Synopsis.

e Deterministic/Randomized Advice
e Dissectability and Separation

e Immunity and Simplicity

e Swapping Lemmas

May 7, 2018. 23:59

Week 1:
Week 2:
Week 3:
Week 4:
Week 5:
Week 6:
Week 7:
Week 8:
Week 9:
Week 10:
Week 11:
Week 12:
Week 13:
Week 14:
Week 15:
Week 16:

Course Schedule: 16 Weeks

Subject to Change

Basic Computation Models
NP-Completeness, Probabilistic and Counting Complexity Classes
Space Complexity and the Linear Space Hypothesis
Relativizations and Hierarchies
Structural Properties by Finite Automata
Stype-2 Computability, Multi-Valued Functions, and State Complexity
Cryptographic Concepts for Finite Automata
Constraint Satisfaction Problems
Combinatorial Optimization Problems
Average-Case Complexity
Basics of Quantum Information
BQP, NQP, Quantum NP, and Quantum Finite Automata
Quantum State Complexity and Advice
Quantum Cryptographic Systems
Quantum Interactive Proofs
Final Evaluation Day (no lecture)

YouTube Videos

e This lecture series is based on numerous papers of T.
Yamakami. He gave conference talks (in English) and
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.

« Use the following keywords to find a playlist of those
videos.

 YouTube search keywords:
Tomoyuki Yamakami conference invited talk playlist

¥ Conference Talk at
The 11th
International
Workshop on
Reachability

i

M

Problems (RP 2017)

& Egham, UK

Conference talk video

Main References by T. Yamakami

S T. Yamakami and T. Suzuki. Resource bounded immunity
and simplicity. Theor. Comput. Sci. 347(1-2), 90-129 (2005)
S T. Yamakami. Swapping lemmas for regular and context-free

languages. Preprint, arXiv:0808.4122 (2008)

S K. Tadaki, T. Yamakami, and J. C. H. Lin. Theory of one-tape
linear-time Turing machines. Theor. Comput. Sci. 411(1): 22-
43 (2010)

S T. Yamakami. The roles of advice to one-tape linear-time
Turing machines and finite automata. Int. J. Found. Comput.
Sci. 21(6): 941-962 (2010)

S T. Yamakami. Immunity and pseudorandomness of context-
free languages. Theor. Comput. Sci. 412(45): 6432-6450
(2011)

S T. Yamakami and Y. Kato. The dissecting power of regular
languages. Inf. Process. Lett. 113(4): 116-122 (2013)

|. Roles of Advice for Finite Automata

Motivational Discussions

Advice to Finite Automata
Deterministic Advice

Advised Language Families

Power of Advice

Swapping LLemmas

Another Characterization of REG/n
separation Results

Relationships among Advised Classes

Motivational Discussion |

Context-free languages are one of the most fundamental
types of languages in formal language theory.

How can we describe a “complicated” nature of
languages”?

E.g., consider two similar languages: | w) = the number
Leg={0""[N20]} /ofbinw
Equal = {w € {0,1}* | #5(w)=#,(w) }
Both languages are in CFL but not in REG.
L3eq ={0™1"2" [n € N }
3Equal = {w e {0,1,2}* | #,(W)=#(W)=#,(W) }
Both languages are in CFL(2) but not in CFL.

CFL(2) ={B,nB, | B,,B,,eCFL}

Motivational Discussion Il

Recall the languages from the previous slide.
Le, ={0"1"|n20}
Equal = {w € {0,1}* | #,(w)=#,(W) }
" Lgeq ={0"1"2" | n e N }
= 3Equal ={w e {0,1,2}* | #,(w)=#,(W)=#,(W) }
Question: How different are the above languages?
Time-complexity is not suitable to use for automata.

Thus, we need to look for structural differences of
languages.

Model of Finite Automata (revisited)

o Firstly, let us recall a model of one-way (one-head)
finite automata.

Q = set of inner states
M= (Q,2,8,00,F) > = input alphabet
L(M) = set of strings 0. tr_a_n_sltlon function
accepted by M q, - Initial state
F = set of final
CPU (accepting) states
Inner state € Q | 9 Head direction: one-way
; I .

End-marker An infinite read-only tape End-marker

Model of 1-Tape Turing Machines (revisited)

« Secondly, let us recall a model of one-way (one-
nead) nondeterministic Turing machine.

Q.q, are the same

M = (Q,Z,I',6,d0,Qzcc:Qrej) ¥ = input alphabet

[=tape alphabet
QaccVQyet halting states
o : transition function

L(M) = set of strings
accepted by M

CPU

Inner state € Q q

— —— two-way and/or stationary

. G ;

An infinite input/work tape (¢ and $ are removable)

1-Tape Linear-Time Complexity Classes
In Week 1, we have defined the following notations.

Machine
= 1DTM = 1-tape deterministic Turing machine
Complexity Class

= 1-DLIN = class of all languages that are recognized by
1DTMs in linear time

Function Class

= 1-FLIN = class of all functions that are computed In
linear time by 1DTMs with no extra output tape

Advice of Karp and Lipton

Advice Is an external source of information.

