Type-2 Computability, Multi-Valued
Functions, and State Complexity™®

Synopsis.

e Multi-Valued Partial CFL Functions

e CFLMV Hierarchy

e State Complexity for LSH

e Function-Oracle Turing Machines

* Type-2 Computability May 14, 2018. 23:59

Week 1:
Week 2:
Week 3:
Week 4:
Week 5:
Week 6:
Week 7:
Week 8:
Week 9:
Week 10:
Week 11:
Week 12:
Week 13:
Week 14:
Week 15:
Week 16:

Course Schedule: 16 Weeks

Subject to Change

Basic Computation Models
NP-Completeness, Probabilistic and Counting Complexity Classes
Space Complexity and the Linear Space Hypothesis
Relativizations and Hierarchies
Structural Properties by Finite Automata
Stype-2 Computability, Multi-Valued Functions, and State Complexity
Cryptographic Concepts for Finite Automata
Constraint Satisfaction Problems
Combinatorial Optimization Problems
Average-Case Complexity
Basics of Quantum Information
BQP, NQP, Quantum NP, and Quantum Finite Automata
Quantum State Complexity and Advice
Quantum Cryptographic Systems
Quantum Interactive Proofs
Final Evaluation Day (no lecture)

YouTube Videos

e This lecture series is based on numerous papers of T.
Yamakami. He gave conference talks (in English) and
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.

« Use the following keywords to find a playlist of those
videos.

 YouTube search keywords:
Tomoyuki Yamakami conference invited talk playlist

¥ Conference Talk at
The 11th
International
Workshop on
Reachability

i

M

Problems (RP 2017)

& Egham, UK

Conference talk video

Main References by T. Yamakami | jias

S K. Tadaki, T. Yamakami, J. C. H. Lin. Theory of one-ta
linear-time Turing machines. Theor. Comput. Sci. 411(1): 22-
43 (2010)

S T. Yamakami. Not all multi-valued partial CFL functions are
refined by single-valued functions (extended abstract). In
Proc. of IFIP TCS 2014, LNCS, vol. 8705, pp. 136-150 (2014)

S T. Yamakami. Structural complexity of multi-valued partial
functions computed by nondeterministic pushdown automata
(extended abstract). ICTCS 2014, CEUR Workshop
Proceedings 1231, CEUR-WS.org 2014, pp. 225-236 (2014)

S T. Yamakami. State complexity characterizations of
parameterized degree-bounded graph connectivity, sub-
linear-bounded computation, and the linear space hypothesis.
Preprint, March 2018. To appear shortly at arXiv.org.

2 (Continued to the next slide)

Main References by T. Yamakami || jSis

S T. Yamakami. Structural properties for feasibly computable
classes of type two. Mathematical Systems Theory 25(3):
177-201 (1992)

S T. Yamakami. Feasible computability and resource bounded
topology. Inf. Comput. 116(2): 214-230 (1995)

S S. A. Cook, R. Impagliazzo, and T. Yamakami. A tight
relationship between generic oracles and type-2 complexity
Theory. Inf. Comput. 137(2): 159-170 (1997)

|. Multi-Valued Partial Functions

Multi-Valued Partial Functions
Wirite-Only Output Tapes

Valid (or Legitimate) Outputs
Multi-Valued Partial CEL Functions
CELAco-CEL vs. CELSV

Functional Pumping Lemma
Function Class NFAMV

Boolean Operators

Basic Properties

Multi-Valued Partial Functions

A (standard) function is designed to produce only one
output value per each input.

We can allow a function to output more than one value
simultaneously, or even allow it to output no value at all.

A total function is a standard function f such that, for any
Input X, its output f(x) always exists.

By contrast, a partial function means that, the outputs of the
function are not guaranteed to exist for all inputs.

A multi-valued function is called single valued Iif, for any
Input x, the number of different output values in f(x) is < 1.

When a function produces no output value on a certain
Input X, we treat f(x) to be undefined.

Generally, we call such a function a multi-valued partial
function (where “partial” is meant for undefined values).

Early Studies

* Firstly, we consider how to compute such a function
using 1npda. Those functions are called CFL functions.

e CFL functions were first studied by Evey (1963) and
Fisher (1963).

Write-Only Output Tapes

To compute a function, we need to equip a 1npda (also called
a transducer) with an extra write-only output tape, along which

Its tape head moves rightward whenever it writes a non-blank
symbol.

Inner state g € Q

— One-way
T | M ‘

ﬂ ¢ c $

Infinite read-only input tape

—— Head direction: one-way

| .

Stack

Start cell Infinite write-only output tape

How to Produce Multi-Values

 We explain how a 1npda produces outcomes of a multi-
valued partial function f.

K We say that a 1npda M computes a multi-valued partiah
function f: Z,*— 0 (2,*) If M satisfies the following:

1. for any xedom(f), M produces exactly all values in
f(x) along accepting computation paths, and

2. for any string xeZ,;*-dom(f), M rejects the input x (in
\ which all computation paths are rejecting). /

« Namely, a 1npda M with a write-only output tape can
compute a multi-valued partial function f: X,*— ¢ (2,*)
defined by

f(x) ={y | M(x) outputs y }.

