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YouTube Videos

e This lecture series is based on numerous papers of T.
Yamakami. He gave conference talks (in English) and
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.

« Use the following keywords to find a playlist of those
videos.

 YouTube search keywords:
Tomoyuki Yamakami conference invited talk playlist

¥ Conference Talk at
The 11th
International
Workshop on
Reachability

i

M

Problems (RP 2017)

& Egham, UK

Conference talk video
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Multi-Valued Partial Functions

A (standard) function is designed to produce only one
output value per each input.

We can allow a function to output more than one value
simultaneously, or even allow it to output no value at all.

A total function is a standard function f such that, for any
Input X, its output f(x) always exists.

By contrast, a partial function means that, the outputs of the
function are not guaranteed to exist for all inputs.

A multi-valued function is called single valued Iif, for any
Input x, the number of different output values in f(x) is < 1.

When a function produces no output value on a certain
Input X, we treat f(x) to be undefined.

Generally, we call such a function a multi-valued partial
function (where “partial” is meant for undefined values).



Early Studies

* Firstly, we consider how to compute such a function
using 1npda. Those functions are called CFL functions.

e CFL functions were first studied by Evey (1963) and
Fisher (1963).




Write-Only Output Tapes

To compute a function, we need to equip a 1npda (also called
a transducer) with an extra write-only output tape, along which

Its tape head moves rightward whenever it writes a non-blank
symbol.

Inner state g € Q

—  One-way
T | M ‘

ﬂ ¢ c $

Infinite read-only input tape

——  Head direction: one-way

| .

Stack

Start cell Infinite write-only output tape



How to Produce Multi-Values

 We explain how a 1npda produces outcomes of a multi-
valued partial function f.

K We say that a 1npda M computes a multi-valued partiah
function f: Z,*— 0 (2,*) If M satisfies the following:

1. for any xedom(f), M produces exactly all values in
f(x) along accepting computation paths, and

2. for any string xeZ,;*-dom(f), M rejects the input x (in
\ which all computation paths are rejecting). /

« Namely, a 1npda M with a write-only output tape can
compute a multi-valued partial function f: X,*— ¢ (2,*)
defined by

f(x) ={y | M(x) outputs y }.



Valid (or Legitimate) Outputs

A 1npda produces valid outcomes only along accepting
computation paths.

npda M input X
computation computation
paths valid paths
outputs
Y1 Yo Y3 outputs Yy Yo Yz Ys Y5
~ Y ~~ ' ~
rejected accepted all rejected

M(x) outputs { y,, Vs } M(X) outputs &




Formal Definition

A 1npda M = (Q,Z,{¢,3},0,I,6,00,Z0,Qqcc: Qrey) With a write-only
output tape is a standard 1npda plus a write-only output tape
and a special transition function ¢ of the form:

5:(Q-0Q..,)xEu{A)x0 - PQxT" x(I'u{i})

=32 U { C, 9 } Qhait = QaccU Qrej
e Termination condition of M:

« All computation paths (both accepting and rejecting)
should terminate (reaching halting states) within O(n)

time.
 ACC,,(x) = set of accepting computation %hs of M on x

This is because all context-free languages
are recognized by O(n)-time npda’s.




Multi-Valued Partial CFL Functions

Function Classes %‘02@?2232;
CFLMV = class of all multi-valued

partial functions computed by 1npda’s CFLMV(2)
CFLSV = class of all single-valued

partial functions in CFLMV CELMV
CFLSV, = class of all total functions in

CFLSV

CFLMV(2) = class of all functions g CFLSV
defined as g(x)=f,(x) n f,(x) for f.,f,

CFLMV CFLSV,

CFLMV, CFLSV, and CFLSV, are
analogues of NPMV, NPSV, and NPSV,,
respectively.

1-FLIN




Examples: PAL

Here, we take a look at two
simple examples.

PAL(W) ={x|3du,v[w=uxv]Aa
x =x?} forallwe{0,1 }*

l.e., PAL(w) outputs all possible
palindrome blocks in w.

The right-hand side illustration
shows how to compute PAL.