Advice is a way to enhance a computational power of an
underlying machine.

We use advice of the style of Karp and Lipton (1990).

Advice depends only

on each input size.

1L

machine <::

Advice to Finite Automata

In Week 3, we have already discussed the advice notion
of Karp and Lipton (1990) for Turing machines.

Damm and Holzer (1995) considered a similar advice
notion, which is applied to finite automata.

They provided advice strings next to standard input
strings.

Tadaki, Yamakami, and Lin (2004) took a slightly
different way to provide advice to finite automata.

Here, advice strings are given in parallel to input strings.

Track Notation for Advice |

We use a track notation of [Tadaki-Yamakami-Lin (2004)].
In these slides, we also write a track notation as [x y]'.

X . Xl X2 Xi Xn i X:X1X2“.Xi“'xn
W - W1 W2 Wi Wn | W:Wlwz...wi...wn

Each of them X.
. |
IS treated as a > new symbol
new symbol. W,
When written on an input tape: ‘
Uppertrack | | sssus X, | meees
¢ $

Lower track | | aaaaa We | seeaa

Track Notation for Advice I

 When [x|#|w|, we pad extra #'s automatically.

e When [x|<|w]|, the X || X || % X || # #
notation [x w]T wl |w w | ww, | w,
means:

X ‘ # o #
¢ $
W
 When |x|>|w]|, the X| | % | X Xi || X X
notation [x w]" wl |w||w,| |wl| #]| |#
means:
X
¢ $
W # o H#

Standard (Deterministic) Advice

Input string xeX" over an input alphabet .
Advice alphabet T’
Advice function h: N—>I™*

h(n)

Advice string h(n) is given in the lower
track of the tape when |x|<|h(n)|.

NOTE: This scheme of providing advice strings is
computationally equivalent to Karp-Lipton’s original one
for, say, polynomial time-bounded computation.

Examples of Advice

« We present a few examples of how to provide advice
strings in parallel to input strings.

>={0,1} (inputalphabet) T'={a, b} (advice alphabet)

Upper track 010010001
Lower track abbabaabb

>={a, b, c}(inputalphabet) I'={a, b} (advice alphabet)

Upper track cbaaccaac

Lower track abbabaa##

Advised Language Families

Deterministic computation with standard advice 8 ‘J&g
Let L be any language over an alphabet X. ‘

Le1-DLIN/lin
< JdM:linear-time 1DTM dI':advice alphabet Fh:N—>I™*
1. VneN [|h(n)| = O(n)].
2. VxeX"[xelL <> M accepts [x h(]xD]"].
LeREG/n
< JdM:1dfa dI':advice alphabet Fh:N—>I™*
1. VneN [|h(n)[=n].
2. VxeX"[xelL <> M accepts [x h(]xD]"].

1-C_LIN/lin, 1-PLIN/lin, and CFL/n are similarly defined
from 1-C_LIN, 1-PLIN, and CFL, respectively.

Power of Advice

Consider the context-free language:

Center = { ulv | |u|=]v|, u,ve{0,1}*}.
Fact: CentergREG.
However, we can claim that CentereREG/n.

« Let our advice function hbe | * Letourldia beTs.t..
0™MO™ if n=2ml accepts x iff [1 1]" exists.
hy=1{""_
#" ifn=2m

X u 1 Y

Input string X h(n) om| 1 om

Advice string h(n)
X u v

F:{O, 1,#} h(n) H#M HmM

Non-Advice Case vs. Advice Case

 For instance, we want to show:
Dup = { xx | xe{0,1}* } ¢ REG/n.
4 Proof: Assume that DupeREG/n. That is, 3 M:1dfa
dh:N—I* s.t. Dup = {z | M accepts [z h(|z])]" }.
o Let us apply the pumping lemma for REGs. Choose a

long string w = [xx h(|xx|)]" and consider its
decomposition w = uyv s.t. Vi[M accepts uy'v].

* However, this uy'v may be no longer of the form |z
h(|z])]". So, we cannot get any contradiction!

Therefore, we need another type of useful lemma for
regular languages!

That is the so-called swapping lemma for REGs.

Swapping Lemma for Regular Languages

* One of the useful properties of regular languages is a so-
called swapping lemma, shown by Yamakami
(2008,2010).

Swapping Lemma for REGs [Yamakami (2008,2010)]

If L is regular, then 3m>0 s.t. VneN VScL~>." (|S|zm)
Vie[n] Ixy,uveS (|x|=|u]=I) [xy=uv & uy,xvel |.

i Xy, uv € S uy, Xv € L

X y swapping u y

u Vv X Vv

How to Use the Swapping Lemma for REG?

« How can we use the swapping lemma?
. Dup ¢ REG/n.

