Cryptographic Concepts for Finite Automata

Synopsis.

- One-Way Functions and Hardcores
- Pseudorandom Generators
- Interactive Proof Systems
- Primeimmunity
Course Schedule: 16 Weeks
Subject to Change

- Week 1: Basic Computation Models
- Week 2: NP-Completeness, Probabilistic and Counting Complexity Classes
- Week 3: Space Complexity and the Linear Space Hypothesis
- Week 4: Relativizations and Hierarchies
- Week 5: Structural Properties by Finite Automata
- Week 6: Stype-2 Computability, Multi-Valued Functions, and State Complexity
- Week 7: Cryptographic Concepts for Finite Automata
- Week 8: Constraint Satisfaction Problems
- Week 9: Combinatorial Optimization Problems
- Week 10: Average-Case Complexity
- Week 11: Basics of Quantum Information
- Week 12: BQP, NQP, Quantum NP, and Quantum Finite Automata
- Week 13: Quantum State Complexity and Advice
- Week 14: Quantum Cryptographic Systems
- Week 15: Quantum Interactive Proofs
- Week 16: Final Evaluation Day (no lecture)
YouTube Videos

- This lecture series is based on numerous papers of T. Yamakami. He gave conference talks (in English) and invited talks (in English), some of which were video-recorded and uploaded to YouTube.
- Use the following keywords to find a playlist of those videos.
- **YouTube search keywords:**
 Tomoyuki Yamakami conference invited talk playlist

Conference talk video
Main References by T. Yamakami

I. One-Way Functions and Pseudorandom Generators

1. Cryptographic Primitives
2. (Strongly) One-Way Functions
3. Weakly One-Way Functions
4. Natural Candidates for OWFs
5. Pseudorandomness
6. Polynomial-Time Indistinguishability
7. Generating Pseudorandom Bits
8. Pseudorandom Generators
9. PEGs Versus OWFs
Cryptographic Primitives

- If we want to build a complex cryptographic system, it is necessary to break it into small building blocks.
- **Primitives** are such building blocks that support complex cryptographic systems.

- Zero-knowledge proof
- Oblivious transfer
- Bit commitment
- Hardcore predicate
- One-way function
- Pseudorandom generator

...Etc.
What are One-Way Functions?

- Yao (1982) first considered the notion of one-way function.
- Intuitively, a (strongly) one-way function $f(x)$ is
 - **Easy** to compute from its inputs x, but
 - **Hard** to invert from its images $y=f(x)$ (i.e., find $x' \in f^{-1}(y)$).

$$\text{Prob}_{x,A}[f(A(f(x),1^n)) = f(x)] < 1/p(n)$$ for any efficient algorithm A, any polynomial p and almost all sizes n.

Input x → Computes $f(x)$. Easy!

Input $(y,1^n)$ → Computes $x \in \{0,1\}^n$ s.t. $f(x)=y$. Hard!
Probabilistic Poly-Time Algorithms (revisited)

• Recall the model of probabilistic Turing machine from Week 2.

• We informally use the term “probabilistic polynomial-time algorithm” to mean “probabilistic polynomial-time Turing machine.”
Probabilistic Computation of PTMs (revisited)

- A PTM produces accepting/rejecting computation paths.

\[
\Pr_M[M(x) = 1] > \frac{1}{2} \quad \text{M accepts } x
\]

\[
\Pr_M[M(x) = 0] \geq \frac{1}{2} \quad \text{M rejects } x
\]
Consider a function \(f : \{0,1\}^* \rightarrow \{0,1\}^* \).

\(f \) is (strongly) one-way if

1. (easy to compute) there is a deterministic polynomial-time algorithm that computes \(f \), and

2. (hard to invert) for every probabilistic polynomial-time algorithm \(A \), every positive polynomial \(p \), and for all sufficiently large length \(n \),

\[
\Pr_{A,U_n} \left[A(f(U_n), 1^n) \in f^{-1}(f(U_n)) \right] < \frac{1}{p(n)}
\]

\(U_n \) is a random variable ranging over \(\{0,1\}^n \).
(Strongly) One-Way Functions II

\[
\Pr\left[A(f(U_n), 1^n) \in f^{-1}(f(U_n)) \right] < \frac{1}{p(n)}
\]

- **This formula** means:
 - the probability that, on input \((y, 1^n)\) with \(y \in \{ f(x) \mid x \in \{0,1\}^n \}\), algorithm A finds \(x'\) satisfying \(f(x') = y\) is polynomially small.
- Note that there are possibly many \(x'\) satisfying \(f(x') = y\).
- So, it suffices to find at least one of them probabilistically.
Weakly One-Way Functions

• There is another notion of one-way function.

