
9th Week

Synopsis.
• Computational Optimization Problems
• NLO, NL, APXL, NC1O, and AC0O
• Uniform Circuit Families
• Circuit Complexity

Computational Optimization
Problems and Uniform Circuits

June 4, 2018. 23:59

Course Schedule: 16 Weeks

• Week 1: Basic Computation Models
• Week 2: NP-Completeness, Probabilistic and Counting Complexity Classes
• Week 3: Space Complexity and the Linear Space Hypothesis
• Week 4: Relativizations and Hierarchies
• Week 5: Structural Properties by Finite Automata
• Week 6: Stype-2 Computability, Multi-Valued Functions, and State Complexity
• Week 7: Cryptographic Concepts for Finite Automata
• Week 8: Constraint Satisfaction Problems
• Week 9: Combinatorial Optimization Problems
• Week 10: Average-Case Complexity
• Week 11: Basics of Quantum Information
• Week 12: BQP, NQP, Quantum NP, and Quantum Finite Automata
• Week 13: Quantum State Complexity and Advice
• Week 14: Quantum Cryptographic Systems
• Week 15: Quantum Interactive Proofs
• Week 16: Final Evaluation Day (no lecture)

Subject to Change

YouTube Videos

• This lecture series is based on numerous papers of T.
Yamakami. He gave conference talks (in English) and
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.

• Use the following keywords to find a playlist of those
videos.

• YouTube search keywords:
 Tomoyuki Yamakami conference invited talk playlist

Conference talk video

Main References by T. Yamakami

✎T. Yamakami. Optimization, randomized approximability,
and Boolean constraint satisfaction problems. In Proc. of
ISAAC 2011, Lecture Notes in Computer Science, vol.
7074, pp. 454-463 (2011)

✎T. Yamakami. Uniform-circuit and logarithmic-space
approximations of refined combinatorial optimization
problems. In Proc. of COCOA 2013, Lecture Notes in
Computer Science, vol. 8287, pp. 318-329 (2013). A
complete version is available at arXiv:1601.01118.

1. Families of Boolean Circuits
2. Circuit Complexity measures
3. Fan-in of Circuits
4. Uniform Families of Circuits
5. Complexity Classes ACk and NCk

I. Uniform Circuit Families

Families of Boolean Circuits (revisited)

• Recall that each Boolean circuit is composed of the
following logical gates and wires (or edges).

• In a family {Cn}n∈N of Boolean circuits, each Cn is a
Boolean circuit taking n-bit inputs.

NOT gate AND gate OR gate

C0 C1 C2 Cn C3

...

... ...

n

Circuit Complexity Measures (revisited)

• Recall that we treat “inputs” as input gates,
which are technically in-degree-0 nodes,
and treat “outputs” as output gates, which
are out-degree-0 nodes.

• For circuits, we usually use the following
complexity measures.

• Circuit complexity measures:
 size of circuit C = number of gates in C
 depth of circuit C = number of logical

gates in the longest path from an input
to an output

Cn

...

...

input gates

output gates

Fan-in of Circuits

• For simplicity, we often consider Boolean circuits with
AND and OR gates but not NOR gates.

• Thus, input gates are labeled by literals (i.e., variables or
the negation of variables).

• To cope with decision problems (i.e., languages), we are
interested in circuits that have only one output gate.

• We say that a circuit C has bounded fan-in if all AND and
OR gates used in C are of in-degree 2.

• A circuit is said to have unbounded fan-in if its AND and
OR gates may have an arbitrary number of in-coming
edges.

Uniform Families of Circuits

• In Week 3, we have already discussed the notion of non-
uniformity. Here, we consider its opposite notion:
uniformity.

• There are numerous concepts of uniformity in use to
describe different collections of circuit families.

• Here, we use logarithmic-space (or L) uniformity.
• Other uniformity concepts in use include “P-uniform” and

“DLOGTIME-uniform.”

• A family { Cn }n∈N of circuits is said to be logarithmic-
space uniform (log-space uniform or L-uniform) if there
exists a log-space DTM such that, for any length
parameter n∈N,
on input 1n, M produces an encoding 〈Cn〉 of Cn.

Complexity Classes ACk and NCk

• Let us define circuit complexity classes. Let k ∈ N.

• NCk = class of languages recognized by log-space
uniform families of circuits, each Cn of which has
polynomial-size, O(logk(n))-depth, and bounded fan-in.

• NCk is known as Nick’s class.

• ACk = class of languages recognized by log-space
uniform families of circuits, each Cn of which has
polynomial-size, O(logk(n))-depth, and unbounded fan-in.

• (Claim) ACk ⊆ NCk+1 for any k≥0.
• (Claim) AC0 ≠ NC1. [Yao (1985), Håstad (1987)]

Open Problems

• There are numerous open problems associated with
circuit families.

• Is ACk ≠ NCk+1 for any k ≥ 1?