L Proof Sketch:

o Assume DupeREG/n. That is, 3 M:1dfa 3h:N—>I"* s.t.
Dup ={z | Maccepts [z h(|z])]" }. Let L = {[x h(|xD]" | x
Dup }. Choose n’=2n and i=n.

e LetS={[zh(z])]" | |z|=2n, M accepts [z h(|z|)]" } = L.

e By the swapping lemma, there are two different strings
xy = [aa h(2n)]" and uv = [bb h(2n)]" in S with [x|=|u]=n
s.t. M accepts xv and uy.

e We then obtain xv = [ab h(2n)]" and uy = [ba h(2n)]".

e Since a=b, this is impossible! Hence, Dupz REG/n.

QED

Swapping Lemma for Context-Free Languages

Swapping Lemma for CFLs [Yamakami (2008,2016)]
If L Is context-free, then 3m>0 s.t.
Vn22 VScLMX" Vje,k, €[2,n-1],(k,22j,) Vie[0,Nn]
Vielipkol(Hi<)VueXP ([S,,I<ISIIM(Kyjo*1)(N-g*1))
AX=X1XoX3,Y=Y1YaY3€S ([Xq|=ly1l=1) (Xl =ly2l=1)(Xs]=lys|)
[Xo#Y2&X1Y,X3,Y1%Y3€L |.

i j X1XoX3, Y1YoY3 € S X1YoX3, Y1Xo¥3 € L
A N A N

X X2 X3 swapping X1 Y2 %3

Y1 Yo Y3 Y1 X2 Y3

Equivalence Classes

A (binary) relation R is a subset of a Cartesian product
of two sets A and B (i.e., R < A x B).

For a set X, a relation on X is a subset of X x X.

An equivalence relation ~ on X is a (binary) relation
satisfying the following three conditions:

1. (reflexivity) x ~ x for any Xx.

2. (symmetry) X ~yimpliesy ~ x for any x,y.
3. (transitivity) x~yandy ~ z imply x ~ z for any x,y,z.
The equivalence class of X is [X] ={y | X~V }.
X/~ Is the set of all equivalence classes w.r.t. ~;

e, XI~={[x]| x e X}.

Another Characterization of REG/n

The characteristic function of a language S is
S(x)=11if xeS, and S(x) =0 if xgS.
Theorem: [Yamakami (2010)]

For any language S over alphabet X, the following two
statements are equivalent. Let A={(x,n)|,xeZ* neN,|x|<n}.

1. Sisin REG/n.
2. 3 =: equivalence relation on A s.t.
|A/=| Is finite.
vneN Vx,yeZ* (|x|=]y|<n)
(X,n)=(y,n) <> VzeZ* [|xz|=n —» S(Xz) = S(yz)].

NOTE: The swapping lemma follows from this theorem.

Separation Results |

 We will show two separation results.

o Proposition: [Yamakami (2010)]
1-C_LIN & CFL/n.

4 Proof Sketch:
« Let X;={a;,a,,...,85#} and consider the language
Equalg = { weXy*| #,(w)=#,(w) for Va,beX; }.

 Itis known that Equal;¢ CFL/n by the swapping lemma

[Yamakami (2008)].
e Itis easy to show that Equal; € 1-C_LIN.

QED

Separation Results |l =

e Theorem: [Yamakami (2010)])
CFL « 1-PLIN/lin.

 Proof Sketch:

o LetIP*={xy | x,ye{0,1}*|x|=|y|,xRey=1 (mod 2) }, where xey
IS the (bitwise) binary inner product.

e [tis known that IP*eCFL.

 We exploit a certain special property of 1-PLIN/lin to show
that IP*¢ 1-PLIN/lin.

QED

 We can prove the following as well.

 Theorem: [Yamakami (2010)]
1-C_LIN/lin # co-1-C_LIN/lin # 1-PLIN/lin.

Relationships among Advised Classes

 We summarize known class separations and \)@
collapses among advised language families. %/>

1-C_LIN/RIin = 1-PLIN/RIlin = ALL

A

CFL/Rn

/ r CFL/n

1-BPLIN/RIin X

= REG/Rn

<«— proper inclusion
\ <\~ hoinclusion

1-PLIN/lin

S N

/N

1-C_LIN/lin |« co-1-C_LIN/lin

= REG/n

ALL = the family of all languages

|l. Randomized Advice

What Is Randomized Advice?

Notation for Random variables
Advised LLanguage Families

Power of 1-C_LIN/RIin and 1-PLIN/RIin
Why 1-C_LIN/Rlin = ALL?

Power of REG/Rn

Limitation of REG/Rn

What is Randomized Advice?

In randomized advice, all advice strings are chosen at
random according to a probability distribution.

Let I" be an advice alphabet.

For each n, an advice probability distribution D, over
['") generates advice strings y eI''™ with probability
D.(y), where t(n) is a length function.

Input string xeXn

D, generates y X #Hoe #
with probability ¢ $
D,,(y)- Y

Advice string y is given in the lower
track of the tape in the case of |x|<t(n).

