

• The language A is customarily called an oracle.   

• Given a language family F,  
CFLm

F = CFLm(F) = union of CFLm
A for all A∈F. 



Example: Dup2  I 

• Consider the following language Dup2. 

• Dup2 = { xx | x∈Σ* } (duplication) over alphabet Σ 
• Is not context-free 
• Is many-one CFL-reducible to A = { xR#x | x∈Σ* }∈CFL.  
• Belongs to CFLm

A ⊆ CFLm
CFL . 

• A reduction is made by the following oracle 1npda M. 
1. On input w, nondeterministically split it into xy.  
2. Using a stack, produce xR#y on a query tape, where # is 

a special symbol not in Σ. 
3. Make a query to oracle. 
4. If oracle answers “yes,” accept w; otherwise, reject w.  

• (*) See the next slide for illustration. 



Example: Dup2  II 

• The oracle 1npda M works as 
follows with oracle A. (again) 
1. On input w, 

nondeterministically split it 
into xy.  

2. Using a stack, produce 
xR#y on a query tape, 
where # is a special symbol 
not in Σ. 

3. Make a query to oracle. 
4. If oracle A answers “yes,” 

accept w; otherwise, reject 
w.  

w = 1010 

λ#1010 1#010 01#10 …… 

query 

∉ A ∉ A ∈ A 

answer 

no no yes 

reject reject accept 

input 

A = { xR#x | x∈Σ* }  

split & 
reverse 



Example: Dup2  III 

• The oracle npda M for Dup2 (again) 
1. On input w, nondeterministically split it into xy.  
2. Using a stack, produce xR#y on a query tape, where # is a 

special symbol. 
3. Make a query to oracle. 
4. If oracle answers “yes,” accept w; otherwise, reject w.  

• More formally, we define M as follows: 

 
 
 

0 0 0 0

0 0 0

0 0 1 0

1 1 2

( , , ) {( , , )}
( ,$, ) {( , ,#)}
( , , ) {( , , )}
( , , ) {( , , ), ( , , )}

acc

q c Z q Z
q Z q Z
q Z q Z
q q q

δ λ
δ
δ σ σ λ
δ σ τ στ λ στ λ

=
=
=

=

2 2

2 0 3 0

3 0 3 0

3 0 0

( , , ) {( , , )}
( , , ) {( , ,#)}
( , , ) {( , , )}
( ,$, ) {( , , )}acc

q q
q Z q Z
q Z q Z
q Z q Z

δ λ τ λ τ
δ λ
δ σ σ
δ λ

=
=
=
=

where  ,σ τ ∈Σ

*: ( ) ( { }) ( ( { }))haltQ Q P Qδ λ λ− × Σ∪ ×Γ→ ×Γ × Θ∪




Similar Examples 

• Let us consider other but similar languages. 

• Dup3 = { xxx | x∈Σ* } (3 copies) over Σ 
• Is not context-free 
• Is many-one CFL-reducible to B = { xR#x#x#xR | x∈Σ* }.  
• Belongs to CFLm

B ⊆ CFLm
CFL.  

• Match = { x#w | ∃u,v∈Σ* [ w = uxv ] } (matching) over Σ 
• Is not context-free 
• Is many-one CFL-reducible to C = { xR#x | x∈Σ* }  
• Belongs to CFLm

C ⊆ CFLm
CFL.  

• Consequence:  CFL ≠ CFLm
CFL. 

Compare this with NP = NPm
NP. 



Example: Sq  I 

• Consider a slightly more complex language. 

•                               (squared length) over alphabet {0,1} 
 Is not context-free 
 Is CFL-m-reducible to  

 
 
 
 

 Belongs to CFLm
D ⊆ CFLm

CFL.  

• The second item shown above can be proven by the 
following oracle 1npda M using D as an oracle. 

 

2

{0 1 | 1}n nSq n= ≥

1 2

2 3 4 5

{ 0 #1 #1 # #1 |  (i)  and  (ii) },   where
          (i)  , ,
          (ii)     

kjj jiD w
j j j j
i k

′= =
= =
=





D∈CFL 



Example: Sq  II 

• The desired oracle 1npda M works as follows. 
1. On input w, check if w is of the form 0i1j for some i,j ≥ 0. 
2. Simultaneously, guess (j1,j2,…,jk) to satisfy:  

    
 
 

3. Produce w′ (shown in the above box) on a query tape.  
4. Make a query to oracle D. 
5. If “yes,” then accept w; otherwise, reject w. 