Thus, PAL is in CFLMV,. (total
function)

input
Guess (i,)) w
with i=|u| A
j=n-|v]
1,2 ((1,2) .... (n,n)
Find x
Check X' e X
if xR =x
yes yes ****  no
If yes,
output x

X X' =t reject



Examples: IP

Let © be the binary inner
product.

IP,(X) ={z|[xI=|z|, x©Oz =1
(mod 2) } forall xe{ 0,1 }*.

This is different from the
language IP,(x) = { xz | |X|=|z],
xROz =1 (mod 2) }.

The right-hand side illustration
shows how to compute IP.,.

Thus, IP, is in CFLMV
(actually, in NFAMV).

See a later slide for NFAMV.

input
Guessz// \
on o1 ....
Compute
Xz ‘
(mod 2)
O 1 TR O
If 1,
output z
reject 0O™11 -+ reject



CFLnco-CFL vs. CFLSV

CFLSV is closely related to the language family
CFLnco-CFL.

Recall that y, Is the characteristic function of a language
A.

Lemma: [Yamakami (2016)]
Let A be any language.
AeCFLNnco-CFL < y,eCFLSV

We can replace CFLSV by CFLSV,and CFLMV.



Functional Pumping Lemma for CFLMV

e« Pumping Lemma for CFLMV: [Yamakami (2014)]

Let X and I" be any alphabets and let f:Z2*— o (I'*) be any
function in CFLMV. There exist 3 numbers m € N* and
c,d e Ns.t.any w €X* with |w| > m and any s < f(w) are
decomposed into w = uvxyz and s = abpqgr s.t.

(1) Juxy| <m
(2) lvybg| =1
(3) |bg| £ cm+d and
(4) ab'pg'r e f(uv'xy'z).

If f Is further length-preserving, then
(5) v = [b] and |y| = |q|.

Moreover, (1)-(2) can be replaced by
(1) |bg| > 1.




Function Class NFAMV

o Similarly to CFLMV, we define the function class NFAMV
as follows.

* Letfbe any multi-valued partial function.

/- fisin NFAMV < there is a 1nfa M equipped with a h
write-only output tape such that

for every xedom(f), M produces all elements in f(x)
along accepting computation paths, and

\_ for every xgdom(f), M rejects the input x. -

e (Claim) 1-FLIN ¢ NFAMV c CFLMV.



Conjunction/Disjunction of Functions

* We define conjunction/disjunction of function classes.

D.anéugitgn of Fand G 20,70,
< 3dg, € F3g, € G s.t. VX[ f;(X) =g,(X)Ng,(X) |

U Disjunction of F and G
* f, e FVG h=0:v0,

< 3dg, € F3g, € G s.t. VX[ f,(X) =g,(x)Ug,(X) |




Simple Examples of fvg and fAg

 Here, we present two simple examples.

e Consider the following f and g.
> f(x) ={a"b" | n=|x| }
> g(x) ={a"b®" | n=|x| }
> (fvg)(x)={a"", a"b*" | n=[x| }

e Consider the following f and g.
» f(x) ={a"b"c™ | n=|x|, m>0 }
» g(x) ={am™b"c" | n=|x|, m>0 }
» (fAg)x)={ab"c" | n=|x| }




Function Classes CFLMV(K)

 We extend CFLMV using “conjunction” operator.
1. CFLMV(1) = CFLMV
2. CFLMV(k+1) = CFLMV(k) A CFLMV
3. CFLSV(k) ={f e CFLMV(K) | fis single-valued }

 Lemma: [Yamakami (2014)]

1)
2)

3)

CFLMV(max{k,m}) ¢ CFLMV(k)vCFLMV(m) c
CFLMV/(km).

CFLMV(max{k,m}) ¢ CFLMV(k)ACFLMV(m) c
CFLMV/(k+m).

CFLSV(K) # CFLSV(k+1) for any k>1.



Difference/Complement of Functions

 We define the difference/complement of function classes.