• f is weakly one-way if
 1. (easy to compute) there is a deterministic polynomial-time algorithm that computes f, and
 2. (slightly hard to invert) there exists a polynomial p such that, for every probabilistic polynomial-time algorithm A and all sufficiently large length n,

\[\Pr_{A,U_n} \left[A(f(U_n),1^n) \notin f^{-1}(f(U_n)) \right] > \frac{1}{p(n)} \]

• (Claim) A strongly one-way function exists \(\iff \) a weakly one-way function exists. [Yao (1982)]
Natural Candidates for OWFs I

• Unfortunately, we do not know whether or not one-way functions (OWFs) exist.
• However, we have several good candidates for OWFs.
• The RSA function
 – with index set \((N,e)\), where \(N\) is a product of two \((1/2 \cdot \log_2 N)\)-bit primes \(P\) and \(Q\), and \(e\) is an integer smaller than \(N\) and relatively prime to \((P-1)(Q-1)\).
 \[
 RSA_{N,e}(x) = x^e \mod N
 \]
• The Rabin function
 – with a similar condition to the above,
 \[
 Rabin_{N}(x) = x^2 \mod N
 \]
Natural Candidates for OWFs II

- The DLP (discrete logarithm problem) function
 - with index set (P, G), where P is a \((1/2 \log_2 N)\)-bit prime P and a primitive element G in the multiplicative group modulo P,
 \[
 DLP_{P,G}(x) = G^x \mod P
 \]

- Open Problems
 - Prove or disprove that the aforementioned candidates are truly one-way functions.
 - More generally, prove or disprove the existence of one-way functions.
Pseudorandomness

• **Blum** and **Micali** (1984) considered how to generate a sequence of bits whose next bit is hardly predicted by even powerful adversary.

• In contrast, **Yao** (1982) considered a sequence that no adversary distinguishes from a uniformly random sequence with a small margin of error.

• Let $X = \{ X_n \}_{n \in \mathbb{N}}$ be an ensemble of random variables indexed by \mathbb{N}.

• For example, consider an infinite series of fair coins. For each $n \in \mathbb{N}$, we define X_n to be the outcome of the flip of the $(n+1)$th coin.
Polynomial-Time Indistinguishability

• We start with “indistinguishability” of two ensembles of random variables.

• Two ensembles $X = \{X_n\}_{n \in \mathbb{N}}$ and $Y = \{Y_n\}_{n \in \mathbb{N}}$ are indistinguishable in polynomial time (or computationally indistinguishable) if

 for every probabilistic polynomial-time algorithm M, every positive polynomial p, and all sufficiently large length n,

 $$\left| \Pr[M(X_n, 1^n) = 1] - \Pr[M(Y_n, 1^n) = 1] \right| < \frac{1}{p(n)}$$

The probability of distinguishing between X_n and Y_n is polynomially small.
Generating Pseudorandom Bits

short truly random bits

computer algorithm

long pseudorandom bits

truly random bits

“uniform” ensemble

true randomness

hard to distinguish them

??
Pseudorandom Generators

• An ensemble $X = \{ X_n \}_{n \in \mathbb{N}}$ is called pseudorandom if there is a uniform ensemble $U = \{ U_{l(n)} \}_{n \in \mathbb{N}}$ such that $\{ G(U_n) \}_{n \in \mathbb{N}}$ and U are polynomial-time indistinguishable, where $l: \mathbb{N} \rightarrow \mathbb{N}$ is a fixed function.

• A pseudorandom generator G is a deterministic polynomial-time algorithm satisfying the following two conditions:

 1. (expansion) there is a function $l: \mathbb{N} \rightarrow \mathbb{N}$ (called the expansion/stretch factor of G) such that $l(n) > n$ for all $n \in \mathbb{N}$ and $|G(s)| = l(|s|)$ for all $s \in \{0,1\}^*$, and

 2. (pseudorandomness) the ensemble $\{ G(U_n) \}_{n \in \mathbb{N}}$ is pseudorandom.

$U_{l(n)}$ is chosen uniformly at random.
PRGs Versus OWFs

• Let \(G : \{0,1\}^* \rightarrow \{0,1\}^* \) be a function with expansion factor \(l(n) = 2n \) (that is, \(|G(x)| = 2|x| \) for all \(x \in \{0,1\}^* \)).

• We define a function \(f : \{0,1\}^* \rightarrow \{0,1\}^* \) by

\[
 f(x, y) = G(x)
\]

• (Claim) If \(G \) is a pseudorandom generator, then \(f \) is a strongly one-way function.

• Moreover, we can prove the following.