1 2

2 3 4 5

{ 0 #1 #1 # #1 |  (i)  and  (ii) },   
   where  (i)  , ,    (ii)     

kjj jiD w
j j j j i k

′= =
= = =





1 2

1 2 3 4

(1)  
(2)  , ,

kj j j j
j j j j
= + + +
= =







Characterization by Dyck Languages 

• Dyck languages over Σ = { σ1,σ2,…,σd } ∪ { σ′1,σ′2,…,σ′d }  
A Dyck language L is generated by a context-free 

grammar with the following production set:  
  

 
E.g., When d = 2, L is a set of all balanced parentheses.  
DYCK = set of all Dyck languages 

• Proposition:   [Yamakami (2014)] 
    CFLm

CFL = CFLm
DCFL = CFLm

DYCK = NFAm
DYCK = CFLm(NFAm

DYCK). 

• This lemma suggest that DYCK may be considered as the 
most difficult language in CFL under many-one CFL 
reductions. 

{ | | : 1,2,...,  }i iS SS S i dλ σ σ ′→ =



K-Fold Application of Reductions 

• Many-one CFL-reducibility lacks the transitivity property. 

• K-fold application of reductions 
 CFLm[1]

A = CFLm
A 

 CFLm[k+1]
A = CFLm(CFLm[k]

A)  
 CFLm[k]

F = union of CFLm[k]
A for all A∈F. 

• K-conjunctive closure of CFL 
CFL(k) = { A | ∃ B1,B2,…,Bk∈CFL [ A = B1∩B2∩…∩Bk ] } 
CFL(ω) = CFL(1) ∪ CFL(2) ∪…  
 { CFL(k) | k∈ℕ+ } is an infinite hierarchy. [Liu-Weiner 

(1973)] 
• Lemma:   [Yamakami (2014)] 

CFLm[k]
CFL = CFLm

CFL(k) and Uk≥1CFLm[k]
CFL = CFLm

CFL(ω). 

Namely,  CFLm
CFL ≠ CFL. 
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VI. Turing Reductions by 1npda’s 



T-Reduction 1npda’s as Oracle 1npda’s 

• Similarly to m-reductions, Yamakami (2014) considered 
Turing reductions. 

• A T-reduction 1npda or an oracle 1npda M 
• M = (Q,Σ,{¢,$},Θ,Γ,δ,q0,Z0, Qoracle,Qacc,Qrej) is a standard 

1npda with a write-only query tape, a special state set 
Qoracle, and δ such that  

 
 

• Termination condition of M: 
All computation paths (both accepting and rejecting 

paths) should terminate (reaching halting states) within 
O(n) time, no matter what oracle is provided. 

*: ( { }) ( { }) (( { , }) ( { }))halt query yes noQ Q q P Q q qδ λ λ− ∪ × Σ∪ ×Γ→ − ×Γ × Θ∪


{ , , }oracle query yes noQ q q q=



Adaptive Queries in Nondeterministic Computation 

• Let M be an oracle 1npda. 
• Input x is given. 
• M queries y1 along a 

computation path p. 
• The query tape is 

automatically reset. 
• Depending on an oracle 

answer, M makes another 
query on y2 along path p. 

• M continues making queries. 
• At the time when path p 

terminates, M must enter a 
halting state.  
 
 
 

x 

y1 y′1 

y2 y′2 

A query 

answer 

A query 

answer 

accept reject 

path p 

oracle 



Turing CFL-Reducibility 

• Let L be a language over Σ and A be a language over Θ. 

• L is Turing CFL-reducible to A     ⇔ 
∃ M (T-reduction 1npda)   s.t.   ∀x∈Σ* 
x ∈ L ⇔ M accepts x using oracle A 
 termination condition of M 

 
• In the above case, we write   
 L∈ CFLT

A  or  L∈CFLT(A). 
• Given a language family F,  let 
CFLT

F = CFLT(F) = union of CFLT
A for all A∈F. 

All computation paths 
(both accepting and 
rejecting) should 
terminate (reaching 
halting states) within 
O(n) time, no matter 
what oracle is 
provided. 



The Boolean Hierarchy over CFL 

• There is a nice relationship between CFLT
A and CFLm

A (as 
well as NFAm

A ). 

• Proposition   [Yamakami (2014)] 
   CFLT

CFL = CFLm(CFL2) = NFAm(CFL2). 

• We define the notation of the Boolean hierarchy (over CFL). 
• Boolean hierarchy over CFL [Yamakami-Kato (2013)] 

• CFL1 = CFL 
• CFL2k = { A ∩ B | A ∈ CFL2k-1 ∧ B ∈ co-CFL } 
• CFL2k+1 = { A ∪ B | A ∈ CFL2k ∧ B ∈ CFL }  
• BHCFL = CFL1 ∪ CFL2 ∪ CFL3 ∪…… 
• E.g.,  2CFL { | CFL, co-CFL }A B A B= ∩ ∈ ∈

Since co-CFL⊆CFL2, 
we obtain CFL ≠ CFL2. 
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VII. The CFL Hierarchy 



The CFL Hierarchy (CFLH)  I 

• Yamakami (2014) defined a hierarchy over CFL using 
oracle 1npda’s.  