Notation for Random Variables

Given a probability distribution D, over I''™, we use the
following succinct notation.

The notation [x D,]" denotes a random variable of the
form [x y]' (where “T” indicates transpose) over all
strings y in '™ according to D,

X :
{D }: random variable over '™ when | x |=n

n

In other words, we randomly pick y with prob. D,(y) and
write it onto the input tape along with x to form [x y]'.

NOTE: we should add extra #s as before when |y| = |X|.

Advised Language Families |

 LetL be anylanguage over an alphabet X.

/o LeREG/RN I

< dM:1dfa Jee[0,%) IT" I{D,},.\ :advice prob. dist.
1. VneN [D, generates advice strings yel™].
2. VxeX" [xeL - M accepts [x D, |" with probability > 1-¢].
_ 3. ¥xeX"[xeL — M rejects [x D,]" with probability > 1-¢]. Y,

« CFL/Rn is defined similarly. y

—— \ T—

D, generates X X

Yir -0 Yk Y1 Yk

L L

Advised Language Families |l

 We also provide randomized advice to 1-tape linear-time
complexity classes.

 LetL be anylanguage over an alphabet X.

(e Lel-BPLIN/RIin N
< dM:linear-time 1PTM Fe€[0,%) dT" 3{D, },,.n: diSt.
1. YneN [D, generates advice strings yeI' ™].
2. VxeX" [xeL — M accepts [x D,]" with prob. > 1-¢g].
_ 3. VxeX"[xeL —» M rejects [x D, |" with prob. > 1-¢]./

 1-C_LIN/RIin and 1-PLIN/RIlin are defined similarly by
supplementing randomized advice to underlying
machines associated with 1-C_LIN and 1-PLIN.

Example

 Consider a language: Dup ={xx | xe{0,1 }* }.

e (Claim) Dup ¢ CFL.
e (Claim) Dup € REG/Rn.

4 Proof Sketch: e 1dfa works as:
e Let our randomized advice 1. Compute xey and zey.
D, be s.t. 2. Accept xz if xey =, Zey.
(1/2™ if n=2m and w=yy
D, (w)=11 if n=2m+1andw=#" W X 7
0 otherwise. D, y y

* We run this procedure twice independently to reduce the
error probability to Ya.

Power of 1-C_LIN/RIin and 1-PLIN/RIin

We show another result that shows the power of
randomized advice when applied to 1-C_LIN and 1-PLIN.

Proposition: [Yamakami (2010)]
1-C_LIN/RIin = 1-PLIN/RIlin = ALL.

In other words, the advised language family 1-C_LIN/RIin
(as well as 1-PLIN/RIin) consists of all possible
languages.

In the next slide, we will give a proof sketch.

Why 1-C_LIN/RIin = ALL?

4 Proof Sketch:
 LetL be anylanguage over . For

simplicity, assume LNX"

X", Let our randomized advice D, be

zn—L\
0 if yeLnX".

D,(y) =1

\

(:
1 if yex"—L, Input string X

D,, generates Yy

e Letour1PTM M work as:

This means that M accepts
[x D,]" probabilistically.

{ If x=y, then reject x; and

If Xy, then accept/reject with equal probability ¥5.
 [tis easy to checkthat xelL <> Prob[M([x D,]") = 1]=1/2.

« We conclude that Le1-C_LIN/RIin.

QED

Power of REG/Rn

Yamakami (2010) showed the following class
separations with regard to REG/Rn.

Lemma: 1-BPLIN/RIlin = REG/Rn.
Proposition: DCFLNREG/Rn ¢ REG/n.

Proposition: REG/RnN1-C_LIN/lin ¢ CFL/n.

Theorem: REG/Rn ¢1C_LIN/linucol-C_LIN/lin. ﬁ

Limitation of REG/Rn

« REG/Rn seems quite large but there is also a clear

limitation in its recognition power. o
4
 Theorem: [Yamakami (2010)] <
CFLzREG/Rn.
 Proof Idea:

 We use REG/n-pseudorandomness and average-case
complexity class Aver-REG/n.

 The proof relies on the fact that, for any language L in
REG/RnN, a distributional problem (A,u) belongs to Aver-
REG/n for any probability distribution p.

QED

Relationships among Advised Classes (again)

* We summarize known class separations and \)@
collapses among advised language families. %Q}

1-C_LIN/RIin = 1-PLIN/RIlin = ALL

CFL/Rn

et

= REG/Rn

N\

1-BPLIN/RIin X

CFL/n

1-DLIN/lin
= REG/n

e

<«— proper inclusion
\ <\~ hoinclusion

/ 1-PLIN/lin

/N

1-C_LIN/lin |« co-1-C_LIN/lin

ALL = the family of all languages

Ill. Dissectability

Structural Properties
“Infinite™ Notation

CEL(k), CEL,, and CEL;,,

A New Notion of Dissectability
P-Dissectability

Constantly Growing Languages

Non-REG-Dissectable Languages
Bounded Languages

Structural Properties

We are interested in “structural” properties of languages.