Valid (or Legitimate) Outputs

A 1npda produces valid outcomes only along accepting
computation paths.

npda M input X
computation computation
paths valid paths
outputs
Y1 Yo Y3 outputs Yy Yo Yz Ys Y5
~ Y ~~ ' ~
rejected accepted all rejected

M(x) outputs { y,, Vs } M(X) outputs &

Formal Definition

A 1npda M = (Q,Z,{¢,3},0,I,6,00,Z0,Qqcc: Qrey) With a write-only
output tape is a standard 1npda plus a write-only output tape
and a special transition function ¢ of the form:

5:(Q-0Q..,)xEu{A)x0 - PQxT" x(I'u{i})

=32 U { C, 9 } Qhait = QaccU Qrej
e Termination condition of M:

« All computation paths (both accepting and rejecting)
should terminate (reaching halting states) within O(n)

time.
 ACC,,(x) = set of accepting computation %hs of M on x

This is because all context-free languages
are recognized by O(n)-time npda’s.

Multi-Valued Partial CFL Functions

Function Classes %‘02@?2232;
CFLMV = class of all multi-valued

partial functions computed by 1npda’s CFLMV(2)
CFLSV = class of all single-valued

partial functions in CFLMV CELMV
CFLSV, = class of all total functions in

CFLSV

CFLMV(2) = class of all functions g CFLSV
defined as g(x)=f,(x) n f,(x) for f.,f,

CFLMV CFLSV,

CFLMV, CFLSV, and CFLSV, are
analogues of NPMV, NPSV, and NPSV,,
respectively.

1-FLIN

Examples: PAL

Here, we take a look at two
simple examples.

PAL(W) ={x|3du,v[w=uxv]Aa
x =x?} forallwe{0,1 }*

l.e., PAL(w) outputs all possible
palindrome blocks in w.

The right-hand side illustration
shows how to compute PAL.

Thus, PAL is in CFLMV,. (total
function)

input
Guess (i,)) w
with i=|u| A
j=n-|v]
1,2 ((1,2) (n,n)
Find x
Check X' e X
if xR =x
yes yes **** no
If yes,
output x

X X' =t reject

Examples: IP

Let © be the binary inner
product.

IP,(X) ={z|[xI=|z|, x©Oz =1
(mod 2) } forall xe{ 0,1 }*.

This is different from the
language IP,(x) = { xz | |X|=|z],
xROz =1 (mod 2) }.

The right-hand side illustration
shows how to compute IP.,.

Thus, IP, is in CFLMV
(actually, in NFAMV).

See a later slide for NFAMV.

input
Guessz// \
on o1
Compute
Xz ‘
(mod 2)
O 1 TR O
If 1,
output z
reject 0O™11 -+ reject

CFLnco-CFL vs. CFLSV

CFLSV is closely related to the language family
CFLnco-CFL.

Recall that y, Is the characteristic function of a language
A.

Lemma: [Yamakami (2016)]
Let A be any language.
AeCFLNnco-CFL < y,eCFLSV

We can replace CFLSV by CFLSV,and CFLMV.

Functional Pumping Lemma for CFLMV

e« Pumping Lemma for CFLMV: [Yamakami (2014)]

Let X and I" be any alphabets and let f:Z2*— o (I'*) be any
function in CFLMV. There exist 3 numbers m € N* and
c,d e Ns.t.any w €X* with |w| > m and any s < f(w) are
decomposed into w = uvxyz and s = abpqgr s.t.

(1) Juxy| <m
(2) lvybg| =1
(3) |bg| £ cm+d and
(4) ab'pg'r e f(uv'xy'z).

If f Is further length-preserving, then
(5) v = [b] and |y| = |q|.

Moreover, (1)-(2) can be replaced by
(1) |bg| > 1.

Function Class NFAMV

o Similarly to CFLMV, we define the function class NFAMV
as follows.

* Letfbe any multi-valued partial function.

/- fisin NFAMV < there is a 1nfa M equipped with a h
write-only output tape such that

for every xedom(f), M produces all elements in f(x)
along accepting computation paths, and

_ for every xgdom(f), M rejects the input x. -

e (Claim) 1-FLIN ¢ NFAMV c CFLMV.

Conjunction/Disjunction of Functions

* We define conjunction/disjunction of function classes.