• SACk = languages recognized by L-uniform families of
O(logk(n))-depth, polynomial-size, semi-unbounded fan-
in (i.e., all AND gates have in-degree 2) circuits

• Recall the CFL hierarchy {∆k
CFL, Σk

CFL, Πk
CFL | k ≥ 1 }

from Week 4.
 It is known that, for example, AC0(Σ1

CFL) = SAC1.
 Find more relationships between Σk+1

CFL and circuit
complexity classes, such as SACk+1.

1. Combinatorial Optimization Problems
2. NP Optimization Problems
3. NPO and PONPO

4. Performance Ratios
5. Approximation Schemes
6. APXP
7. Approximation-Preserving (APP) Reductions
8. Completeness by APP-Reductions
9. A Map of Complete Problems

II. NP Optimization Problems

Combinatorial Optimization Problems

• Optimization problems are found everywhere and they
have been discussed in theory and in practice.

• A combinatorial optimization problem P is defined as a
tuple (I, SOL, m, goal), where
 I = the set of input instances;
 SOL(x) = a set of (feasible) solutions associated with

instance x;
 m: objective function (or measure function) mapping

I×SOL(x) to R≥0; and
 goal ∈ { max, min }.

• Let m*(x) = goal{ m(x,y) | y∈sol(x) }.
• y is an optimal solution w.r.t. x ↔ m(x,y) = m*(x)

NP Optimization Problems I

• We are interested in NP optimization problems.

• An NP optimization problem (or an NPO problem) is a
combinatorial optimization problem P = (I, SOL, m,
goal) satisfying the following extra conditions:
 the set I is recognized in polynomial time,
 there are a polynomial p such that, for any x ∈ I and

for any y ∈ SOL(x), |y|≤p(|x|); moreover, for any y with
|y|≤p(|x|), it is decidable in polynomial time whether y
∈ SOL(x), and

 m is computable in polynomial time.

• If goal = max, then P is a maximization problem;
otherwise, P is a minimization problem.

NP Optimization Problems II

• Many NP problems can be turned into NP optimization
problems. Here, we see one simple example.

• Partition Problem (decision problem)
 instance: a finite set A of items and a weight function

w:A→N+

 question: is there any partition X,Y of A such that
 Σx∈X w(x) = Σy∈Y w(y)?

• Minimum Partition Problem (optimization problem)
 instance: a finite set A of items and a weight function

w:A→N+

 solution: a partition X,Y of A
measure: min{ Σx∈X w(x), Σy∈Y w(y) }

NPO and PONPO

• In a polynomial-time setting, two typical classes of
optimization problems are discussed.

• NPO = a class of NP optimization problems
• PONPO (or PO) = a class of polynomial-time solvable NP

optimization problems

• (Claim) PONPO ⊆ NPO

Performance ratios

• Performance ratio

• Consider a machine M
approximating x. In this case,

• Note that m(x,y) = m*(x) ↔
R(x,y) = 0 ↔ y is optimal.

(,) *()(,) max , ,
* () (,)

where *(), (,) 0.

m x y m xR x y
m x m x y

m x m x y

 
=  

 
≠

(, ()) ()xR x M x M x xγ γ
γ

≤ ⇔ ≤ ≤

solution
set
SOL(x)

optimal
solution
set

γ-approximate
solution set

input x

approximation
scheme M

M(x)

Approximation Schemes

• We define approximation algorithms or schemes.

• Let P = (I, SOL, m, goal) be any optimization problem.

• An algorithm M is said to be a γ-approximate algorithm
 ⇔ ∀x∈I [R(x,M(x)) ≤ γ].

• P is polynomial-time γ-approximable
 ⇔ ∃M polynomial-time DTM s.t. ∀x∈I [R(x,M(x)) ≤ γ].

APXPNPO (or APX)

• In a polynomial-time setting, we take one typical class of
optimization problems whose optimal solutions can be
approximable.

• APXPNPO (or APX) = a class of NP optimization problems
that are polynomial-time γ-approximable for certain
constant γ > 0.

• There are other notions of approximation algorithms.
 polynomial-time approximation scheme (PTAS)
 fully polynomial-time approximation scheme (FPTAS)

Relationships among Optimization Classes

• NPO
 Contains combinatorial

optimization problems defined in
a form of NP problems

• APXPNPO (or simply, APX)
 Contains NPO problems whose

optimal solutions can be
relatively approximately found by
deterministic TMs in poly time

• PONPO (or simply, PO)
 Contains NPO problems whose

optimal solutions can be found by
deterministic TMs in poly time

APXPNPO

NPO

Assuming P ≠ NP

PONPO

Reductions and Completeness

• To discuss the complexity of optimization problems, we
need a notion of “completeness” for a given class.

• For complete problems, we further need a notion of
“reduction.”

• A reduction is a way to compare the computational
difficulty of two optimization problems by transforming an
optimization problem P = (I1,SOL1,m1,goal) to another
optimization problem Q = (I2,SOL2,m2,goal) so that if Q is
easy to solve then P is also easy to solve.

• A complete problem is one of the most difficult problems
in a given class C.

Preserving Approximability of NPO Problems

• Let us discuss an appropriate reducibility notion for
optimization problems.