1 Difference between F and G
- feF®G < 39, € F3g, € G s.t. VX[ f(X) = g;(X) — g5(X) ]
set difference
1 Complement of F
« feco-F
< 3g € F dp: linear polynomial 3n,: constant s.t.

v(x,y) with [x|2ng [ yef(x) <> |yl<p(|x]) A yeg(x) ]
X

// \ f(x) = 200D - g(x)
g(x): w, W, W y<p(IX|)




Boolean Operations

Using two operators © and co-, we define the following
function classes.

e co-CFLMV (complement)

e CFLMV © CFLMV (difference)
e CFLMV A co-CFLMV (conjunction with complement)

Recall IP,(x) ={z | [x|=|z|, x®z =1 (mod 2) } for all xe{
0,1}~

Define IP¢(x) ={ z | [x|>|z], x®z0X2l= 0 (mod 2) } for
any X.

It follows that IP¢ € co-CFLMV; since IP, e CFLMV, and
IPc(x) = <X — IP,(x) for any x.



Basic Properties

* The following basic properties hold.

* Proposition: [Yamakami (2014)]

I N

. C0-(co-CFLMV) = CFLMV
. c0-CFLMV = NFAMV © CFLMV

CFLMV © CFLMV = CFLMV A co-CFLMV
CFLMV = co-CFLMV
CFLMV,# co-CFLMV;
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Refinement of Functions

The notion of refinement is more useful than a standard
set inclusion, because, e.g., CFLSV, # CFLSV = CFLMV
holds.
Let f,g be any two functions from X* to ¢ (I'™*).
g is arefinement of f (notationally, fE, g )
& VXeX*
1109 = < g3 =0 Refinement is

2. g(x) c f(x) (as set inclusion). also known as
uniformization.

For two function classes F and G,
FE G < VieF3geG[fE 9]

NOTE: FE€ G = FC,.G. &

N




Example: maxPAL

Let us see an example of refinement.

Recall PAL(w) ={x|3u,v[w=uxv]Ax=xR}

For each we{ 0,1 }*, we define
maxPAL(w) = maximum element in PAL(w),

where “maximum” is according to a dictionary order.

maxPAL is a single-valued total function.

(Claim) PAL £, maxPAL (PAL is refined by maxPAL)

4 Proof: This is because dom(PAL) = dom(maxPAL) and
maxPAL(x) < PAL(x) for all x.



Refinement Separation: CFLMV |

Let us consider the refinement separation between CFLMV
and CFLSV.

Actually, we can show a much stronger separation as
explained below.

CFL2V is the collection of all partial functions f in CFLMV
such that the number of f's output values on each input
must be at most 2 (called 2-valued functions).

The machine 1npda M is called unambiguous if, for any
Input x and any output value y, M has exactly one
accepting computation path producing y from x.

UCFL2V is the collection of all 2-valued partial functions
computed by unambiguous 1npda’s.

(Claim) UCFL2V c CFL2V c CFLMV.



Refinement Separation: CFLMV I

 Here, we claim the desired separation result.

e Theorem: [Yamakami (2014)]
UCFL2V I CFLSV.

 The above theorem implies that CFLMV Z . CFLSV.

L Proof Sketch:

« It suffices to define an example function, say, h; as in
the next slide and prove the following 2 claims.

1. hy e UCFL2V.
2. hs has no refinement in CFLSV.



Refinement Separation: CFLMV |

* The desired function h, is defined as follows.

L:{Xl#XZ#X3|X1,X2’X3 E{O’l}*}
((i,j)li,jeN"1<i< j<3]

|3

Ly ={W 3%, X, X,[w = X, # X, # %, € L1,3(i, j) € LI =x;1}
() = 0130, ) el xt =x;} if w=x#x,#x,¢el,
%) If we L.

QED

e For example,
v h;(001#100#000) = { 0112} 001% =100

v h,(001#100#001) = { 0112, 0213} | 001R = 100, 100R = 001

v hy(111#011#101) = &



1-FLIN(partial), 1-NLINMV, and 1-NLINSV

e Recall 1-FLIN from Week 1.

* Here, we relax the function condition of 1-FLIN to obtain 1-
FLIN(partial), which is composed of all partial functions
computable by 1DTM in linear time with no extra output.