In the past literature, several structural properties have
been discussed for regular and context-free languages.

Examples:

I. Boolean closure properties [1960s]

Il. Semi-linearity [Parikh (1961)]

lil. Minimal cover [Domaratzki et al. (2002)]
Iv. Pseudorandomness [Yamakami (2011)]

(We will discuss pseudorandomness in Week 6.) .
gc

“Infinite” Notations

Our target is “formal languages,” which are countable
sets.

Here, we ignore “finite” portions of infinite sets.
For this purpose, we want to simplify notations.

A: countable set

> |A] <0< Als afinite set finite

> |A] = 0 < Als an infinite set
A,B: infinite countable sets
» Ac, ,B& |A-B|<wx
> A=, BesAc, . BandBc A
o |(A _ B)U(B _ A)l < o0 a.e. = almost

everywhere

A

CFL(k), CFL,, and CFLg, (revisited)

 We review several language families discussed in Week 4.
REG = set of all regular languages
CFL = set of all context-free languages
co-CFL = set of all complements of sets in CFL
CFL(k) = k-disjunctive closure, I.e.,
CFL(k) = {L,nL,n...nL, | L;,L,,...,L, € CFL}
CFL, is defined inductively as follows:
CFL, = CFL
CFL,, ={A~B|A e CFL, ,,B € CFL}
CFL, ., ={AUB | A € CFL,,, B € CFL}
CFLg, = U1CFL, (Boolean hierarchy over CFL)

(In Week 4, CFL,.,, is written as BHCFL.) el
BH Qw

A New Notion of Dissectability %g”

Yamakami and Kato (2013) introduced a notion of
“dissectabllity.”

“Dissecting” means that we can partition an infinite set
Into two infinite disjoint subsets.

A language C is said to dissect an infinite language S |if h
\Cmﬂzﬁmﬁ:w

/
‘CﬁS‘:oo Z*
T <
‘6 S‘ _ S C/ > = alphabet
NS|=0o0

Quick Examples

e Recall that C dissects S if \C mS\ = ‘Ems‘ = o0

 Let us see two simple examples. . , 2
1. Consider a non-regular language ™~

S;={ab"|n>0}.
ThesetC, ={xe{ab}*||x=0
N

(mod 4) } dissects S,;. Y,
2. Consider a non-context-free “1 S,
language
Judd 4 N
S,={ww|we{0,1}}
Theset C,={0x|xe{0,1}*} g)
dissects S.,. Co y

Dissectabllity for Language Families

Let | be an arbitrary family of languages.
We define “F-dissectablility” as follows.

An infinite language S is called F-dissectable if there A
exists a language C in F that dissects S.

A language family C is F-dissectable if there exists an F-
dissectable language in C. Y

The choice of F is quite important.

Here, we are particularly interested in the case of F =
REG (regular languages).

In the following slide, we will explain why ' = REG is a
better choice, rather than, say, I = P.

P-Dissectabllity |

 Complexity class P may not be the best choice for F.
* The following claim explains this statement.

 Theorem: [Yamakami-Kato (2013)]
Every infinite recursive language is P-dissectable.

L Proof Sketch:

« Let L be any infinite language recognized in polynomial
time by a DTM M.

e For simplicity, assume that * ={ 0,1 }.
e IfL=_ 2% the language C ={0x | x € £* } dissects L.
* Next, assume that L =, >*.

e Letz,z,,2,,... be a standard lexicographic enumeration
of all stringsin*={ A, 0, 1, 00, 01, ... }.

P-Dissectabillity Il

For each string x, we determine whether x € C (or its
Boolean value C(x)) by running the following procedure.

. Initially, we set A=R =0 and i =0.

. At round i, we first recover the value C(z;) by running
this entire procedure on the input z..

. Next, simulate M on the input z;, within |x| steps.
. 1fM(z) = 1, then

a) update AtoAu{i}ifC(z) =1, and =2
b) update Rto R u {i}if C(z) = 0. /‘
. If not, then do nothing.

. After round [x|, if |A| > |R], then define the value C(x) =
0; otherwise, define C(x) = 1. Finish the procedure.

. Increment i by 1 and go to Step 2.

P-Dissectability 11 @

The previous procedure takes only polynomial time in
the length |x| of the input string x.

By a simple diagonalization argument, we can show that
CAL=[cnL=mx

This implies that C dissects L.

Since C € P, L is P-dissectable. QED

Therefore, “P-dissectability” is not quite exciting to study.
We then focus our attention on REG-dissectability.

Constantly Growing Languages |

* Let us consider languages composed of certain strings
whose lengths are not quite far apart.

A nonempty language L is constantly growing if there are
a constant p > 0 and a finite subset K < N* that satisfies

the following length condition:

» for every string x € L with [x| > p, there exist a string y
e L and a constant ¢ € K for which |x| = |y| + c.