D.anéugitgn of Fand G 20,70,
< 3dg, € F3g, € G s.t. VX[f;(X) =g,(X)Ng,(X) |

U Disjunction of F and G
* f, e FVG h=0:v0,

< 3dg, € F3g, € G s.t. VX[f,(X) =g,(x)Ug,(X) |

Simple Examples of fvg and fAg

 Here, we present two simple examples.

e Consider the following f and g.
> f(x) ={a"b" | n=|x| }
> g(x) ={a"b®" | n=|x| }
> (fvg)(x)={a"", a"b*" | n=[x| }

e Consider the following f and g.
» f(x) ={a"b"c™ | n=|x|, m>0 }
» g(x) ={am™b"c" | n=|x|, m>0 }
» (fAg)x)={ab"c" | n=|x| }

Function Classes CFLMV(K)

 We extend CFLMV using “conjunction” operator.
1. CFLMV(1) = CFLMV
2. CFLMV(k+1) = CFLMV(k) A CFLMV
3. CFLSV(k) ={f e CFLMV(K) | fis single-valued }

 Lemma: [Yamakami (2014)]

1)
2)

3)

CFLMV(max{k,m}) ¢ CFLMV(k)vCFLMV(m) c
CFLMV/(km).

CFLMV(max{k,m}) ¢ CFLMV(k)ACFLMV(m) c
CFLMV/(k+m).

CFLSV(K) # CFLSV(k+1) for any k>1.

Difference/Complement of Functions

 We define the difference/complement of function classes.

1 Difference between F and G
- feF®G < 39, € F3g, € G s.t. VX[f(X) = g;(X) — g5(X)]
set difference
1 Complement of F
« feco-F
< 3g € F dp: linear polynomial 3n,: constant s.t.

v(x,y) with [x|2ng [yef(x) <> |yl<p(|x]) A yeg(x)]
X

// \ f(x) = 200D - g(x)
g(x): w, W, W y<p(IX|)

Boolean Operations

Using two operators © and co-, we define the following
function classes.

e co-CFLMV (complement)

e CFLMV © CFLMV (difference)
e CFLMV A co-CFLMV (conjunction with complement)

Recall IP,(x) ={z | [x|=|z|, x®z =1 (mod 2) } for all xe{
0,1}~

Define IP¢(x) ={ z | [x|>|z], x®z0X2l= 0 (mod 2) } for
any X.

It follows that IP¢ € co-CFLMV; since IP, e CFLMV, and
IPc(x) = <X — IP,(x) for any x.

Basic Properties

* The following basic properties hold.

* Proposition: [Yamakami (2014)]

I N

. C0-(co-CFLMV) = CFLMV
. c0-CFLMV = NFAMV © CFLMV

CFLMV © CFLMV = CFLMV A co-CFLMV
CFLMV = co-CFLMV
CFLMV,# co-CFLMV;

ll. Refinement of Functions

Refinement of Functions

Refinement Separation: CELMV
1-FLIN(partial), 1 NLINMV, and I-NLINSV
Refinement of 1-NLINMV

Refinement of Functions

The notion of refinement is more useful than a standard
set inclusion, because, e.g., CFLSV, # CFLSV = CFLMV
holds.
Let f,g be any two functions from X* to ¢ (I'™*).
g is arefinement of f (notationally, fE, g)
& VXeX*
1109 = < g3 =0 Refinement is

2. g(x) c f(x) (as set inclusion). also known as
uniformization.

For two function classes F and G,
FE G < VieF3geG[fE 9]

NOTE: FE€ G = FC,.G. &

N

Example: maxPAL

Let us see an example of refinement.

Recall PAL(w) ={x|3u,v[w=uxv]Ax=xR}

For each we{ 0,1 }*, we define
maxPAL(w) = maximum element in PAL(w),

where “maximum” is according to a dictionary order.

maxPAL is a single-valued total function.

(Claim) PAL £, maxPAL (PAL is refined by maxPAL)

4 Proof: This is because dom(PAL) = dom(maxPAL) and
maxPAL(x) < PAL(x) for all x.

Refinement Separation: CFLMV |

Let us consider the refinement separation between CFLMV
and CFLSV.

Actually, we can show a much stronger separation as
explained below.

CFL2V is the collection of all partial functions f in CFLMV
such that the number of f's output values on each input
must be at most 2 (called 2-valued functions).

The machine 1npda M is called unambiguous if, for any
Input x and any output value y, M has exactly one
accepting computation path producing y from x.

UCFL2V is the collection of all 2-valued partial functions
computed by unambiguous 1npda’s.

(Claim) UCFL2V c CFL2V c CFLMV.

Refinement Separation: CFLMV I

 Here, we claim the desired separation result.

e Theorem: [Yamakami (2014)]
UCFL2V I CFLSV.

 The above theorem implies that CFLMV Z . CFLSV.

L Proof Sketch:

« It suffices to define an example function, say, h; as in
the next slide and prove the following 2 claims.

1. hy e UCFL2V.
2. hs has no refinement in CFLSV.

Refinement Separation: CFLMV |

* The desired function h, is defined as follows.

L:{Xl#XZ#X3|X1,X2’X3 E{O’l}*}
((i,j)li,jeN"1<i< j<3]

|3

Ly ={W 3%, X, X,[w = X, # X, # %, € L1,3(i, j) € LI =x;1}
() = 0130,) el xt =x;} if w=x#x,#x,¢el,
%) If we L.