• For NPO problems, every reduction must preserve the
approximability of those problems.

• More precisely, let P = (I1,SOL1,m1,goal) and Q =
(I2,SOL2,m2,goal).

• When P is “reducible” to Q, we require that, if Q is
approximable, then P is also approximable.

• This means that “reductions” must preserve
“approximability.”

• (*) In the next slide, we explain “approximation-
preserving reduction” (or “APP-reduction”).

Approximation-Preserving (APP) Reductions

• P is APP-reducible to Q (denoted by P ≤AP
P Q) ⇔

• ∃f,g ∃c≥1 s.t.
1. ∀x∈I1 ∀r∈ℚ>1 [f(x,r)∈I2]
2. ∀x∈I1 ∀r∈ℚ>1 [SOL1(x) ≠ ∅ → SOL2(f(x,r)) ≠ ∅]
3. ∀x∈I1 ∀r∈ℚ>1 ∀y∈SOL2(f(x,r)) [g(x,y,r)∈SOL1(x)]
4. f, g ∈ auxFL for each fixed r∈ℚ>1

5. ∀x∈I1 ∀r∈ℚ>1 ∀y∈SOL2(f(x,r)) [R2(f(x,r),y) ≤ r →
R1(x,g(x,y,r)) ≤ 1+c(r-1)],

 where ℚ>1 = { r∈ℚ| r>1 }.
x∈I1 f(x,r)∈I2

g(x,y,r)∈SOL1(x) y∈SOL2(f(x,r))

f

g

Completeness by APP-Reductions

• With the use of APP-reductions, we can define
completeness.

• Let C be a subclass of NPO. (E.g., PONPO, APXPNPO,
etc.)

• Let P be any NPO problem.

• We say that P is C-complete if
1. P is in C, and
2. for any optimization problem B in C, B is APP-

reducible to A, i.e., ∀B∈C [B ≤AP
p A].

Example: MinLP

• Minimum {0,1}-Linear
Programming Problem (MinLP)
 Instance: matrix A∈ℤmn,

vectors b∈ℤm, w∈ℕn

Solution: vector x∈{0,1}n s.t. Ax
≥ b

Measure: scalar product

• (Claim) MinLP is NPO-complete.

1

n

i i
i

w x w x
=

• = ∑

1 110 0
0 0 01 1
0 1 11 0

A
− 

 = − 
  

0
0
1

b
 
 =  
  

2
3
1
2

w

 
 
 =
 
 
 

1

2

3

4

x
x

x
x
x

 
 
 =
 
 
 

1 2 4 52 3 2w x x x x x• = + + +

1 2 3

4 5

2 3 4

0
 0

1

x x x
Ax b x x

x x x

− + ≥
≥ ⇔ − ≥
 + + ≥

Example: MaxCut

• Maximum Cut Problem (MaxCut)
 Instance: an undirected graph

G=(V,E)
Solution: a cut (i.e., a partition

(S0,S1) of V)
Measure: cut capacity (i.e., the

number of edges crossing
between S0 and S1)

• (Claim) MaxCut is APXPNPO-

complete.

v2

v5

v8

v1

v9

v4

v7

v3

v6

A cut
 S0 = { v1,v2,v3, v5 }
 S1 = { v4,v6,v7,v8,v9 }

S0 S1

cut capacity = 4

Example: Min st-Cut

• Minimal s-t Cut Problem (Min st-Cut)
 Instance: directed graph G, source

s, and sink t
Solution: st-cut (S0,S1) with s∈S0

and t∈S1

Measure: capacity of st-cut (total
number of edges from S0 to S1)

• (Claim) Min st-Cut is PONPO-

compete.

s

v5

t

v1 v2

v4

v7

v3

v6

An st-cut
 S0 = { s,v1,v3,v5,v6 }
 S1 = { v2,v4,v5,t }

S0
S1

cut capacity = 3

A Map of Complete Problems

• We then obtain complete
problems for each
optimization/approximatio
n classes.

• Completeness is based
on ≤AP

P-reductions.

APXPNPO

NPO

Assuming P ≠ NP

PONPO

MinLP

MaxCut

Min st-Cut

Inside PONPO

• Consider the following two NP optimization problems.

1. Maximum vertex weight problem (Max Vertex)
2. Maximum Boolean formula value problem (Max BFVP)

• These problems are both in PONPO, but their

computational complexities seem to be quite different.

• In the next section, we will look into the inside structure
of PONPO.

1. Auxiliary Turing Machines
2. auxL and auxFL
3. NL Optimization Classes
4. Polynomially-Bounded Problems
5. LONLO, LONPO, etc.
6. Log-Space Approximation Schemes
7. APXLNLO, APXLNPO, etc.
8. NC1ONLO, AC0ONLO, etc.

III. NL Optimization Problems

How to Refine Problems Inside PONPO

• To discuss optimization problems inside PONPO:
• We need a refinement of the existing notions.
• We look into log-space approximation and uniform-

circuit (based) approximation schemes.