• (Claim) If there exists a one-way function, then a pseudorandom generator exists. [Håstad-Impagliazzo-Levin-Luby (1999)]
II. Hardcore Functions

1. What are Hardcore Functions?
2. Hardcore Predicates (or Functions)
3. Examples of Hardcores
4. Why are Hardcores so Useful?
What are Hardcore Functions?

- A hardcore function P for a function f is
 - Easy to compute from its inputs x, but
 - Hard to “predict” $P(x)$ from the images $f(x)$ of the function f without knowing inputs x.

\[|\text{Pr}_{x,A}[A(f(x),1^n) = P(x)] - 1/2^{l(n)}| < 1/p(n) \]

for any polynomial p and almost all sizes n.

where $l(n)$ is the size function of P
Hardcore Predicates (or Functions)

- Let \(b : \{0,1\}^* \rightarrow \{0,1\} \) be a polynomial-time computable predicate (i.e., functions outputting 0 or 1).
- Let \(f : \{0,1\}^* \rightarrow \{0,1\}^* \) be a function.

- \(b \) is a **hardcore predicate** (or a **hardcore**) of \(f \) if, for every probabilistic polynomial-time algorithm \(A \), every positive polynomial \(p \), and all sufficiently large \(n \),
 \[\Pr[A(f(U_n) = b(U_n)) < \frac{1}{2} + \frac{1}{p(n)}] \]

- This means that, to predict the value \(b(s) \) from input \(f(s) \) is similar to choosing 0 or 1 at random.

- **Hardcores actually exist** for any strongly one-way function (assuming that one-way functions exist).
Examples of Hardcores

• There are known hardcore predicates for (strongly) one-way functions of a special form (explained below).

• Let $b: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$ be the (bitwise) inner-product-mod-2 function; that is, $b(x,r) = x \odot r \pmod{2}$.

• Example: $b(1011,1101) = 1 \cdot 1 + 0 \cdot 1 + 1 \cdot 0 + 1 \cdot 1 \pmod{2}$
 \[= 2 \pmod{2} = 0\]

• (Claim) Let f be any strongly one-way function. Define g as $g(x,r) = f(x)r$ (concatenation), where $|x| = |r|$. The predicate b (defined above) is a hardcore of g. [Goldreich-Levin (1989)]
Why are Hardcores so Useful?

- Let \(f \) be any one-way permutation and let \(P \) be any hardcore predicate for \(f \).
- Define \(G(x) = f(x)P(x) \) (string concatenation).
- The definition of a hardcore says that we cannot predict the value \(P(x) \) from the value \(f(x) \) with high confidence.

Well-Known Result: unpredictability = pseudorandomness

Therefore, this function \(G(.) \) is a pseudorandom generator that stretches \(n \) bit seeds to \(n+1 \) bit strings.
III. Basic Cryptosystems

1. Public-Key Cryptosystems
2. Non-Interactive Bit Commitment
Private-Key/Public-Key Encryption Schemes

A schematic of an encryption scheme

Symmetric/asymmetric key

Private/public key

A(n) secure/insecure channel

Encryption key

Decryption key

Encryption

Decryption

An insecure channel

Plaintext

Ciphertext

Alice

Bob

Encryption

Decryption

Ciphertext

Ciphertext
Non-Interactive Bit Commitment

• In a non-interactive bit commitment scheme, a committer (Alice) and a verifier (Bob) communicate with each other and satisfy the following conditions.

 ➢ (hiding) In the commit phase, Alice commits to a single bit b and sends some information z to Bob so that Bob cannot recover b from z,

 ➢ (binding) In the opening (or reveal) phase, Alice reveals her bit b and Bob checks if b is the correct committed bit from z. We require that Alice cannot cheat Bob by revealing a different bit.
IV. Interactive Proof Systems

1. What is an Interactive Proof?
2. Interactive Proof Systems
3. Constant-Space Interactive Proofs
4. Private Coins vs. Public Coins
5. One-Way Functions for 1-Tape Machines
What is an Interactive Proof?

• An interaction between two (or more) parties has been studied in many cryptographic contexts.

• Goldwasser, Micali, and Rackoff (1989) studied a series of interactions between a prover (who presents a proof) and a verifier (who verifies the proof).

• This gave rise to a notion of interactive proof (IP) systems.

• In an IP system, a prover P sends a proof (either correct or wrong) and a verifier V checks if the proof is indeed correct.
Intuitive Definition

- A language L has an **IP system** \iff there exists a verifier V that satisfies the following two conditions:
 1. For every $x \in L$, there exists a honest prover P such that V accepts a proof from P with probability at least $2/3$; and
 2. For every $x \notin L$, V rejects any proof from any (possibly malicious) prover with probability at least $2/3$.

A proof is a piece of information.