XI=1lyl +¢c A

Constantly Growing Languages ||

e Proposition: [Yamakami-Kato (2013)]

Every infinite constantly-growing language is REG-
dissectable.

L Proof Sketch:

 Let L be any infinite constantly-growing language with a
constant p and a finite set K.

e Assume that K ={c,,C,,...,C, } € N* (increasing order).

e DefineL ={xelL]||xX|=1(mod (c,+1))}fori=1,2,...c,.

 [tis not difficult to prove that there are at least two
distinct indices 1,I, € [c,,] such that |L;;|=|L;,|=°.

e Consider the language C = { x| |x| =i, (mod (c,,+1)) }.

* This set C is regular and it clearly dissects L. QED

Context-Free Languages

e A typical example of REG-dissectable language is
context-free language.

« Theorem: [Yamakami-Kato (2013)]
CFL i1s REG-dissectable.

L Proof Sketch:

[t is not difficult to show that every context-free language
IS constantly growing.

e Since any infinite constantly-growing language is REG-
dissectable, the theorem immediately follows.

QED

Some Languages in co-CFL

Let us consider languages in co-CFL.
Take Fisher’s language (over alphabet X ={a,b})
L={(@"b)"|n>01},

which belongs to co-CFL. an C h
Define a regular language
C={xeX*|#,(x)=even} — %

Since

L={(@b)"|niseven}u{(a"b)"| nis odd},
it follows that |CAL|=|CL|=c
(Open Problem) Is co-CFL REG-dissectable?

Non-REG-Dissectable Languages E)\i

* Recall the space complexity class L from Week 3.
* In fact, there are non-REG-dissectable languages in L.

« Theorem: [Yamakami-Kato (2013)]
The complexity class L is not REG-dissectable.

L Proof Sketch:

e Consider the language S ={ 0" | n >0 } over the unary
alphabet { O }.
|t suffices to show the following two statements.
SisinL.
S cannot be dissected by any regular language.

QED

Bounded Languages

* Next, we consider special languages, called bounded
languages. [Ginsburg-Spanier (1966)]

 Alanguage L is called bounded if there is a finite set of
strings t;,t,,....,t, such that L < t;*t,*...t.*.

X= | ttpat | Gt |ttt tety...t,

\ J\ J\ } \ }
| | | |

I, times i, times i times I, times
« Examples:
{abd]ij>1} <« t=a,t,=b,t;=c
{ (ab)'(ca)?(acb)®*1]|i>1} < t,=ab,t,=ca, t;=acb

Examples: BCFL(K) @

* Recall that CFL(K) is the k-disjunctive closure of CFL.
 Here, we further consider bounded languages.

[- BCFL(k) = set of all bounded languages in CFL(k) J

e Theorem: [Yamakami-Kato (2013)] | Semi-linear languages
are defined by finite sets

For any index k > 1, BCFL(k) iIs REG-(of linear equations.

J Proof Idea:
 Use Ginsburg’s (1966) characterization of'bounded

context-free languages in terms of semi-linear sets.

e Since semi-linear sets are constantly-growing, we apply
an argument on constantly-growing languages.

QED

Examples: BCFL, D

Recall that CFL, is the k-th level of the Boolean
hierarchy over CFL.

Moreover, we have defined CFLg, = u,.,CFL,.

Here, we further consider bounded languages.

BCFL, = set of all bounded languages in CFL,
BCFL;, = u,.,BCFL, (Boolean hierarchy over BCFL)

Theorem: [Yamakami-Kato (2013)]
BCFLg,, Is REG-dissectable.

Open Problems

 Concerning the notion of REG-dissectabillity, there are
numerous open problems.

 The following is a short list of important open problems.

Is co-CFL REG-dissectable?

Is CFL(k) REG-dissectable?

Is CFL, REG-dissectable?

Prove or disprove the REG-dissectability of =, L.

V. Separation with Infinite Margins

1. Separation with Infinite Margins
2. Dissectabllity Implies I-Seperation
8. BCEL, and I-Separation

Separation with Infinite Margins |

Let us take a quick look at an an infinite
easy application of the REG- margin
dissectabllity to other structural (B.A) /
properties. - 2*\
Let A,B be any infinite

languages. B A

A covers B with an infinite - /
margin (A is an i-cover of B, or A Ai-covers B

I-covers B) if Bc Aand A = B.

The notation (B,A) means that A
I-covers B.

Separation with Infinite Margins |l

Let A,B,C be any infinite
languages.

C separates (B,A) with infinite o "r"n”airgfiir':“te
margins (or C i-separates (B,A)) If
BcCcA A#,.C,and B =, C. y / / «

)
- 4 N
Let C,D be any language families.

Let (D,C) ={ (B,A) | BeD, AcC }.

_ : ~ | B A
E i-separates (D,C) if, for every N Y,

pair (B,A) € (D,C), there is a set

E e Ethati-separates (B,A). C I-separates (B.A)

Dissectabllity Implies i-separation

Let C,D be any language families.