QED

e For example,
v h;(001#100#000) = { 0112} 001% =100

v h,(001#100#001) = { 0112, 0213} | 001R = 100, 100R = 001

v hy(111#011#101) = &

1-FLIN(partial), 1-NLINMV, and 1-NLINSV

e Recall 1-FLIN from Week 1.

* Here, we relax the function condition of 1-FLIN to obtain 1-
FLIN(partial), which is composed of all partial functions
computable by 1DTM in linear time with no extra output.

* In other words, If we restrict all partial functions in 1-
FLIN(partial) to be total, we immediately obtain 1-FLIN.
 Next, we define 1-NLINMV and 1-NLINSV.
K A multi-valued partial function f: X,*— o (Z,*) IS In 1-NLINI\/IW
If there exists a INTM M such that

1. for any string xedom(f), M produces exactly all values
In f(X) along accepting computation paths, and

2. for any string xeX,*-dom(f), M rejects the input x.
3. for any input xeX,*, M halts within O(|x|) time in the

_ strong sense. -/

Refinements of 1-NLINMV

1-NLINSV is the collection of all single-
valued partial functions in 1-NLINMV.

1-NLINSV, consists of all total functions
In 1-NLINSV.

A single-valued function f: £, *—>%.* Is 1-NLINMV

length-preserving if, for any input x €
Z.%, [f(X)| = |x| holds.

Containment
& separation

1-NLINSV
Theorem: [Tadaki-Yamakami-Lin
(2010)]
Every length-preserving 1-NLINMV 1-FLIN(partial)
function has a 1-FLIN(partial)
refinement.
1-FLIN

(*) This will be used for one-way
functions in Week 7.

lIl. The CFLMV Hierarchy

The CEFL Hierarchy

The CELMV Hierarechy

Refinement Separations and Collapses
The //-Advice Operator

Basic Properties

Functional Composition

Separations

The CFL Hierarchy (revisited)

CSL
4 <4 proper inclusion
DSPACE(O(n)) p P :
<— inclusion
TCl / CFLH,\ <\~ noinclusion
74 4 :
NC?2 HépLs ZC.FL?)
T \
ACO(CFL) T T CFL(w)
CFL CFL CFL,,
= SACL 4)
. | BHCFL ~___ CEL _CFL®)
PCFL + CFL(w) m
NL I CFEL A = CFLpyp
f A CFL(3) t CFL/n
L BPCFL CEL 4 CFL, S T
T X 2 CFL(2) = CFLypy
ACO(REG) / \ M REG/n
- 1
B NE co-CFL = TTCFL, >CFL, = CFL J

N

~ REG —

The CFLMV Hierarchy

Similarly to CFLA (relative to A), we can relativize CFLMV
to oracle A and obtain CFLMVA by attaching query tapes to
underlying 1npda’s with output tapes.

We then define the CFLMV hierarch as follows.
LMV =CFLMV *; "MV = CFLMV

k+1

Similarly, we define the CFLSV hierarchy by setting:
SV ={f eX, "MV | f is single-valued }

Theorem: [Yamakami (2014)] (k>1)
1. XCFLSV C ZCFL MV,

—re
2. ZCFLKSV — ZCFLk+1SV — 2CFLk — ZCFLk+1

3. SCFL = yCFL . — ¥CFL Sy=yCFL SV

Refinement Separations and Collapses
We have seen CFLMV £ . CFLSV. This is equivalent to
SCFLMV . SCFL SV,

(Open Problem) Is Z¢FL MV £ ¥¢FL SV for each k>27?

Related to this question, we obtain the following.

Lemma: [Yamakami (2014)] (k>1)
» XCFL MV E [ZCFL L SV

Theorem: [Yamakami (2014)] (k>2)
> ZCFLk = ZCFLk+1 = z:CFLk+1MV L ref z:CFLk+1SV'

Corollary: [Yamakami (2014)] (k>2)
» XFLMV E [ZCFL SV = PH = %P,

The //-Advice Operator

o Kobler and Thierauf (1994) introduced the //-advice
operator, which is a natural extension of the /-advice

operator (used to define P/poly).
« We adapt this operator to apply to automata.

e Let F be a class of multi-valued functions.

a A language L is in REG//F < there are a language B e\
REG and a function h € F such that, for any x,

XelL < dyeh(x) s.t. |:X:|€B
N ’ Y,

* Analogously, CFL//F is defined using CFL instead of
REG.

Basic Properties

 We list basic properties of the //-advice operator.

e Proposition: [Yamakami (2014)]
1. REG//INFASV, ¢ CFL and CFL ¢ REG//NFAMV.
2. REG/INFASV, = co-(REG//NFASV,)
3. REG//INFAMV = co-(REG//INFAMV)
4. CFL n co-CFL # REG//CFLSV,

e (*) The last claim is compared to NP n co-NP = P//INPSV,.
[KObler-Thierauf (1994)]

e Proposition: [Yamakami (2014)]
> YCFL A TICFL = REG//ZCFL, SV, for any k>3.