• First, we consider Turing machines equipped with extra
read-once input tapes, called auxiliary tapes.

• See the next slide.

Auxiliary Turing Machines

input tape
(read-only)

auxiliary tape
(read-once)

work tape
(read/write)

Inner
state

output tape
(write-only) If necessary

Input (x,y):
 x on input tape
 y on auxiliary tape

Auxiliary TMs and Complexity Class NL

• Nondeterministic TMs are simulated by auxiliary TMs.

• NL: nondeterministic log-space
• Input is given on input tape and a series of

nondeterministic choices is given on auxiliary tape.

• L: deterministic log-space class
• Examples:

• The s-t connectivity problem on directed graphs
(DSTCON) is NL-complete.

• The s-t connectivity problem on undirected graphs
(USTCON) is L-complete.

auxL and auxFL

• We need to treat instances of the form (x,y).

• Auxiliary L (auxL)
 auxL = problems A solvable by auxiliary TMs M using

log space with the following condition:
 (*) ∃p: poly s.t., for any input (x,y) to A,

1) (x,y)∈A ⇒ |y| ≤ p(|x|)
2) when |y| ≤ p(|x|), M accepts (x,y) ↔ (x,y)∈A.

• Auxiliary FL (auxFL)
 auxFL = functions computable by auxiliary TMs using

log space with write-only output tapes with polynomial
output size

NL Optimization (or NPO) Problems

• NLO problem: P=(I,SOL,m,goal) [Tantau,2007]
• I = finite set of admissible instances
• SOL = function from I s.t. SOL(x) is a set of feasible

solutions of x
• ∃q:poly ∀x∈I ∀y∈SOL(x) [|y| ≤ q(|x|)]
• I°SOL = {(x,y) | x∈I, y∈SOL(x)} is in auxL

• goal = either max or min
• m = measure (or objective) function from I°SOL to ℕ

• m is in auxFL
• m*(x) = optimal value among m(x,y) with y∈SOL(x)

• MinNL = minimization problems in NLO
• MaxNL = maximization problems in NLO
• NLO = MaxNL ∪ MinNL

Example: Max Vertex

• Maximum vertex weight problem (Max Vertex)
 Instance: directed graph G, source s,
 (vertex) weight function w
Solution: path from s to a certain
 vertex t
Measure: weight of t

• We define:
• I = {(G,s,w): graph G, source s, weight w }
• SOL(G,s,w) = { path p: from s to some y }
• m((G,s,w),p) = w(y), where y is an endpoint of p

• Thus, Max Vertex is in NLO.

s 3

2

5

4

8

1

7

3

v2

v5

v1

v7

v6

v4

v3

Polynomially-Bounded Problems

• Note that, if m ∈ auxFL, m(x,y) ≤ 2p(|x|) for an absolute
polynomial p.

• It is useful to focus our attention to polynomially-bounded
problems.

• Problem P is polynomially-bounded
 ⇔ ∃p:poly ∀(x,y)∈I°SOL [m(x,y) ≤ p(|x|,|y|)].

• PBO = set of polynomially-bounded optimization

problems

LONLO, LONPO, etc.

• LO problems inside C: P=(I,SOL,m,goal)
• P is an optimization problem in C.
• P is L-solvable; that is, a certain DTM

M finds an optimal solution y of x using
log space for every x∈I.

• LOC = set of all LO problems inside C
• Examples

• LONPO = set of all LO problems in NPO
• LONLO = set of all LO problems in NLO

• (Claim) PONLO = NLO. [Yamakami (2013)]

NPO

PONPO

PONLO
= NLO

LONLO

LONPO

Log-Space Approximation Schemes

• We introduce log-space approximable problems.

• Let P = (I, sol, m, goal) be any optimization problem.

• Recall that an algorithm M is a γ-approximate algorithm
⇔ ∀x∈I [R(x,M(x)) ≤ γ].

• P is log-space γ-approximable
 ⇔ ∃M log-space DTM s.t. ∀x ∈I [R(x,M(x)) ≤ γ].

APXLNLO, APXLNPO, etc.

• APXL problems P=(I,SOL,m,goal) in C:
• P is an optimization problem in C.
• P is L-approximable; that is, a certain

DTM M finds an approximate optimal
solution y of x using log space for every
x∈I.

• APXLC = set of all APXL problems inside
C
• APXLNPO = set of all APXL problems in

NPO
• APXLNLO = set of all LO problems in

NLO
• (Claim) APXPNLO = NLO. [Yamakami

(2013)]

NPO

APXPNPO

APXPNLO
= NLO

APXLNLO

APXLNPO

NC1ONLO, AC0ONLO, etc.

• We introduce circuit-based optimization problems.
• Recall AC0 and NC1.