* In other words, If we restrict all partial functions in 1-
FLIN(partial) to be total, we immediately obtain 1-FLIN.
 Next, we define 1-NLINMV and 1-NLINSV.
K A multi-valued partial function f: X,*— o (Z,*) IS In 1-NLINI\/IW
If there exists a INTM M such that

1. for any string xedom(f), M produces exactly all values
In f(X) along accepting computation paths, and

2. for any string xeX,*-dom(f), M rejects the input x.
3. for any input xeX,*, M halts within O(|x|) time in the

\_ strong sense. -/




Refinements of 1-NLINMV

1-NLINSV is the collection of all single-
valued partial functions in 1-NLINMV.

1-NLINSV, consists of all total functions
In 1-NLINSV.

A single-valued function f: £, *—>%.* Is 1-NLINMV

length-preserving if, for any input x €
Z.%, [f(X)| = |x| holds.

Containment
& separation

1-NLINSV
Theorem: [Tadaki-Yamakami-Lin
(2010)]
Every length-preserving 1-NLINMV 1-FLIN(partial)
function has a 1-FLIN(partial)
refinement.
1-FLIN

(*) This will be used for one-way
functions in Week 7.
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The CFL Hierarchy (revisited)

CSL
4 <4 proper inclusion
DSPACE(O(n)) p P :
<— inclusion
TCl / CFLH,\ <\~ noinclusion
74 4 :
NC?2 HépLs ZC.FL?)
T \
ACO(CFL) T T CFL(w)
CFL CFL CFL,,
= SACL 4 )
. | BHCFL ~___ CEL _CFL®)
PCFL + CFL(w) m
NL I CFEL A = CFLpyp
f A CFL(3) t CFL/n
L BPCFL CEL 4 CFL, S T
T X 2 CFL(2) = CFLypy
ACO(REG) / \ M REG/n
- 1
B NE co-CFL = TTCFL, >CFL, = CFL J

N

~ REG —




The CFLMV Hierarchy

Similarly to CFLA (relative to A), we can relativize CFLMV
to oracle A and obtain CFLMVA by attaching query tapes to
underlying 1npda’s with output tapes.

We then define the CFLMV hierarch as follows.
LMV =CFLMV *; "MV = CFLMV

k+1

Similarly, we define the CFLSV hierarchy by setting:
SV ={f eX, "MV | f is single-valued }

Theorem: [Yamakami (2014)] (k>1)
1. XCFLSV C  ZCFL MV,

—re
2. ZCFLKSV — ZCFLk+1SV — 2CFLk — ZCFLk+1

3. SCFL = yCFL . — ¥CFL Sy=yCFL SV



Refinement Separations and Collapses
We have seen CFLMV £ . CFLSV. This is equivalent to
SCFLMV . SCFL SV,

(Open Problem) Is Z¢FL MV £ ¥¢FL SV for each k>27?

Related to this question, we obtain the following.

Lemma: [Yamakami (2014)] (k>1)
» XCFL MV E [ ZCFL L SV

Theorem: [Yamakami (2014)] (k>2)
> ZCFLk = ZCFLk+1 = z:CFLk+1MV L ref z:CFLk+1SV'

Corollary: [Yamakami (2014)] (k>2)
» XFLMV E [ ZCFL SV = PH = %P,



The //-Advice Operator

o Kobler and Thierauf (1994) introduced the //-advice
operator, which is a natural extension of the /-advice

operator (used to define P/poly).
« We adapt this operator to apply to automata.

e Let F be a class of multi-valued functions.

a A language L is in REG//F < there are a language B e\
REG and a function h € F such that, for any x,

XelL < dyeh(x) s.t. |:X:|€B
N ’ Y,

* Analogously, CFL//F is defined using CFL instead of
REG.




Basic Properties

 We list basic properties of the //-advice operator.

e Proposition: [Yamakami (2014)]
1. REG//INFASV, ¢ CFL and CFL ¢ REG//NFAMV.
2. REG/INFASV, = co-(REG//NFASV,)
3. REG//INFAMV = co-(REG//INFAMV)
4. CFL n co-CFL # REG//CFLSV,

e (*) The last claim is compared to NP n co-NP = P//INPSV,.
[KObler-Thierauf (1994)]

e Proposition: [Yamakami (2014)]
> YCFL A TICFL = REG//ZCFL, SV, for any k>3.



Functional Composition

Let f,g be any multi-valued partial functions.
The functional composition f °g of f and g is defined as

(fea))={J, 0, T

for every x.