Functional Composition

Let f,g be any multi-valued partial functions.
The functional composition f °g of f and g is defined as

(fea))={J, 0, T

for every x.

For two function classes F and G, a new function class
F° G Is defined as

FoG:{fog|feF,geG}
Let

= CFLSV(® = CFLSV.
s CFLSVk*) = CFLSV ° CFLSV® for each k>1.

Separations

 We show a simple separation result.

Proposition: [Yamakami (2014)]

1. CFLSV, # CFLSV®),
2. The same holds for CFLSV and CFLMV.

L Proof Sketch:

Define fy,,x(x) = { x#x } for any xe{0,1}*.
Clearly, fy,,.(X) € CFLSV®),

However, If fy,4(x) € CFLSV,, then the language DUP,

= { x#x | xe{0,1}* } must belong to CFL.
Since DUP,¢CFL, we conclude fy,,,(X) ¢ CFLSV.,.

QED

OptCFL

* Krentel (1988) introduced a function class OptP, which
consists of the optimal cost functions of NP optimization

problems.

o Similarly, Yamakami (2014) considered its pushdown-
automaton version, which is called OptCFL.

 We assume the standard lexicographic order on Z*.

7o A function f: * — X*is in OptCFL < there exists a h
1npda M with a write-only output tape s.t.

f(x) =opt{y eX* | M(x) produces y },
where opt € { max, min }. y

o

Open Problems

. Prove that ¢t MV = ZCFL MV for all k>1.

 Note that proving that X¢F-, MV = X¢FL MV is much
more difficult because this implies =P, = 2P, ,,, as
discussed in Week 4

. Prove that ¢FL, SV IZ ZCFL MV for all k>2.
. Prove that OptCFL € ¢ L SV, or OptCFL & X¢FL.SV..

I\V. State Complexity Characterizations

State Complexity of Automata Families
L-Uniform Families of Finite Autemata
State Complexity off Transformation
Characterization of NLZL/poly.
Constant-Branching Simple 2nfa’s
Characterizing PSubLIN by Narrow 2afa’s
Non-Uniform Linear Space Hypothesis
Characterization of LSH

State Complexity of Automata Families

Let M = (Q,Z,6,00,Qqcc: Qrey) DE any finite automaton.

The state complexity of M is st(M) = |Q| (the number of
Inner states).

We consider a family {M_},.\ of finite automata, each M,
of which is of the form (Q,,,X,,6,,don,Qacen Qrejn) -

We often take the same input alphabet X, = X for all n.

Note that the state complexity of this family {M,},.x
becomes a function st(n) = |Q,| in length n.

L-Uniform Families of Finite Automata

We consider a family of finite automata, each of which
can be constructed by a single production algorithm.

Let {M,},.n D€ any family of finite automata, each M, of
which is of the form (Q,,,2,,,8,,,00n: Qacc,nsQrejn)-

This family {M,}.. IS called L-uniform if there exists a
log-space DTM A with a write-only output tape such that,
for any length neN, A takes input of the form 1" and
produces an encoding of M, on the output tape.

(*) In comparison, we will discuss uniform families of
Boolean circuits in Week 8.

Equivalent Finite Automata

We define the notion of equivalence between two finite
automata.

Let M and N be two finite automata (of possibly different
types).

We say that M is equivalent to N if L(M) = L(N).

That is, M agrees with N on all inputs; I.e., for every input
string X,

M accepts x <> N accepts x.
Two families {M,},.n and {N,},.y Of finite automata are

said to be equivalent if, for any neN, M, and N,, are
equivalent.

State Complexity of Transformation

e Consider two different types of finite automata: type 1
and type 2.

 We say that the state complexity of transforming type-1
automata to type-2 automata is t(n) if, for any n-state
type-1 automaton M, there exists another type-2
automaton N such that (i) N has at most t(n) states and
(i) N Is equivalent to M.

Example of Transformation

e Consider the following .a .b
example. @ € 2 e

e Fig.lis a lnfawith 3
states, and Fig.2 is its
equivalent 1dfa with 4
states.

Characterization of NLcL/poly

Recall the non-uniform class L/poly from Week 3.
Note that we do not know whether or not NLcL/poly.

Kapoutsis (2014) and Kapoutsis and Pighizzini (2015) gave
a new characterization of NLcL/poly in terms of state-
complexity of transforming 2nfa’s to 2dfa’s.

(Claim) The following statements are logically equivalent.

1. NLcL/poly.

2. There exists a polynomial p such that, for any n-state
2nfa N, there is another 2dfa M of at most p(n) states
such that M agrees with N on all inputs of length < n.

Note that a straightforward textbook algorithm transforms
an n-state 2nfa into an equivalent 2dfa of 2°(" states.

The Linear Space Hypothesis (LSH) (revisited)

 Recall the linear space hypothesis (LSH) from Week 3.

 LSH (or LSH for 2SAT,) states:

There Is no deterministic algorithm that solves 2SAT; in
time p(|x]) using at most m,,,(x)¢I(|x|) space on instance
X for a certain polynomial p, a certain polylog function |,
and a certain constant s€[0,1).