• AC0 = Uniform circuits of constant-depth and unbounded-
fain

• NC1 = Uniform circuits of O(log n)-depth and bounded-fain

• We define the following two classes.
• AC0ONLO = class of all NLO problems that are AC0-

solvable
• NC1ONLO = class of all NLO problems that are NC1-

solvable

LSASNLO

AC0ASNPO

APXAC0
NLO

AC0ONLO

APXAC0
NPO

APXNC1
NPO

NC1ASNPO

APXNC1
NLO

NC1ONLO

AC0ONPO

NC1ONPO

APXLNPO

LONPO

APXPNPO

PONPO

PTASNPO
LSASNPO

LONLO
AC0ASNLO

NC1ASNLO

APXLNLO

NLO
= PONLO

= APXPNLO

NPO

Relations among Refined Classes

• We summarize the inclusion relationships among
refined classes.

1. Reductions and Completeness
2. Approximation-Preserving Reductions
3. Exact Reductions
4. Complete Problems

IV. Complete NL Optimization Problems

Approximation-Preserving Reductions
• Let P = (I1,SOL1,m1,goal) and Q = (I2,SOL2,m2,goal).

• P is APL-reducible to Q (P ≤AP
P Q) ⇔

• ∃f,g ∈ FL ∃c ≥ 1 s.t.
1. ∀x∈I1 ∀r∈ℚ>1 [f(x,r)∈I2]
2. ∀x∈I1 ∀r∈ℚ>1 [SOL1(x) ≠ ∅ → SOL2(f(x,r)) ≠ ∅]
3. ∀x∈I1 ∀r∈ℚ>1 ∀y∈SOL2(f(x,r)) [g(x,y,r)∈SOL1(x)]
4. f, g ∈ auxFL for each fixed r∈ℚ>1

5. ∀x∈I1 ∀r∈ℚ>1 ∀y∈SOL2(f(x,r)) [R2(f(x,r),y) ≤ r →
R1(x,g(x,y,r)) ≤ 1+c(r-1)],

 where ℚ>1 = { r∈ℚ| r>1 }. x∈I1 f(x,r)∈I2

g(x,y,r)∈SOL1(x) y∈SOL2(f(x,r))

f

g

More Reductions

• We define three additional reductions:
APL reductions (P ≤AP

L Q)
APNC1 reductions (P ≤AP

NC1 Q)
APAC0 reductions (P ≤AP

AC0 Q)

• Moreover, if we replace ℚ>1 in P ≤sAP
L Q with ℚ≥1, we

obtain
Strong APL reductions (P ≤sAP

L Q)

Exact Reductions

• We introduce another type of reduction.

• Let P = (I1,SOL1,m1,goal) and Q = (I2,SOL2,m2,goal).

• EXL reductions (P ≤EX
L Q) ⇔

 ∃f,g ∃c≥1 s.t.
1. ∀x∈I1 [f(x)∈I2]
2. ∀x∈I1 [SOL1(x) ≠ ∅ → SOL2(f(x)) ≠ ∅]
3. ∀x∈I1 ∀y∈SOL2(f(x)) [g(x,y)∈SOL1(x)]
4. f, g ∈ auxFL

5. ∀x∈I1 ∀y∈SOL2(f(x)) [R2(f(x),y) =1 → R1(x,g(x,y)) =1].

Example: Max Vertex
• Maximum vertex weight problem (Max Vertex)
 Instance: directed graph G, source s, (vertex) weight

function w
Solution: path from s to a certain vertex t
Measure: weight of t (= w(t))

• Max Vertex is in PONPO.
• However, it does not seem to be complete for PONPO.
• (Question) What is the exact complexity of this problem?

s 3

2

5

4

8

1

7

3

v2

v5

v1

v7

v6

v4

v3

 Optimal solution
 s →v7→v2→v6→v3

Example: Max BFVP

• Maximum Boolean formula value problem (MaxBFVP)
 Instance: set F of Boolean formulas and a Boolean

assignment σ
Solution: subset C of satisfied formulas by σ
Measure: number of formulas in C

• MaxBFVP is in PONPO.
• However, it does not seem to be complete for PONPO.
• (Question) What is the exact complexity of this

problem?

{ }1 3 1 2 3 1 2 3, () ,F x x x x x x x x= ∨ ∨¬ ∧ ∨ ∨

1 2 3() 1, () 0, () 1x x xσ σ σ= = =

Complete Problems I

• Finally, we exhibit a short list of complete problems.

• Max Vertex
 ≤AP

L-complete for APXLMaxNL [Tantau (2007)]
• Min Path-Weight
 ≤sAP

NC1-complete for MinNL
• Min Forest-Path-Weight
 ≤sAP

NC1-complete for APXLMinNL

Complete Problems II

• Recall that a problem P is polynomially-bounded
 ⇔ ∃p:poly ∀(x,y)∈I°SOL [m(x,y) ≤ p(|x|,|y|)].

• PBO = set of polynomially-bounded optimization
problems

• Max B-Vertex
≤EX

NC1-complete for LONLO∩PBO
• Max BFVP
≤EX

NC1-complete for NC1ONLO∩PBO

1. Relations among Classes
2. Inclusion Relationships

V. Relations among Log-Space Classes

Relations among Classes

• Yamakami (2011) showed the following.