- Let me judge the correctness of your proof.
- Believe me. This is a correct proof.
- Accepts with probability $\geq 2/3$
- Rejects with probability $\geq 2/3$
Underlying Machine Model

- **Dwork-Stockmeyer IP system** is illustrated as follows.

![Diagram](image-url)
Interactive Proof Systems

• Let \((P,V)\) be a pair of prover \(P\) and verifier \(V\).
• Let \(L\) be a language over alphabet \(\{0,1\}\).

\((P,V)\) is an interactive proof system for \(L\) if

 ▪ \(V\) is a specified probabilistic machine,

 ▪ \((P,V)\) satisfies the following conditions:
 1. (completeness) for every \(x \in L\),
 \[
 \Pr[(P,V)(x) = 1] \geq \frac{2}{3}
 \]
 2. (soundness) for any \(x \notin L\) and any prover \(B\),
 \[
 \Pr[(B,V)(x) = 1] \leq \frac{1}{3}
 \]
Constant-Space Interactive Proofs

- **Dwork and Stockmeyer** (1992) considered interactive proof (IP) systems with 2-way probabilistic finite automata (2pfa’s).

- **Major advantages**: we can prove certain separation results that are impossible (at least at present) to obtain for polynomial-time or logarithmic-space bounded IP systems.

 \[\text{IP(}\langle\text{restrictions}\rangle\text{)} = \text{the class of all languages that have IP systems satisfying the restrictions given in } \langle\text{restrictions}\rangle. \]

- **For example**:
 - \[\text{IP(2pfa,poly-time)} = \text{the class of all languages that have IP systems with 2pfa verifiers running in expected polynomial time}. \]
Private Coins vs. Public Coins

• In an IP system, a verifier obtains random bits (by flipping coins) and decides his next actions. The verifier keeps those random bits secretly. A prover has no way knowing those bits of the verifier.

• This situation is described as the verifier playing with “private coins.”

• In contrast, if the verifier reveals his random bits to the prover every time, then this situation is described as the verifier playing with “public coins.”

• If the verifier uses “public coins” instead of “private coins,” then we write $\text{AM}(\langle \text{restriction} \rangle)$ in place of $\text{IP}(\langle \text{restriction} \rangle)$.

“AM” stands for “Arthur-Merlin game.”
Known Results

• **Dwork** and **Stockmeyer** (1992) obtained the following results.

• (**Claim**)
 1. $2\text{PFA} \subseteq \text{AM}(2\text{pfa}) \subseteq \text{IP}(2\text{pfa},\text{poly-time}) \subseteq \text{IP}(2\text{pfa})$
 2. Pal = \{ $x \in \{0,1\}^* \mid x = x^R$ \} is in IP(2pfa) but not in AM(2pfa).
 3. Center = \{ $u1v \mid u,v \in \{0,1\}^*, |u| = |v|$ \} is in AM(2pfa) but not in 2PFA.

• (***) We will return to this topic in Week 13.
Track Notation (revisited)

• To describe the notion of one-way function in the 1-tape linear-time model, we need to introduce a “track” notation

\[
\begin{bmatrix}
 x \\
 y
\end{bmatrix} = \begin{bmatrix}
 x_1 \\
 y_1
\end{bmatrix} \begin{bmatrix}
 x_2 \\
 y_2
\end{bmatrix} \ldots \begin{bmatrix}
 x_n \\
 y_n
\end{bmatrix}, \text{ where } x = x_1 x_2 \ldots x_n \text{ and } y = y_1 y_2 \ldots y_n
\]

• Even if \(|x| \neq |y|\), we want to use the same notation to express

\[
\begin{bmatrix}
 x & x^{\#^k} \\
 y^{\#^k} & y
\end{bmatrix}
\]

if \(|x| = |y| + k \text{ and } k \geq 1 \text{ and } |x| + k = |y| \text{ and } k \geq 1\), respectively, where \# is a distinct “blank” symbol.
A total function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ is called one-way if
1. $f \in 1\text{-FLIN}$, and
2. there is no function $g \in 1\text{-FLIN}$ such that
 $$f\left(g\left(\left[f(x) \right]_1^{\left| x \right|} \right)\right) = f(x)$$
for all inputs x.

When f is length-preserving, the above equality can be replaced by $f(g(f(x))) = f(x)$.

Theorem: [Tadaki-Yamakami-Lin (2010)]

- There is no one-way function in 1-FLIN.

(*) In the next slide, we will see a proof sketch.
One-Way Functions for 1-Tape Machines II

- Recall 1-DLIN and 1-FLIN from Week 1, and 1-FLIN(partial) and 1-NLINMV from Week 6.