• The CFL hierarchy is { ∆k
CFL , Σk

CFL, Πk
CFL | k∈ℕ } whose 

elements are defined as follows. 
 ∆1

CFL  = DCFL  
 Σ1

CFL  = CFL 
 ∆k+1

CFL  = DCFLT(Σk
CFL)  for any k ≥ 1 

 Σk+1
CFL  = CFLT(Σk

CFL)  for any k ≥ 1 
 Πk

CFL  = co- Σk
CFL   for any k ≥ 1 

 We further define CFLH as 
           CFLH = Σ1

CFL ∪ Σ2
CFL ∪ Σ3

CFL ∪ …. 



The CFL Hierarchy (CFLH)  II 

• The CFL hierarch satisfies the following basic properties. 

 

• Proposition:   [Yamakami (2014)]  Let k ≥ 1. 
1) CFLT(Σk

CFL) = CFLT(Πk
CFL)   

2) DCFLT(Σk
CFL) = DCFLT(Πk

CFL) 
3) Σk

CFL ∪ Πk
CFL ⊆ ∆k+1

CFL ⊆ Σk+1
CFL ∩ Πk+1

CFL 
4) CFLH ⊆ DSPACE(O(n))  
 

• NOTE: item 4) comes from the termination condition of 
oracle 1npda’s. 

 



Closure Properties of CFLH 

• Each Σk
CFL  (k≥1) is closed under the following operations. 

 Length-nondecreasing substitution 
Concatenation 
Union 
Reversal 
Kleene closure 
 λ-free homomorphism 
 Inverse homomorphism 

• Σ1
CFL  is not closed under intersection nor complementation, 

because   Σ1
CFL  = CFL. 

A substitution s:Σ→P(Θ*) is 
length nondecreasing  ⇔  s(σ) 
≠ ∅  and  λ ∉ s(σ)  for all σ∈Σ. 

A homomorphism h:Σ→Θ* is λ-
free  ⇔  h(σ) ≠ λ  for all σ∈Σ. 



Examples of Languages 

• Some languages are nicely placed in the CFL hierarchy. 
 

CFL
2Π

CFL
1Σ

CFL
1Π

• Dup2 = { xx | x∈{0,1}* } (duplication) 
• Dup3 = { xxx | x∈{0,1}* } (3 copies) 
• Sq = { 0n1k | k = n2, n∈ℕ } (squared length) 

• Prim = { 0n | n is a prime } 
(prime length) 

CFL
2Σ

CFL
1Σ

CFL
1Π
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Structural Properties of CFLH 

• The CFL hierarchy has the following properties. 

• Theorem (upward collapse properties):  [Yamakami (2014)] 
     Let   k≥2 

1. Σk
CFL  = Σk+1

CFL  ⇔  CFLH = Σk
CFL. 

2. Σk
CFL  = Πk

CFL  ⇔  BHΣk
CFL = Σk

CFL. 
3. Σk

CFL  = Πk
CFL  ⇔  Σk

CFL = Σk+1
CFL.  

• Similarly to CFLe and BHCFL, Yamakami (2014) defined:  

• Boolean Hierarchy over Σk
CFL  

 Σk,e
CFL  = e-th level of the Boolean hierarchy over Σk

CFL. 
BHΣk

CFL  = union of Σk,e
CFL for all e∈ℕ. 



Relationships to the Polynomial Hierarchy 

• The CFL hierarchy has a close connection to the 
polynomial hierarchy. 
 

• Theorem:  [Yamakami (2014)] 
     Let k≥1.  If Σk+1

CFL = Σk+2
CFL, then Σk

p = Σk+1
p. 

• In other words,  if the polynomial hierarchy is truly an 
infinite hierarchy, then so is the CFL hierarchy.  

 Proof Idea:  
• It suffices to show that each Σk+1

CFL contains a language 
that is p-T-complete for Σk

p. 



Open problems 
 

• Prove that Σk+1
CFL ≠ Σk+2

CFL for all k≥1. 
• Note that proving that Σk+1

CFL = Σk+2
CFL is much more 

difficult because this implies Σk
P = Σk+1

P. 
• Find interesting relativized worlds regarding Σk

CFL. 
• E.g., BPCFLA ⊄ Σ2

CFL(A) ∩ Π2
CFL(A) for some A.  

•  Prove the REG-dissectability of Σk+1
CFL .  

• The dissectability will be discussed in Week 5. 





Q & A 
I’m happy to take your question! 



 
 

                                 END 
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