• Implications
L = P ⇔ LONLO∩PBO = PONLO∩PBO
NC1 = L ⇔ NC1ONLO∩PBO = LONLO∩PBO
L ≠ P ⇒ PONPO ⊄ APXLNLO
NC1 ≠ NL ⇒ NC1ONLO ≠ APXNC1

NLO

• Separations
NC1ONLO ⊄ APXAC0

NLO

AC0ONLO ≠ APXAC0
NLO

LSASNLO

AC0ASNPO

APXAC0
NLO

AC0ONLO

APXAC0
NPO

APXNC1
NPO

NC1ASNPO

APXNC1
NLO

NC1ONLO

AC0ONPO

NC1ONPO

APXLNPO

LONPO

APXPNPO

PONPO

PTASNPO
LSASNPO

LONLO
AC0ASNLO

NC1ASNLO

APXLNLO

NLO
= PONLO

= APXPNLO

NPO

Inclusion Relationships (again)
• We review our optimization classes again.

• Open Problem: We need to find more interesting
problems inside those classes.

1. Combinatorial Optimization Problems
2. Maximization CSPs
3. Visualizing MAX-CSP(F)
4. A Known Classification Theorem
5. A Use of Products of Objective Functions
6. Definition of MAX-PROD-CSPs

VI. Optimization CSPs

Counting Constraint Satisfaction Problems (revisited)

• We recall the notion of counting CSPs or #CSPs from
Week 8.

• Let F be any set of constraints.

• Counting CSP: #CSP(F)
• Instance:
 a set of Boolean variables
 a set of constraints in F

• Question:
 How many (variable) assignments satisfy all the

given constraints?

• NOTE: all #CSPs (counting CSPs) are #P problems.

Weighted Constraints

• Creignou (1995) first gave a formal treatment to
maximization problem. He used unweighted Boolean
constraints.

• Here, we consider nonnegative real weighted
constraints, which are functions from {0,1}k to R≥0 = {
r∈R | r ≥ 0 }.

• Creignou (1995) and Khanna, Sudan, Trevisan, and
Williamson (2001) studied maximization CSPs.

Maximization CSPs (or MAX-CSPs)
• Let F be any set of constraints.
• Maximization CSP: MAX-CSP(F)

• Instance:
• A finite set of elements of the form
〈h,(xi1,xi2,...,xik)〉 on Boolean variables xi1,xi2,...,xik,
where h∈F, {i1,i2,...,ik} ⊆ [n].

• Solution:
• A truth assignment σ to x1,x2,...,xn.

• Measure:
• The sum ∑ h(σ(xi1),σ(xi2), ..., σ(xik)), where the

sum is taken over all 〈h,(xi1,xi2,...,xik)〉 ∈ H.

• MAX-CSP(XOR) coincides with MAX-CUT, which is
MAX-SNP-complete [Papadimitriou-Yannakakis (1991)]

This measure is
referred to as an
additive measure.

Visualizing MAX-CSP(F)

• An input Ω = (G,F’,π), where
1. a bipartite graph G = (V1|V2,E),
2. F’ ⊆ F, a finite subset,
3. π: V2 → F’ (a labeling function).

• MAX-CSP(F)

• Instance: an input Ω
• Solution: find an optimal solution
• Measure: sum of all constraints

x1

x2

x3

x4

f1(x1,x4,x3)

f2(x2,x4)

f3(x1,x4,x3)

{ }
{ }

1 2 3 4
1 1 4 3 2 2 4 3 3 2 4, , , 0,1

max (, ,) (,) (, ,)
x x x x

f x x x f x x f x x x
∈

+ +

V1
V2 label

label

E

Boolean variables: {x1,x2,x3,x4}
(Boolean) constraints:
{ f1(x1,x4,x3), f2(x2,x4), f3(x1,x4,x3) }

We want to maximize the sum of all
objective values.

A Known Classification Theorem

• Creignou (1995) and Khanna, Sudan, Trevisan, and
Williamson (2001) proved the following classification
theorem on MAX-CSPs.

• Let F be any set of
constraints.

• Dichotomy Theorem
• If F is 0-valid, 1-valid, or 2-

monotone, then MAX-
CSP(F) is in PO.

• Otherwise, MAX-CSP(F)
is APX-complete.

P-computable
MAX-CSP(F)’s

APX-complete
MAX-CSP(F)’s

World of MAX-CSP(F)’s

Only 2 levels

A Use of Products of Objective Functions

• There are a number of cases where products of objective
values have been used.

• Linear multiplicative programming
• This minimizes the product of two positive linear cost

functions, subject to linear constraints.
• Geometric programming

• A certain type of product objective function can be
reduced to additive one if function values are all
positive.

• MAX-PROD-KNAPSACK
• Marchetti-Spaccamela and Romano (1985) proved that

a maximization problem whose maximization is
measured by the product of objective values.

• We call such a measure a multiplicative measure.

Example: MAX-PROD-KNAPSACK

• MAX-PROD-KNAPSACK
 instance: a finite set X of items, value pi∈N+ and size

ai∈N+ for each item xi∈X, and a number b∈N+

solution: a set Y⊆ X such that Σxi∈Y ai ≤ b
measure: multiplicative value Πxi∈Y pi

• (Claim) MAX-PROD-KNAPSACK has an FPTAS.