 We can replace (2SAT;,m,) by (3DSTCON,m,,,),
where m,.((G,s,t)) = the number of vertices in G.

 Here, we want to give a state complexity
characterization of LSH.

Circular Tapes and Sweeping Moves

 When both ends of a tape are glued together, we call
this tape a circular tape.

A tape head is said to sweep a tape if the tape head

moves to the right from ¢ to $. In this case, the tape
head is called sweeping.

circular tape

v

sweeping

Constant Branching

Letc € N™.

A 2nfa is c-branching if it makes only at most c
nondeterministic choices at every step.

In particular, every 2dfa is 1-branching.

A family {M_},.y Of 2nfa’s is called constant-branching if
there exists a constant c € N* such that every M, is c-
branching.

2-branching 3-branching

Constant-Branching Simple 2nfa’s

We place certain restrictions on 2nfa’s.
We consider only 2nfa’s whose input tapes are circular.

We say that a 2nfa is simple If
1. its input tape Is circular,
2. Its tape head sweeps the tape, and

3. It makes nondeterministic choices only at the right
endmarker ($).

In what follows, we will consider only a family of
constant-branching simple 2nfa’s.

Alternating Finite Automata (revisited)

 Recall the definition of 2afa’s from Week 1.

/\\

/K\ /K\ /K\

rejecting
Comptt t computation tre

Narrow 2afa’s

Instead of using width < f(n)

, We use computation
graphs.

Here, we further consider
additional restrictions on 2afa’s.

Let f:N—N be a function.

A family {M_},.\ Of 2afa’s is
called f(n)-narrow if, for any
neN and any input x of length n,
a {V,3}-leveled computation
graph of M, on input x has computation graph
width at most f(n) at every V-

level.

t(n)-Time Space Constructibility

 We need a restricted notion of space constructibility.
 Let t,f: N — N be functions.

« A function fis called t(n)-time space constructible <

there exists a DTM M with a write-only output tape that,
on each input 1", M produces 1™ on the output tape and
halts within O(t(n)) steps.

< ct(n) steps

input

tape 1" 1"
output 1)
tape

Characterizing PsubLIN by Narrow 2afa’s

Theorem: [Yamakami (2018)]

Lett,f: N > N* be s.t. tis log-space computable and { is
O(t(n))-time space constructible. Let L and m be a
language over alphabet £ and a log-space size parameter.

1.

(L,m)eTIME,SPACE(t(|x]),£(m(x))), then there are two
constants c,,c,>0 and an L-uniform family {M,, ;},, ,cn Of
c,t(m(x))-narrow 2afa’s such that each M, ,, has at most
c,t(|x|)¥(m(x)) states and computes L(x) on all inputs
satisfying m(x)=n.

. If there are constants c,,c,>0 and an L-uniform family

{My, thren OF Cot(m(x))-narrow 2afa’s such that each M,
has at most c,t(|x|)¥(m(x)) states and computes L(x) on
all inputs satisfying m(x)=n, then (L,m) belongs to
TIME,SPACE(t(|x])¥(m(x)),2(m(x))+log(t(|x|))+log|x|).

State Complexity Bounds

* The following assertion is an easy adaptation of Barnes
et al.’s (1998) algorithm for DSTCON on top of the
previous theorem.

e Proposition: [Yamakami (2018)]

Every L-uniform family of constant-branching O(nlog(n))-
state simple 2nfa’s can be converted into another L-
uniform family of equivalent O(n-¢VlesM)-narrow 2afa’s
with n®1-states for a certain constant ¢>0.

e (Open Problem)

Is it possible to reduce the factor ni-c"logm to ne for a
certain constant e with 0 <eg < 17

Characterization of LSH: Uniform Case

 Theorem: [Yamakami (2018)]
The following statements are logically equivalent.
1. LSH fails.

2. For any two constants ¢c>0 and k>1, there exists a
constant e€[0,1) such that every L-uniform family of
constant-branching simple 2nfa’s of state at most
cnlogk(n) can be converted into another L-uniform
family of equivalent O(n?)-narrow 2afa’s with n°@) states.

3. For any constant ¢c>0, there exists a constant e<[0,1)
and a function feFL such that, on inputs of an encoding
of c-branching simple n-state 2nfa, f produces another
encoding of equivalent O(n¢)-narrow 2afa of n°) states.

Direct Implications

 The previous theorem implies the following.

 If we need to prove the validity of LSH, it suffices to
show that the state complexity of transforming an L-
uniform family of constant-branching simple 2afa’s of
O(n-polylog(n)) states to an L-uniform family of
equivalent O(n¢)-narrow 2afa’s is super-polynomial in n
for any e€[0,1).

Non-Uniform Linear Space Hypothesis

Next, we give a state-complexity characterization of a
non-uniform version of the linear space hypothesis.

In 2018, Yamakami introduced the non-uniform version
of LSH.