Proof Sketch:
- Assume by contradiction that a one-way function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ exists in 1-FLIN.
- Define $f^{-1}(\[y \ 1^n\]^T) = \{ \ x\#|y|-n \mid |x|=n, \ f(x) = y \} \text{ if } |y|\geq n; \ f^{-1}(\[y \ 1^n\]^T) = \{ \ x \mid |x|=n, \ f(x) = y \} \text{ otherwise.}$
- Clearly, $f^{-1} \in 1$-NLINMV.
- As seen in Week 6, since 1-NLINMV $\subseteq_{\text{ref}} 1$-FLIN(partial), there is a refinement, say, g of f^{-1} in 1-FLIN(partial).
- We then construct a 1DTM computing g in $O(n)$ time.
- Since $f^{-1} \subseteq_{\text{ref}} g$, M converts f, a contradiction against our assumption.

QED
V. Pseudorandomness for Automata

1. Negligible Functions
2. C-Pseudorandomness
3. Examples of C-Pseudorandom Languages
Negligible Functions

- We apply pseudorandomness to finite automata.

- First, we need a notion of negligible function.

- A real-valued function \(h : \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \) is negligible \(\iff \)
 - \(\forall p: \) positive polynomial, \(h(n) \leq 1/p(n) \) holds for all but finitely many numbers \(n \in \mathbb{N} \) (super-polynomially small).

- Example: \(h(n) = 1/2^n \), \(h'(n) = 1/n^{\log(n)} \)
Intuition: Pseudorandomness

- $A \triangle L$ denotes the symmetric difference $(A - L) \cup (L - A)$.

- Intuitively, the C-pseudorandomness of L means: for any language $A \in C$ and for almost all n’s,
 $$| (A \triangle L) \cap \Sigma^n |$$
 is “nearly” a half of $| \Sigma^n |$. (Fig.1)

- Equivalently: for any language $A \in C$ and for almost all n’s,
 $$| A \cap (L \cap \Sigma^n) |$$
 is “nearly” equal to $| A \cap (\Sigma^n - L) |$. (Fig.2)
C-Pseudorandomness

- Let \(L \) be any language over \(\Sigma \) with \(|\Sigma| \geq 2 \).
- Let \(C \) be any language family.

- \(L \) is \(C \)-pseudorandom \(\iff \) for all \(A \in C \) over \(\Sigma \),
 \[
 h(n) = \left| \frac{|(A \Delta L) \cap \Sigma^n|}{|\Sigma^n|} - \frac{1}{2} \right| \]
 is negligible.

- (Claim) No language in \(C \) is \(C \)-pseudorandom.
C-Pseudorandomness II

- We may be focused on \(p \)-dense languages.

- A language \(L \) (over \(\Sigma \)) is weakly \(C \)-pseudorandom \(\iff \)
 - for all \(p \)-dense \(A \in C \) (over \(\Sigma \)),
 \[
 h'(n) = \text{def } |\frac{|(A \cap L) \cap \Sigma^n|}{|A \cap \Sigma^n|} - \frac{1}{2}| \text{ is negligible.}
 \]

- A language family \(D \) is (weakly) \(C \)-pseudorandom \(\iff \)
 - \(D \) contains a (weakly) \(C \)-pseudorandom language.

- **NOTE:** Not known whether \(\text{NP} \) is \(\text{P} \)-pseudorandom.

\[
\frac{|(A \cap L) \cap \Sigma^n|}{|A \cap \Sigma^n|} \to \frac{1}{2}
\]
Examples of C-Pseudorandom Languages

- Let $x \otimes y$ denote the (bitwise) binary inner product.
- Consider the following extended language in CFL.
 \[IP^* = \{ axy \mid a \in \{\lambda, 0, 1\}, x, y \in \{0, 1\}^*, |x| = |y|, x^R \otimes y \equiv 1 \pmod{2} \} \]
- IP^* is REG/n-pseudorandom. Hence, we obtain:
 - **Theorem:** [Yamakami (2011)]
 CFL is REG/n-pseudorandom.
 - The proof of this theorem utilizes the swapping lemma for regular languages, discussed in Week 5. (See the next slide.)
Swapping Lemma for REGs [Yamakami (2008),(2010)]

• If L is regular, then $\exists m>0$ s.t. $\forall n \in \mathbb{N} \ \forall S \subseteq L \cap \Sigma^n \ (|S| \geq m) \
\forall i \in [n] \ \exists xy, uv \in S \ (|x|=|u|=i) \ [\ xy \neq uv \
& \ uy, xv \in L \]$.

• See Week 5 for the references.
CFL/n-Pseudorandom Languages

We discuss CFL/n-pseudorandom languages.