[Marchetti-Spaccamela and Romano (1985)]

• In comparison:
• (Fact) MAX-KNAPSACK (with additive measure) has

an FPTAS. [Ibarra-Kim (1975)]

Example: MAX-PROD-IS

• We see an example with a multiplicative measure.

• MAX-PROD-IS (maximum product
independent set)
• Instance:
 An undirected graph G = (V,E)
 A series { wx }x∈V of vertex

weights with wx∈R≥0

• Solution:
 An independent set A on G

• Measure:
 The maximum product weight

∏x∈A wx

3

4

4

1

0

5

A

product weight = 60

An independent set A is a subset of V
s.t. each edge in E is incident on at most
one vertex in A.

Example: MAX-PROD-BIS

• Another example is a restricted form of MAX-PROD-IS.

• MAX-PROD-BIS (bipartite independent set)
• In MAX-PROD-IS, all input graphs are limited to

bipartite graphs.

3

2

5
2

0

3

4
A

A

G = (V1|V2, E)

A: an independent set

product weight = 60

V1 V2

Example: MAX-PROD-FLOW

• MAX-PROD-FLOW (maximum product flow)
 Instance:

• A directed graph G = (V,E), a series {ρe}e∈E of
flow rates with ρe ≥ 1, and a series {wz}z∈V of
influx rates with wx ≥ 0

Solution:
• A Boolean assignment σ of V

Measure:
• The product

()()(,)(,) , () () , () 1x y zx y E x y z V z
w

σ σ σ
ρ

∈ ≥ ∈ =∏ ∏

Definition of MAX-PROD-CSPs
• We want to conduct a general study about optimization

CSPs whose maximization is taken by multiplicative
measures.

• Let F be any set of constraints.
• Maximization Product CSP: MAX-PROD-CSP(F)
 Instance:

• A finite set of elements of the form 〈h,(xi1,xi2,...,xik)〉
on Boolean variables xi1,xi2,...,xik, where h∈F,
{i1,i2,...,ik} ⊆ [n].

Solution:
• A truth assignment σ to x1,x2,...,xn.

Measure:
• The product ∏ h(σ(xi1),σ(xi2), ..., σ(xik)), where the

product is taken over all 〈h,(xi1,xi2,...,xik)〉 ∈ H.

This is an
multiplicative
measure.

Unary Constraints are Free of Charge

• For our results, we allow any unary constraint to use for free.
• Simple examples of unary constraints are ∆0, and ∆1.
• Let U be the set of all unary constraints.
• Such a use of free unary constraints has been made

elsewhere.
• Feder (2001) for Boolean CSPs
• Dalmau-Ford (2003) for Boolean CSPs
• Cai-Huang-Lu (2010) for Holant problems
• Cai-Lu-Xia (2009) for Holant problems
• Dyer-Goldberg-Jalsenius-Richerby (2010) for bounded-degree

#CSPs
• Yamakami (2010) for bounded-degree #CSPs

• Notational convention:
• MAX-PROD-CSP*(F) =def MAX-PROD-CSP(F,U)

∆0(x) = False(x)
∆1(x) = True(x)

Reminder

1. Randomized Approximation Schemes
2. Approximation-Preserving Turing Reductions
3. exp-APXPNPO

4. Important Sets of Constraints
5. Classification Theorem

VII. Approximation Schemes

Randomized Approximation Schemes

• We explain what type of approximation to use.

• Let P = (I, sol, m, goal) be any optimization problem.

• A randomized approximation scheme (or RAS) for F is a
probabilistic algorithm that
• takes (x,ε)∈ I×R≥0 as an input, and
• outputs a solution y ∈ sol(x) such that
• m*(x) is approximated by m(x,y) with relative error of 2ε

 with high probability.

• A fully polynomial-time randomized approximation scheme
(or FPRAS) is a RAS that runs in time polynomial in (|x|,1/ε).

NOTE: in this model, even if
α and β are approximated,
α+β may not be
approximated properly for
real numbers α, β.

(,)2 2
*()

m x y
m x

ε ε− ≤ ≤

Approximation-Preserving Turing Reductions

• Dyer, Goldberg, Greenhill, and Jerrum (2003) introduced a
notion of approximation-preserving (Turing) reduction for
counting CSPs.

• Yamakami (2011) introduced a similar reduction for
optimization CSPs

• Let P=(I,sol,m,goal) and Q=(I’,sol’,m’) be any two
optimization problems.

• P is APT-reducible to Q by a reduction M ⇔
1. M is an oracle PTM working on input (x,ε) with an oracle,
2. M is a RAS for F and the oracle is also a RAS for G,
3. every oracle call made by M is of the form (w,δ) with 1/δ

≤ poly(|x|,1/ε),
4. the running time of M is bounded by a polynomial in

(|x|,1/ε).