For two function classes F and G, a new function class
F° G Is defined as

FoG:{fog|feF,geG}
Let

= CFLSV(® = CFLSV.
s CFLSVk*) = CFLSV ° CFLSV® for each k>1.



Separations

 We show a simple separation result.

Proposition: [Yamakami (2014)]

1. CFLSV, # CFLSV®),
2. The same holds for CFLSV and CFLMV.

L Proof Sketch:

Define fy,,x(x) = { x#x } for any xe{0,1}*.
Clearly, fy,,.(X) € CFLSV®),

However, If fy,4(x) € CFLSV,, then the language DUP,

= { x#x | xe{0,1}* } must belong to CFL.
Since DUP,¢CFL, we conclude fy,,,(X) ¢ CFLSV.,.

QED




OptCFL

* Krentel (1988) introduced a function class OptP, which
consists of the optimal cost functions of NP optimization

problems.

o Similarly, Yamakami (2014) considered its pushdown-
automaton version, which is called OptCFL.

 We assume the standard lexicographic order on Z*.

7o A function f: * — X*is in OptCFL < there exists a h
1npda M with a write-only output tape s.t.

f(x) =opt{y eX* | M(x) produces y },
where opt € { max, min }. y

o




Open Problems

. Prove that ¢t MV = ZCFL MV for all k>1.

 Note that proving that X¢F-, MV = X¢FL MV is much
more difficult because this implies =P, = 2P, ,,, as
discussed in Week 4

. Prove that ¢FL, SV IZ  ZCFL MV for all k>2.
. Prove that OptCFL € ¢ L SV, or OptCFL & X¢FL.SV..
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State Complexity of Automata Families

Let M = (Q,Z,6,00,Qqcc: Qrey) DE any finite automaton.

The state complexity of M is st(M) = |Q| (the number of
Inner states).

We consider a family {M_},.\ of finite automata, each M,
of which is of the form (Q,,,X,,6,,don,Qacen Qrejn) -

We often take the same input alphabet X, = X for all n.

Note that the state complexity of this family {M,},.x
becomes a function st(n) = |Q,| in length n.



L-Uniform Families of Finite Automata

We consider a family of finite automata, each of which
can be constructed by a single production algorithm.

Let {M,},.n D€ any family of finite automata, each M, of
which is of the form (Q,,,2,,,8,,,00n: Qacc,nsQrejn)-

This family {M,}.. IS called L-uniform if there exists a
log-space DTM A with a write-only output tape such that,
for any length neN, A takes input of the form 1" and
produces an encoding of M, on the output tape.

(*) In comparison, we will discuss uniform families of
Boolean circuits in Week 8.



Equivalent Finite Automata

We define the notion of equivalence between two finite
automata.

Let M and N be two finite automata (of possibly different
types).

We say that M is equivalent to N if L(M) = L(N).

That is, M agrees with N on all inputs; I.e., for every input
string X,

M accepts x <> N accepts x.
Two families {M,},.n and {N,},.y Of finite automata are

said to be equivalent if, for any neN, M, and N,, are
equivalent.



State Complexity of Transformation

e Consider two different types of finite automata: type 1
and type 2.

 We say that the state complexity of transforming type-1
automata to type-2 automata is t(n) if, for any n-state
type-1 automaton M, there exists another type-2
automaton N such that (i) N has at most t(n) states and
(i) N Is equivalent to M.



Example of Transformation

e Consider the following .a .b
example. @ € 2 e

e Fig.lis a lnfawith 3
states, and Fig.2 is its
equivalent 1dfa with 4
states.




Characterization of NLcL/poly

Recall the non-uniform class L/poly from Week 3.
Note that we do not know whether or not NLcL/poly.

Kapoutsis (2014) and Kapoutsis and Pighizzini (2015) gave
a new characterization of NLcL/poly in terms of state-
complexity of transforming 2nfa’s to 2dfa’s.

(Claim) The following statements are logically equivalent.

1. NLcL/poly.

2. There exists a polynomial p such that, for any n-state
2nfa N, there is another 2dfa M of at most p(n) states
such that M agrees with N on all inputs of length < n.