Theorem: [Yamakami-Kato (2013)]

N

Assume that C — D Is REG-dissectable. Define E = {
BUANC)|A e C,B e D, C e REG}. Then, E i-separates

(D,C).

L Proof Sketch:

LetA e C,Be D, and D=A—-B. Assume that D Is

Infinite.
Take a language CeREG that dissects D.
Define E = BU(ANC), which belongs to E.

Since C dissects D, we have |(AnC)-B|=|(A—C)—-B|=cx.

Hence, B c Ec Aand |A - E| = |E — B| =« hold.
Therefore, E i-separates (B,A).

~

QED

BCFL, and I-Separation

 As aconsequence, we are able to prove the following
theorem concerning bounded languages.

 Theorem: [Yamakami-Kato (2013)]
BCFL, i-separates (BCFL,,BCFL,) for every k>1.

L Proof Sketch:

It suffices to prove that BCFL, — BCFL, is REG-
dissectable, because this helps us conclude that BCFL,
I-separates (BCFL,,BCFL,) as seen before.

 The REG-dissectability of BCFL, — BCFL, can be proven
by induction on k.

QED

Open Problems

 We have just discussed the notion of i-separation.

 The following is a list of important open problems.
Does CFL i-separate (CFL,CFL)?
Does CFL, i-separate (CFL,,CFL,) for every k>17?

V. Immunity and Simplicity

C-lImmunity

Historical Background

Examples of REG- & CEL-Immune LLanguages
C-Simplicity

Examples of C-Simple Languages
REG-BI-Immune Languages

Examples of REG-Bi-Immune Languages

>P -Immunity and XP -Simplicity

C-Immunity

Flajolet and Steyaert (1974) first adapted the recursion-

theoretic notion of “immunity” into complexity theory.

e Let C be any nonempty language family.

K A language L is C-immune < \
1. Lis infinite, and

2. no infinite subset A of L exists in C.

A language family D is C-immune <

\ = D contains a C-immune language. /

L: infinite

e

A: finite

e (Claim) C cannot be C-immune by the definition.

e (Open Question) Is NP P-immune?

Historical Background

Flajolet and Steyaert (1974) showed:
Leq ={0"1" [n e N }is REG-immune.
L., ={0"1"2" | n € N } iIs CFL-immune.

The notion of immunity structurally differentiates the above
two languages.

3eq

In the next slide, we will give the proof of the above claim.
But, similar languages below are not even REG-immune.
Equal = {w € {0,1}* | #o(w)=#,(w) }
3Equal = {w e {0,1,2}* | #,(W)=#,(W)=#,(W) }

= Because {(01)"|n e N}cEqual {(012)"|ne N} C
3Equal.

Proof Idea for “L.,: REG-Immune”

e (Claim) [Flajolet-Steyaert (1974)] <,,’L:r
L, ={0""|n20} is REG-immune. o

d Proof Sketch:

* We prove this claim by contradiction.

e Assume that there is an infinite subset A of L in REG.

« Take a pumping constant m > O (of the pumping lemma).
 Choose a string 0"1" in A with n 2 m (because A is infinite).
 Letxyz =0"1" be a decomposition with |y| > 0.

« By the pumping lemma for REG, xy*z is in A for any k = 0.
» However, clearly xy*z does not belong to L,

e This Is a contradiction.

QED

Examples of REG-Immune Languages
e Proposition: [Yamakami (2013)]
DCFL N REG/n Is REG-Immune
4 Proof Idea: Because L Is in both DCFL n REG/n.

e Proposition: [Yamakami (2010)] D
DCFL — REG/n iIs REG-immune

U Proof Idea: Because
Pal, = { w#wR | w € {0,1}* } is REG-immune, and
Pal, is in DCFL — REG/n.

e |Incomparison, Pal={wwR |w e {0,1}* } is not REG-
Immune because L={0"0"|n=0}c Paland L € REG.

Examples of Immune Languages I

e Proposition: [Yamakami (2011)]
CFL(2) n REG/n is CFL-immune

4 Proof Idea: Because Lz, Is In CFL(2) N REG/n.

e Proposition: [Yamakami (2011)]
L — CFL/n is CFL-immune

4 Proof Idea: Because
3Dup, = { wA#w#Hw | w € {0,1}* } iIs CFL-immune, and
3Dup, isin L — CFL/n.

* The last result was improved by Suzuki (2016) to:
e CFL(2) — CFL/n is CFL-immune.

C-Simplicity j@
24
* There Is another important notion related to immunity.
« Let C be any language family.

(o B

A language L is C-simple < o

1) L is infinite, C-immune
2) LisinC, and

3) LC¢is C-immune.

- /

e (Claim) If a C-simple language exists, then C = co-C.

z*

e (Open Question) Is there any NP-simple language?