Similarly to P/poly and L/poly, we can define a non-
uniform version of PsubLIN (denoted by PsubLIN/poly)
by supplementing polynomial-size advice to underlying
DTMs with a read-only advice tape.

The non-uniform LSH states that (2SAT3,m,,,) does not
belong to PsubLIN/poly.

Characterization of LSH: Non-Uniform Case

 We also obtain a non-uniform version of the previous
characterization of LSH.

 Theorem: [Yamakami (2018)]
The following statements are logically equivalent.
1. The non-uniform LSH fails.

2. For any constant ¢c>0, there exists a constant e<[0,1)
such that every c-branching simple n-state 2nfa can
be converted into an equivalent O(n?)-narrow 2afa of
n°d) states.

L

Open Problems

The following is a list of important open problems.

Is it possible to reduce the factor ni-c"log(m to ne for a
certain constant e with 0 < e < 17

Prove or disprove that LSH is true.
Find a different characterization of LSH.

Find natural applications of the characterization of LSH
In terms of state complexity.

V. Type-2 Computability

Historical Account

~unctionals and Relations
~unction-Oracle Turing Machines
Type-2 Computation

Power of Generic Oracles

Close Connection to Generic Oracles
The Polynomial Hierarchy of Type 2
Hierarchy Theorem

Regular/lrregular Complexity Classes

Historical Account

Constable (1973) and Mehlhorn (1973,1976) initiated a
functional approach to the study on the polynomial-time
computabllity.

Townsend (1982,1990) reformulated the polynomial-time
computability of type-2 functionals.

Buss (1986) also considered polynomial-time
computability of type-2 functionals.

In a slightly different way, Ko (1985) considered
complexity-bounded class of operators.

Yamakami (1995) further developed a theory of type-2
functionals and also introduced a type-2 analogue of the
polynomial-time hierarchy, extending Townsend’s
framework.

Functionals and Relations

o = N (the set of all non-negative integers)

*m = the set of all total functions from » to ®

Kl = ok x (°0) E.g., 320 =0 X ® X ® X °0 X °®

(m,a) e o < me ok and a € (“o)

A partial functional F of rank (k,l) satisfies that
Dom(F) c kKlo and Im(F) c o.

A total functional F of rank (k,l) satisfies that
Dom(F) = %lo and Im(F) c .

A relation R of rank (k,l) is a subset of Xl®. (namely, R ¢
Klm.)

Function-Oracle Turing Machines

 Here, we use a function f as an oracle, which returns
values (not limited to YES or NO) of f when a query is
iInvoked, directly to a designated tape, called a query tape.

1.

An underlying oracle Turing machine M wants to makes
a query to the function oracle f by writing a query word
Z on the query tape.

M enters a query state gqey-

The query word z is sent to the function oracle f, the
tape automatically becomes empty (i.e., blank), and the
tape head of this tape jumps to the start cell.

The function oracle f returns f(z) by writing it down onto
the query tape and changes M’s inner state to q_cer-

M can now read some symbols of f(z) by moving its
tape head back and forth.

See the next slide!

Query-and-Answer Mechanism

query tape

CIquery

blank

qanswer

i)

function
oracle

)

Type-2 Computation

o A partial functional F is polynomial-time computable if it
IS computed by a certain function-oracle Turing machine
with an output tape.

* (*) When a function oracle returns an extremely long bits
of an answer to a query, a time-bounded machine may
not read all bits of this answer.

« Arelation R is called polynomial-time computable if there
exists a deterministic function-oracle Turing machine that
recognizes R.

Functional Classes Ptf and Ptf(A)

We define a functional class, called Ptf.

Ptf = class of all polynomial-time computable total
functionals

Let A be any language.

Ptf(A) = class of all functionals computed by polynomial-
time function-oracle Turing machines with output tapes
using oracle A

Let C be any family of languages (or a complexity class).

Let Ptf(C) = U, Ptf(A).

The Polynomial Hierarchy of Type 2

 We define the polynomial(-time) hierarch of type 2.
[Townsend (1982,1990), Yamakami (1995)]

Ag’p = Zg’p = Hg’p = class of polynomial-time
Dé),p: Ptf computable relations

2o ={(3x<F(m,a))R(x,m,a) |R eI}, F eq,""}
5 ={(vx<F(ma))R(x,ma) |ReZ® F eq’}
0= Ptf [Zﬁ’p)

Ak ={R | zs €1} ﬂ

4

Hierarchy Theorem

Townsend (1990) proved the following.

Hierarchy Theorem: for all n>1,
[A O, 0, 0,

AP #Z P TP
1 0, 0,

Oy #

. NP 0,p P

Next, we define A, = {R | ¥ € Ptf (Zk_l UXy)}
This is compared to A, P ={ R | yrePtf(Z,°P) }.

Proposition: [Yamakami (1995)] for all n>1,
AP =3P & ADP = AP

n+1

SP=TIP <A, <P NIT)P

n+l —

N

D

Relativization and Type-2 Computation

Let C be any “typical” type-1 complexity class.