Note that a straightforward textbook algorithm transforms
an n-state 2nfa into an equivalent 2dfa of 2°(" states.



The Linear Space Hypothesis (LSH) (revisited)

 Recall the linear space hypothesis (LSH) from Week 3.

 LSH (or LSH for 2SAT,) states:

There Is no deterministic algorithm that solves 2SAT; in
time p(|x]) using at most m,,,(x)¢I(|x|) space on instance
X for a certain polynomial p, a certain polylog function |,
and a certain constant s€[0,1).

 We can replace (2SAT;,m,) by (3DSTCON,m,,,),
where m,.((G,s,t)) = the number of vertices in G.

 Here, we want to give a state complexity
characterization of LSH.



Circular Tapes and Sweeping Moves

 When both ends of a tape are glued together, we call
this tape a circular tape.

A tape head is said to sweep a tape if the tape head

moves to the right from ¢ to $. In this case, the tape
head is called sweeping.

circular tape

v

sweeping




Constant Branching

Letc € N™.

A 2nfa is c-branching if it makes only at most c
nondeterministic choices at every step.

In particular, every 2dfa is 1-branching.

A family {M_},.y Of 2nfa’s is called constant-branching if
there exists a constant c € N* such that every M, is c-
branching.

2-branching 3-branching



Constant-Branching Simple 2nfa’s

We place certain restrictions on 2nfa’s.
We consider only 2nfa’s whose input tapes are circular.

We say that a 2nfa is simple If
1. its input tape Is circular,
2. Its tape head sweeps the tape, and

3. It makes nondeterministic choices only at the right
endmarker ($).

In what follows, we will consider only a family of
constant-branching simple 2nfa’s.



Alternating Finite Automata (revisited)

 Recall the definition of 2afa’s from Week 1.

/\\

/K\ /K\ /K\

rejecting
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Narrow 2afa’s

Instead of using width < f(n)

, We use computation
graphs.

Here, we further consider
additional restrictions on 2afa’s.

Let f:N—N be a function.

A family {M_},.\ Of 2afa’s is
called f(n)-narrow if, for any
neN and any input x of length n,
a {V,3}-leveled computation
graph of M, on input x has computation graph
width at most f(n) at every V-

level.




t(n)-Time Space Constructibility

 We need a restricted notion of space constructibility.
 Let t,f: N — N be functions.

« A function fis called t(n)-time space constructible <

there exists a DTM M with a write-only output tape that,
on each input 1", M produces 1™ on the output tape and
halts within O(t(n)) steps.

< ct(n) steps

input

tape 1" 1"
output 1)
tape




Characterizing PsubLIN by Narrow 2afa’s

Theorem: [Yamakami (2018)]

Lett,f: N > N* be s.t. tis log-space computable and { is
O(t(n))-time space constructible. Let L and m be a
language over alphabet £ and a log-space size parameter.

1.

(L,m)eTIME,SPACE(t(|x]),£(m(x))), then there are two
constants c,,c,>0 and an L-uniform family {M,, ;},, ,cn Of
c,t(m(x))-narrow 2afa’s such that each M, ,, has at most
c,t(|x|)¥(m(x)) states and computes L(x) on all inputs
satisfying m(x)=n.

. If there are constants c,,c,>0 and an L-uniform family

{My, thren OF Cot(m(x))-narrow 2afa’s such that each M,
has at most c,t(|x|)¥(m(x)) states and computes L(x) on
all inputs satisfying m(x)=n, then (L,m) belongs to
TIME,SPACE(t(|x])¥(m(x)),2(m(x))+log(t(|x|))+log|x|).



State Complexity Bounds

* The following assertion is an easy adaptation of Barnes
et al.’s (1998) algorithm for DSTCON on top of the
previous theorem.

e Proposition: [Yamakami (2018)]

Every L-uniform family of constant-branching O(nlog(n))-
state simple 2nfa’s can be converted into another L-
uniform family of equivalent O(n-¢VlesM)-narrow 2afa’s
with n®1-states for a certain constant ¢>0.

e (Open Problem)

Is it possible to reduce the factor ni-c"logm to ne for a
certain constant e with 0 <eg < 17



Characterization of LSH: Uniform Case

 Theorem: [Yamakami (2018)]
The following statements are logically equivalent.
1. LSH fails.