Examples of CFL-Simple Languages

e Consider the following languages (k = 3).
" Leg =1{2,"a,"...a" | n e N} (extensions of L)
" (Lyeg)® Is CFL-simple.
" Lyeq IS In CFL(2) N REG/n.
= NOTE: Unfortunately, (L) Is not REG-immune.

e Theorem: [Yamakami (2011)]
There exists a CFL-simple language L.
Moreover, some L€ is in CFL(2) n REG/n.

e (Open Question) Is there any REG-immune CFL-simple
language?

C-BiI-Immunity

z*
4 B)
e C-bi-immunity is another |
extension of C-immunity. CAmmune
 Alanguage L is C-bi-immune < _)

= L and L¢ are both C-immune.
A language family D is C-bi-immune <
= D contains a C-bi-immune language.

(Claim) EXP is P-bi-immune. [Schoning (1983)]

J Proof Idea:
 The desired language was constructed by
diagonalization.

Examples of REG-BiI-Immune Languages

e Theorem: [Yamakami (2011)]
L N REG/n is REG-bi-immune.

U Proof Sketch:

e Consider the following two languages.
" L., = {we{0,1}*|3k[2k<loglog|w| <2k+1]} WU{A}A0,1}
" | g = {we{0,1}*|3k[2k+1<loglog|w| <2k+2]} U {0,1}

 We can show that (1) L., Y Logq = {0,1}*, (2) Loyen M
L. = <, and (3) L, and L 44 are both REG-immune.

e Moreover, L

and L 44 are in L N REG/n.

even

QED

2P -Immunity and ZP, -Simplicity

« Without detailed explanation, we describe some of the
results obtained by Yamakami and Suzuki (2005).

1. Let k>1. No XP.-simple set is h-AP -d-complete for XP,.

2. A strongly NPG-simple set exists relative to a Cohen-
Feferman generic oracle G.

3. Let k>1. All P,-generic sets are honestly *P,-
hyperimmune.

4. Let k>1. No XP.-hypersimple set is P-T-complete for %P, .

5. Let k>1. No ZP,-simple set is AP -1tt-complete for ZP, If
U(EP, N TTP) & SUBARXF, .

6. If the k-immune hypothesis is true, then there exists an
NP-simple set.

Open Problems

 We have just discussed the notion of I-separation.
 The following is a list of important open problems.

e Open Problems:
» |Is CFL REG-bi-immune?
» Is CFL-REG/n REG-bi-immune?
» Is there any REG-immune CFL-simple set?
» Does an NP-simple language exist?

= ..ﬂ;ﬁm happy to take your question!

¥ e

—:___—.-.E"-‘-:‘-"
S —
— — - =
i

e
——

	5th Week
	Course Schedule: 16 Weeks
	YouTube Videos
	Main References by T. Yamakami
	I. Roles of Advice for Finite Automata
	Motivational Discussion I
	Motivational Discussion II
	Model of Finite Automata (revisited)
	Model of 1-Tape Turing Machines (revisited)
	1-Tape Linear-Time Complexity Classes
	Advice of Karp and Lipton
	Advice to Finite Automata
	Track Notation for Advice I
	Track Notation for Advice II
	Standard (Deterministic) Advice
	Examples of Advice
	Advised Language Families
	Power of Advice
	Non-Advice Case vs. Advice Case
	Swapping Lemma for Regular Languages
	How to Use the Swapping Lemma for REG?
	Swapping Lemma for Context-Free Languages
	Equivalence Classes
	Another Characterization of REG/n
	Separation Results I
	Separation Results II
	Relationships among Advised Classes
	II. Randomized Advice
	What is Randomized Advice?
	Notation for Random Variables
	Advised Language Families I
	Advised Language Families II
	Example
	Power of 1-C=LIN/Rlin and 1-PLIN/Rlin
	Why 1-C=LIN/Rlin = ALL?
	Power of REG/Rn
	Limitation of REG/Rn
	Relationships among Advised Classes (again)
	III. Dissectability
	Structural Properties
	“Infinite” Notations
	CFL(k), CFLk, and CFLBH (revisited)
	A New Notion of Dissectability
	Quick Examples
	Dissectability for Language Families
	P-Dissectability I
	P-Dissectability II
	P-Dissectability III
	Constantly Growing Languages I
	Constantly Growing Languages II
	Context-Free Languages
	Some Languages in co-CFL
	Non-REG-Dissectable Languages
	Bounded Languages
	Examples: BCFL(k)
	Examples: BCFLk
	Open Problems
	IV. Separation with Infinite Margins
	Separation with Infinite Margins I
	Separation with Infinite Margins II
	Dissectability Implies i-separation
	BCFLk and i-Separation
	Open Problems
	V. Immunity and Simplicity
	C-Immunity
	Historical Background
	Proof Idea for “Leq: REG-Immune”
	Examples of REG-Immune Languages
	Examples of Immune Languages II
	C-Simplicity
	Examples of CFL-Simple Languages
	C-Bi-Immunity
	Examples of REG-Bi-Immune Languages
	pk-Immunity and pk-Simplicity
	Open Problems
	Slide Number 76
	Slide Number 77
	Slide Number 78