Consider the languages

- $\text{IP}^+ = \Sigma^{\leq 8} \cup (\text{IP}_3 \cap \Sigma^{\geq 8}) \Sigma^2$, where
- $\text{IP}_3 = \{ axyz | a \in \{\lambda, 0, 1\}, x, y, z \in \{0, 1\}^*, |x| = |z|, |y| = 2|x|, (xz) \circ y^{R \equiv 1 \pmod{2}} \}$ (extension of IP*)

CFL(2)/n is an advised version of CFL(2), which was discussed in Week 5.

Lemma: [Yamakami (2016)]

$L \in \text{CFL}(2)/n \iff \exists L_1, L_2 \in \text{CFL}/n \text{ s.t. } L = L_1 \cap L_2.$
CFL/n-Pseudorandom Languages II

- **Theorem:** [Yamakami (2016)]
 1. IP$_3$ and IP$^+$ are in $L \cap \text{CFL}(2)/n$.
 2. IP$_3$ and IP$^+$ are CFL/n-pseudorandom.

- For the latter claim of the above theorem, we need the **swapping lemma for context-free languages** discussed in Week 5. (See the next slide.)

- **Corollary:** [Yamakami (2016)]
 1. $L \cap \text{CFL}(2)/n \not\subset \text{CFL}/n$.
 2. $\text{CFL}(2) \not\subset \text{CFL}/n$.
Swapping Lemma for CFLs [Yamakami, (2008, 2016)]

- If \(L \) is context-free, then \(\exists m > 0 \) s.t. \(\forall n \geq 2 \) \(\forall S \subseteq L \cap \sum^n \forall j_0, k_0 \in [2, n-1] \) \(\forall i \in [0, n] \forall j \in [j_0, k_0] \) \((i+j \leq n) \) \(\forall u \in \sum^{j_0} \) \((|S_{i,u}| < |S|/m(k_0-j_0+1)(n-j_0+1)) \) \(\exists x=x_1x_2x_3, y=y_1y_2y_3 \in S \) \((|x_1|=|y_1|=i)(|x_2|=|y_2|=j)(|x_3|=|y_3|) \) \[x_2 \neq y_2 & x_1y_2x_3, y_1x_2y_3 \in L. \]

Swapping Lemma for CFLs

- See Week 5 for the references.
Open Problems

• There are many open questions to solve.

1. Is there any CFL/n-pseudorandom language in CFL(2) (instead of CFL(2)/n)?
2. Find natural languages that are C-pseudorandom against D for reasonable language families C and D.
VI. P-Denseness and Primeimmunity

1. P-Denseness
2. P-Dense REG-Immunity
3. C-Primeimmunity
4. Examples of C-Primeimmune Languages
5. C-Bi-Primeimmunity
6. Examples of C-Bi-Primeimmune Languages
7. A Connection to C-Pseudorandomness
C-Immunity (revisited)

- Recall the definition of C-immune languages in Week 5.
- Immunity is concerned with “finiteness.”

- Let C be any nonempty language family.

- A language L is C-immune \iff
 1) L is infinite, and
 2) no infinite subset A of L exists in C.

- A language family D is C-immune \iff
 - D contains a C-immune language.
P-Denseness

• All known context-free REG-immune languages L make the ratio $|L \cap \Sigma^n| / |\Sigma^n|$ exponentially small.
 - E.g., L_{eq} and $\text{Pal}_{\#}$

• A language L is polynomially dense (or p-dense) \iff
 - There is a non-zero polynomial p s.t. $|L \cap \Sigma^n| / |\Sigma^n| \geq 1/p(n)$ for all but finitely many n (i.e., only polynomially small).

• Polynomial denseness is a key to our further discussion.
P-Dense REG-Immunity

• What language family is p-dense REG-immune?

• **Theorem**: [Yamakami (2011)]
 \(L \cap \text{CFL/n} \) is p-dense REG-immune.

 Proof Sketch:
 • Consider the language
 \[\text{LCenter} = \{ ax0^m10^my \mid a \in \{\lambda,0,1\}, \ 2^m \leq |x|=|y| < 2^{m+1} \}. \]
 • Clearly, \(\text{LCenter} \in L \cap \text{CFL/n} \). Thus, it suffices to prove
 \(\text{LCenter is p-dense REG-immune,} \)
 by the pumping lemma for REGs.

• *(Open Problem)* Is CFL p-dense REG-immune?
C-Primeimmunity

• Let us introduce a variant of C-immunity using “p-dense” sets in place of “finite” sets.

• Let C be any language family.

 A language L is C-primeimmune ⇔
 1) L is p-dense, and
 2) L has no p-dense subset in C.

• A language family D is C-primeimmune ⇔
 ▪ D contains a C-primeimmune language.