2. For any two constants ¢c>0 and k>1, there exists a
constant e€[0,1) such that every L-uniform family of
constant-branching simple 2nfa’s of state at most
cnlogk(n) can be converted into another L-uniform
family of equivalent O(n?)-narrow 2afa’s with n°@) states.

3. For any constant ¢c>0, there exists a constant e<[0,1)
and a function feFL such that, on inputs of an encoding
of c-branching simple n-state 2nfa, f produces another
encoding of equivalent O(n¢)-narrow 2afa of n°) states.



Direct Implications

 The previous theorem implies the following.

 If we need to prove the validity of LSH, it suffices to
show that the state complexity of transforming an L-
uniform family of constant-branching simple 2afa’s of
O(n-polylog(n)) states to an L-uniform family of
equivalent O(n¢)-narrow 2afa’s is super-polynomial in n
for any e€[0,1).



Non-Uniform Linear Space Hypothesis

Next, we give a state-complexity characterization of a
non-uniform version of the linear space hypothesis.

In 2018, Yamakami introduced the non-uniform version
of LSH.

Similarly to P/poly and L/poly, we can define a non-
uniform version of PsubLIN (denoted by PsubLIN/poly)
by supplementing polynomial-size advice to underlying
DTMs with a read-only advice tape.

The non-uniform LSH states that (2SAT3,m,,,) does not
belong to PsubLIN/poly.



Characterization of LSH: Non-Uniform Case

 We also obtain a non-uniform version of the previous
characterization of LSH.

 Theorem: [Yamakami (2018)]
The following statements are logically equivalent.
1. The non-uniform LSH fails.

2. For any constant ¢c>0, there exists a constant e<[0,1)
such that every c-branching simple n-state 2nfa can
be converted into an equivalent O(n?)-narrow 2afa of
n°d) states.



L

Open Problems

The following is a list of important open problems.

Is it possible to reduce the factor ni-c"log(m to ne for a
certain constant e with 0 < e < 17

Prove or disprove that LSH is true.
Find a different characterization of LSH.

Find natural applications of the characterization of LSH
In terms of state complexity.




V. Type-2 Computability

Historical Account

~unctionals and Relations
~unction-Oracle Turing Machines
Type-2 Computation

Power of Generic Oracles

Close Connection to Generic Oracles
The Polynomial Hierarchy of Type 2
Hierarchy Theorem

Regular/lrregular Complexity Classes




Historical Account

Constable (1973) and Mehlhorn (1973,1976) initiated a
functional approach to the study on the polynomial-time
computabllity.

Townsend (1982,1990) reformulated the polynomial-time
computability of type-2 functionals.

Buss (1986) also considered polynomial-time
computability of type-2 functionals.

In a slightly different way, Ko (1985) considered
complexity-bounded class of operators.

Yamakami (1995) further developed a theory of type-2
functionals and also introduced a type-2 analogue of the
polynomial-time hierarchy, extending Townsend’s
framework.



Functionals and Relations

o = N (the set of all non-negative integers)

*m = the set of all total functions from » to ®

Kl = ok x (°0)  E.g., 320 =0 X ® X ® X °0 X °®

(m,a) e o < me ok and a € (“o)

A partial functional F of rank (k,l) satisfies that
Dom(F) c kKlo and Im(F) c o.

A total functional F of rank (k,l) satisfies that
Dom(F) = %lo and Im(F) c .

A relation R of rank (k,l) is a subset of Xl®. (namely, R ¢
Klm.)



Function-Oracle Turing Machines

 Here, we use a function f as an oracle, which returns
values (not limited to YES or NO) of f when a query is
iInvoked, directly to a designated tape, called a query tape.

1.

An underlying oracle Turing machine M wants to makes
a query to the function oracle f by writing a query word
Z on the query tape.

M enters a query state gqey-

The query word z is sent to the function oracle f, the
tape automatically becomes empty (i.e., blank), and the
tape head of this tape jumps to the start cell.

The function oracle f returns f(z) by writing it down onto
the query tape and changes M’s inner state to q_cer-

M can now read some symbols of f(z) by moving its
tape head back and forth.