Notational conventions:
P ≤APT Q ⇔ P is APT-reducible to Q.
P ≡APT Q ⇔ P ≤APT Q and Q ≤APT P.

exp-APXPNPO

• Recall that APXPNPO (or APX) consists of all NPO
problems, each of which is polynomial-time γ-
approximable for a certain constant γ>0.

• A function f : N → N is called exponentially bounded if
there is a positive polynomial p such that 1 ≤ f(n) ≤ 2p(n)
for every n∈N.

• exp-APXPNPO consists of all NPO problems P such that
there are an exponentially-bounded function r and a
polynomial-time r-approximate algorithm for P.

Lemmas

• We can prove the following lemmas.

• Lemma [Yamakami (2011)]
 For any set F of constraints,
MAX-PROD-CSP(F) ≤APT exp-APXPNPO

• Lemma [Yamakami (2011)]
MAX-PROD-IS ≤APT MAX-PROD-CSP*(OR)
MAX-PROD-BIS ≤APT MAX-PROD-CSP*(Implies)

Important Sets of Constraints

• We introduce several important sets of constraints.

• DG = the set of degenerate constraints (that is,
products of unary constraints)

• ED = the set of constraints which are products of unary
constraints, EQ2, and XOR

• AF = the set of affine-like constraints

• IMopt = the set of constraints which are products of
unary constraints, (1,1,λ,1) with 0≤λ<1.

Classification Theorem I

• Let F be any set of constraints.

• Theorem [Yamakami (2011)]
1. If either F⊆AF or F⊆ED, then

MAX-PROD-CSP*(F) is in PO.
2. Otherwise, if F⊆IMopt, then
 MAX-PROD-BIS ≤APT MAX-

PROD-CSP*(F) ≤APT MAX-
PROD-FLOw.

3. Otherwise, MAX-PROD-IS ≤APT
MAX-PROD-CSP*(F).

PO

NPO

MAX-PROD-IS

MAX-PROD-BIS

Classification Theorem II

• A key is the following proposition about single
constraints f.

• Proposition [Yamakami (2011)]
• Assume that f ∉ AF∪ED. Let F be any signature set.
1. If f ∈IMopt, then MAX-PROD-CSP*(Implies,F) ≤APT

MAX-PROD-CSP*(f, F).
2. If f ∉IMopt, then there exists a constraint g∈{ OR,

NAND } such that MAX-PROD-CSP*(g,F) ≤APT MAX-
PROD-CSP*(f, F).

Q & A
I’m happy to take your question!

 END

	9th Week
	Course Schedule: 16 Weeks
	YouTube Videos
	Main References by T. Yamakami
	I. Uniform Circuit Families
	Families of Boolean Circuits (revisited)
	Circuit Complexity Measures (revisited)
	Fan-in of Circuits
	Uniform Families of Circuits
	Complexity Classes ACk and NCk
	Open Problems
	II. NP Optimization Problems
	Combinatorial Optimization Problems
	NP Optimization Problems I
	NP Optimization Problems II
	NPO and PONPO
	Performance ratios
	Approximation Schemes
	APXPNPO (or APX)
	Relationships among Optimization Classes
	Reductions and Completeness
	Preserving Approximability of NPO Problems
	Approximation-Preserving (APP) Reductions
	Completeness by APP-Reductions
	Example: MinLP
	Example: MaxCut
	Example: Min st-Cut
	A Map of Complete Problems
	Inside PONPO
	III. NL Optimization Problems
	How to Refine Problems Inside PONPO
	Auxiliary Turing Machines
	Auxiliary TMs and Complexity Class NL
	auxL and auxFL
	NL Optimization (or NPO) Problems
	Example: Max Vertex
	Polynomially-Bounded Problems
	LONLO, LONPO, etc.
	Log-Space Approximation Schemes
	APXLNLO, APXLNPO, etc.
	NC1ONLO, AC0ONLO, etc.
	Relations among Refined Classes
	IV. Complete NL Optimization Problems
	Approximation-Preserving Reductions
	More Reductions
	Exact Reductions
	Example: Max Vertex
	Example: Max BFVP
	Complete Problems I
	Complete Problems II
	V. Relations among Log-Space Classes
	Relations among Classes
	Inclusion Relationships (again)
	VI. Optimization CSPs
	Counting Constraint Satisfaction Problems (revisited)
	Weighted Constraints
	Maximization CSPs (or MAX-CSPs)
	Visualizing MAX-CSP(F)
	A Known Classification Theorem
	A Use of Products of Objective Functions
	Example: MAX-PROD-KNAPSACK
	Example: MAX-PROD-IS
	Example: MAX-PROD-BIS
	Example: MAX-PROD-FLOW
	Definition of MAX-PROD-CSPs
	Unary Constraints are Free of Charge
	VII. Approximation Schemes
	Randomized Approximation Schemes
	Approximation-Preserving Turing Reductions
	exp-APXPNPO
	Lemmas
	Important Sets of Constraints
	Classification Theorem I
	Classification Theorem II
	Slide Number 75
	Slide Number 76
	Slide Number 77