Let C be any “natural” type-2 counterpart, based on the
same resource-bounds used to define C, and for each
oracle A, a natural relativized version CA.

For example, we can take the following classes as C:
P, NP, BPP, NPnco-NP, etc.
Given a type-2 relation R and an oracle A, we define the
type-1 relation R[A] as
R[A] (X) = R(x,A)
for every type-1 object x.
For a class C of type-2 relations, let C[A]={R[A]|R C}

Regular Complexity Classes

 Let C be any “typical” type-1 complexity class and let

Cc be any “natural” type-2 counterpart, based on the
same resource-bounds used to define C, and for each
oracle A, a natural relativized version CA.

[- We say that C is regular if, for all A, CA=C:[A] }

e (Claim)
P and NP are regular.
Namely, for any oracle A, it follows that

P = P[A]
NP* = NP [A]

Irregular Complexity Classes

o A complexity class C that is not regular is called irregular.
e Question: Is there any irregular complexity class?

e Proposition: [Cook-Impagliazzo-Yamakami (1997)]
NP~co-NP and BPP are irregular.

That Is, there exist oracles A, B such that
NP* A co-NP* = (Wm co-@)[A]
BPP® = BPP [B]

Close Connection to Generic Oracles

Recall the notion of generic oracle from Week 4.

There Is a close connection between type-2
computability and generic oracle.

Let C and D be classes of computable type-2 relations.
Assume that C and D are closed under <P _-reductions.
For any generic oracle G,

C c D < C[G] c D[G]

Power of Generic Oracles

Recall that there are oracles A and B for which
NP* A co-NP* = (Wm co-@)[A]
BPP® = BPP [B]
However, we can show the following for generic oracles.
Proposition: [Cook-Impagliazzo-Yamakami (1997)]
For any generic oracle G,
NP® ~co-NP°® = (W N co-ﬁ) [G]
BPP® = BPP [G]

Open Problems

Develop a theory of computability of higher types.
Find more complexity classes C such that
1. there is an oracle A satisfying
C*=C [A]
2. for all generic oracle G,
C®=C [G]

N

D

= ..ﬂ;ﬁm happy to take your question!

¥ e

—:___—.-.E"-‘-:‘-"
S —
— — - =
i

e
——

	6th Week
	Course Schedule: 16 Weeks
	YouTube Videos
	Main References by T. Yamakami I
	Main References by T. Yamakami II
	I. Multi-Valued Partial Functions
	Multi-Valued Partial Functions
	Early Studies
	Write-Only Output Tapes
	How to Produce Multi-Values
	Valid (or Legitimate) Outputs
	Formal Definition
	Multi-Valued Partial CFL Functions
	Examples: PAL
	Examples: IP2
	CFLco-CFL vs. CFLSV
	Functional Pumping Lemma for CFLMV
	Function Class NFAMV
	Conjunction/Disjunction of Functions
	Simple Examples of fg and fg
	Function Classes CFLMV(k)
	Difference/Complement of Functions
	Boolean Operations
	Basic Properties
	II. Refinement of Functions
	Refinement of Functions
	Example: maxPAL
	Refinement Separation: CFLMV I
	Refinement Separation: CFLMV II
	Refinement Separation: CFLMV III
	1-FLIN(partial), 1-NLINMV, and 1-NLINSV
	Refinements of 1-NLINMV
	III. The CFLMV Hierarchy
	Slide Number 34
	The CFLMV Hierarchy
	Refinement Separations and Collapses
	The //-Advice Operator
	Basic Properties
	Functional Composition
	Separations
	OptCFL
	Open Problems
	IV. State Complexity Characterizations
	State Complexity of Automata Families
	L-Uniform Families of Finite Automata
	Equivalent Finite Automata
	State Complexity of Transformation
	Example of Transformation
	Characterization of NLL/poly
	The Linear Space Hypothesis (LSH) (revisited)
	Circular Tapes and Sweeping Moves
	Constant Branching
	Constant-Branching Simple 2nfa’s
	Alternating Finite Automata (revisited)
	Narrow 2afa’s
	t(n)-Time Space Constructibility
	Characterizing PsubLIN by Narrow 2afa’s
	State Complexity Bounds
	Characterization of LSH: Uniform Case
	Direct Implications
	Non-Uniform Linear Space Hypothesis
	Characterization of LSH: Non-Uniform Case
	Open Problems
	V. Type-2 Computability
	Historical Account
	Functionals and Relations
	Function-Oracle Turing Machines
	Query-and-Answer Mechanism
	Type-2 Computation
	Functional Classes Ptf and Ptf(A)
	The Polynomial Hierarchy of Type 2
	Hierarchy Theorem
	Relativization and Type-2 Computation
	Regular Complexity Classes
	Irregular Complexity Classes
	Close Connection to Generic Oracles
	Power of Generic Oracles
	Open Problems
	Slide Number 79
	Slide Number 80
	Slide Number 81