See the next slide!




Query-and-Answer Mechanism

query tape

CIquery

blank

qanswer

i)

function
oracle

)




Type-2 Computation

o A partial functional F is polynomial-time computable if it
IS computed by a certain function-oracle Turing machine
with an output tape.

* (*) When a function oracle returns an extremely long bits
of an answer to a query, a time-bounded machine may
not read all bits of this answer.

« Arelation R is called polynomial-time computable if there
exists a deterministic function-oracle Turing machine that
recognizes R.



Functional Classes Ptf and Ptf(A)

We define a functional class, called Ptf.

Ptf = class of all polynomial-time computable total
functionals

Let A be any language.

Ptf(A) = class of all functionals computed by polynomial-
time function-oracle Turing machines with output tapes
using oracle A

Let C be any family of languages (or a complexity class).

Let Ptf(C) = U, Ptf(A).



The Polynomial Hierarchy of Type 2

 We define the polynomial(-time) hierarch of type 2.
[Townsend (1982,1990), Yamakami (1995)]

Ag’p = Zg’p = Hg’p = class of polynomial-time
Dé),p: Ptf computable relations

2o ={(3x<F(m,a))R(x,m,a) |R eI}, F eq,""}
5 ={(vx<F(ma))R(x,ma) |ReZ® F eq’}
0= Ptf [Zﬁ’p)

Ak ={R | zs €1} ﬂ

4



Hierarchy Theorem

Townsend (1990) proved the following.

Hierarchy Theorem: for all n>1,
[ A O, 0, 0,

AP #Z P TP
1 0, 0,

Oy #

. NP 0,p P

Next, we define A, = {R | ¥ € Ptf (Zk_l UXy )}
This is compared to A, P ={ R | yrePtf(Z,°P) }.

Proposition: [Yamakami (1995)] for all n>1,
AP =3P & ADP = AP

n+1

SP=TIP <A, <P NIT)P

n+l —

N

D




Relativization and Type-2 Computation

Let C be any “typical” type-1 complexity class.

Let C be any “natural” type-2 counterpart, based on the
same resource-bounds used to define C, and for each
oracle A, a natural relativized version CA.

For example, we can take the following classes as C:
P, NP, BPP, NPnco-NP, etc.
Given a type-2 relation R and an oracle A, we define the
type-1 relation R[A] as
R[A] (X) = R(x,A)
for every type-1 object x.
For a class C of type-2 relations, let C[A]={R[A]|R C}



Regular Complexity Classes

 Let C be any “typical” type-1 complexity class and let

Cc be any “natural” type-2 counterpart, based on the
same resource-bounds used to define C, and for each
oracle A, a natural relativized version CA.

[- We say that C is regular if, for all A, CA=C:[A] }

e (Claim)
P and NP are regular.
Namely, for any oracle A, it follows that

P = P[A]
NP* = NP [A]




Irregular Complexity Classes

o A complexity class C that is not regular is called irregular.
e Question: Is there any irregular complexity class?

e Proposition: [Cook-Impagliazzo-Yamakami (1997)]
NP~co-NP and BPP are irregular.

That Is, there exist oracles A, B such that
NP* A co-NP* = (Wm co-@)[A]
BPP® = BPP [B]



Close Connection to Generic Oracles

Recall the notion of generic oracle from Week 4.

There Is a close connection between type-2
computability and generic oracle.

Let C and D be classes of computable type-2 relations.
Assume that C and D are closed under <P _-reductions.
For any generic oracle G,

C c D < C[G] c D[G]




Power of Generic Oracles

Recall that there are oracles A and B for which
NP* A co-NP* = (Wm co-@)[A]
BPP® = BPP [B]
However, we can show the following for generic oracles.
Proposition: [Cook-Impagliazzo-Yamakami (1997)]
For any generic oracle G,
NP® ~co-NP°® = (W N co-ﬁ) [G]
BPP® = BPP [G]



Open Problems

Develop a theory of computability of higher types.
Find more complexity classes C such that
1. there is an oracle A satisfying
C*=C [A]
2. for all generic oracle G,
C®=C [G]

N

D







= ..ﬂ;ﬁm happy to take your question!
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