• NOTE: p-dense REG-immune ⇒ REG-primeimmune
Examples of C-Primeimmune Languages

- **Equal** = \{ x ∈ \{0,1\}^* | \#_0(x) = \#_1(x) \} is not p-dense.
- Here, we consider its extended language:
 - **Equal*** = \{ aw | a ∈ \{λ,0,1\}, w ∈ Equal \}

- **(Claim)**
 1. **Equal*** is p-dense.
 2. **Equal*** is in CFL.
 3. **Equal*** is not REG-immune.
 4. **Equal*** is REG/n-primeimmune.

- **Theorem:** [Yamakami (2011)]
 CFL is REG/n-primeimmune.

- **Proof:** This comes from Claims 2 & 4 above.
C-Bi-Primeimmunity

- Let C be any language family.

- A language L is C-bi-primeimmune \iff
 - L and L^c are both C-primeimmune.

- A language family D is C-bi-primeimmune \iff
 - D contains a C-bi-primeimmune language.

```
Σ* → C-primeimmune

\[ \begin{array}{c}
\text{C-primeimmune} \\
\hline
L \\
\hline
L^c \\
\text{C-primeimmune}
\end{array} \]
```
Examples of C-Bi-Primeimmune Languages

• Recall that $x \odot y$ is the (bitwise) inner product of x and y.
• Consider the following language:
 - $IP^* = \{ axy | a \in \{\lambda, 0, 1\}, x,y \in \{0,1\}^*, |x|=|y|, x^R \odot y \equiv 1 \pmod{2} \}$.

• **Lemma:** [Yamakami (2011)]
 IP^* is REG/n-bi-primeimmune.

• Since $IP^* \in CFL$, we conclude the following statement.
• **Theorem:** [Yamakami (2011)]
 CFL is REG/n-bi-primeimmune.
A Connection to C-Pseudorandomness

• There is a connection to C-pseudorandomness.

• **Lemma: [Yamakami (2011)]**
 If \(L \) is weakly C-pseudorandom, then it is C-bi-primeimmune.

• The converse does not hold, because the language \(\text{Equal}^* (\in \text{CFL}) \) is REG-primeimmune but not weakly REG-pseudorandom.
VII. PRGs by Finite Automata

1. Pseudorandom Generators
2. Existence and Limitation
3. Proof Idea for the Theorem
4. Generators Against CFL/n
Pseudorandom Generators I

- Let $G: \{0,1\}^* \rightarrow \{0,1\}^*$ be any function.

- G has **stretch factor** $s(n) \iff |G(x)| = s(|x|)$ for all $x \in \{0,1\}^*$.

- G fools a language A (over $\{0,1\}^*$) \iff
 - $l(n) = \text{def} |\Pr_x[A(G(x)) = 1] - \Pr_y[A(y) = 1]|$ is negligible, where $|x| = n$ and $|y| = s(|x|)$.

- **Intuitively:** A cannot tell the difference between truly random strings y and generated strings $G(x)$.
Pseudorandom Generators II

• Let $G: \{0,1\}^* \rightarrow \{0,1\}^*$ be any function.

• G is a pseudorandom generator against $C \iff$
 - for all $A \in C$ (over $\{0,1\}$), G fools A.

• G is a weakly pseudorandom generator against $C \iff$
 - for all p-dense $A \in C$ (over $\{0,1\}$), G fools A.

• **NOTE:** pseudorandom generator \Rightarrow weakly pseudorandom generator
There is a close connection between C-pseudorandom generators and C-pseudorandom languages.

First, we introduce a notion of **almost one-to-oneness**.

Let $G: \{0,1\}^* \rightarrow \{0,1\}^*$ have **stretch factor** $n+1$.

- **G is almost 1-1** \iff
 - There is a negligible function t such that $|\{ G(x) \mid x \in \{0,1\}^n \}| = |\{0,1\}^n|(1 - t(n))$ holds for all n.

- **NOTE**: If G is exactly 1-1, then $t(n)=0$.
Let $G : \{0,1\}^* \rightarrow \{0,1\}^*$ be any almost 1-1 function with stretch factor $n+1$.

Let $S_G = \{ G(x) | x \in \{0,1\}^* \}$ be the image of G.

Lemma: [Yamakami (2011)]

G is a (weakly) pseudorandom generator against $C \iff$
- the image S_G of G is (weakly) C-pseudorandom.

Open Problem

Can we weaken the above conditions of “almost 1-1” and “stretch factor $n+1$”?
Existence 1

- Here, we show the existence of pseudorandom generators against REG/n.
- Recall the function class CFLSV$_t$.

- **Theorem**: [Yamakami (2011)]
 There exists an almost 1-1 pseudorandom generator G in CFLSV$_t$ with stretch factor $n+1$ against REG/n.

- (*) In the next slide, we will give a sketch of the proof of the above theorem.
Existence II

Proof Sketch:

• First, we define an almost 1-1 function $G: \{0,1\}^* \rightarrow \{0,1\}^*$ with stretch factor $n+1$ such that $G \in \text{CFLSV}_t$ and $S_G = \text{IP}^*$, where S_G is the image $\{ G(x) | x \in \{0,1\}^* \}$ of G.

• We already know that IP^* is REG/n-pseudorandom.

• Since $S_G = \text{IP}^*$, S_G is REG/n-pseudorandom.

• As seen before, this implies that G is a pseudorandom generator against REG/n.

QED
Next, we show a limitation of pseudorandom generators against REG/n.

- **Theorem: [Yamakami (2011)]**

 There is no almost 1-1 weakly pseudorandom generator in 1-FLIN with stretch factor $n+1$ against REG.

- (*) In the next slide, we will give a sketch of the proof.
Proof Sketch:

• Assume that such a generator G exists.
• Define $H(xb) = G(x)$ for any $b \in \{0,1\}$.
• Since $H \in 1$-FLIN, it follows that $H^{-1} \in 1$-NLINMV.
• Take a refinement f of H^{-1} in 1-FLIN(partial) by Week 6.
• Consider the image S_G of G. Note that $y \in S_G \iff f(y) \downarrow$.
• Since $f \in 1$-FLIN(partial), we obtain $S_G \in 1$-DLIN = REG.
• It follows that S_G is REG-pseudorandom.
• Since REG cannot be weakly REG-pseudorandom, a contradiction follows.

QED
Function Class CFLMV(2)/n

- Before moving to the next subject, we discuss an advised function class, called CFLMV(2)/n.
- Recall CFLMV(2) (= CFLMV \land CFLMV) from Week 6.
- Here, we consider its advised version, denoted by CFLMV(2)/n.

- **Lemma:** [Yamakami (2016)]
 For any multi-valued partial function f, \(f \in \text{CFLMV}(2)/n \iff \) there exist two multi-valued partial functions g,h \(\in \text{CFLMV}/n \) such that \(f(x) = g(x) \cap h(x) \) for any x.

- **In other words,** CFLMV(2)/n = CFLMV/n \land CFLMV/n.
Generators Against CFL/n

• Next, we consider pseudorandom generators against CFL/n.

• Theorem: [Yamakami (2016)]
 There exists an almost 1-1 pseudorandom generator G in $FL \cap CFLMV(2)/n$ against CFL/n.

• Note that a famous design-theoretic method of Nisan and Wigderson (1994) does not provide a generator in $FL \cap CFLMV(2)/n$.

• (*) In the next slide, we will show how to define such a G.
Definition of the Desired Generator

Proof Idea:

- We define the desired generator G as follows.
- Let us set the value $G(w)$ with $w = axy$ and $|x| = |y| + 1$ for $a \in \{ \lambda, 0, 1 \}$ and $x, y \in \{0, 1\}^*$.
- If $a \neq \lambda$, set $G(aw) = aG(xy)$.
- Assume $a = \lambda$. Let $x = bz$ for $b \in \{0, 1\}$ and $k = (|w|-1)/2$.
 1. If $w = bzy \wedge z^R \odot y \equiv 1 \pmod{2}$, set $G(w) = bzyb^c$.
 2. If $w = 1zy \wedge z^R \odot y \equiv 0 \pmod{2}$, set $G(w) = 1zy1$.
 3. If $w = 0zy \wedge z^R \odot y \equiv 0 \pmod{2}$, there are two cases.
 a. If $\exists i \ [z_{(k-i-1)} = 1$, set $G(w) = 0zy*0$, where $y*$ is obtained from y by flipping only the i-th bit.
 b. Otherwise, $G(w) = 1zy1$.

QED
Here, we present an impossibility result.

Theorem: [Yamakami (2016)]
There is no almost 1-1 weakly pseudorandom generator in CFLMV with stretch factor $n+1$ against CFL.

The proof can be done by contradiction.
Open Problems

- There are many open questions to solve.
 1. Does a 1-1 PRG against CFL/n exist in CFLMV(2)/n?
 2. What happens if we use randomized advice instead of deterministic advice for pseudorandom generators?
 3. Is CFL p-sense REG-immune?
 4. We can define CFL-primesimple languages. Find CFL-primesimple languages.
 5. Is DCFL weakly REG/n-pseudorandom?
 6. Construct efficient pseudorandom generators against Σ_k^{CFL}. (See Week 4 for Σ_k^{CFL}.)
 7. Find a natural 1-1 pseudorandom generator against REG/n.
Thank you for listening
I’m happy to take your question!