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YouTube Videos 

• This lecture series is based on numerous papers of T. 
Yamakami. He gave conference talks (in English) and 
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.  

• Use the following keywords to find a playlist of those 
videos.  

• YouTube search keywords: 
    Tomoyuki Yamakami  conference  invited talk playlist 
 

Conference talk video 
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Why Do We Need Quantum Information? 

• Limitations of the existing computers 
 The existing computer will face physical difficulty in 

making computer chips smaller.  
 The existing computer may not efficiently solve a large 

number of important problems. 
• Looking into physics 
 Fundamentally, a computer is a physical object. 
 The existing computer is based on classical physics 

whereas Nature obeys quantum mechanics. 
Realization of the fact that information is physical.  



What can a Quantum Computer Do? 

• A quantum computer can: 
 do factoring faster. 
 break the RSA cryptosystem. 
 do database search faster. 

• Quantum communication can do: 
 quantum teleportation. 
 quantum dense coding. 

• Quantum cryptography can: 
 establish secure communication. 
 build secure cryptosystems. 



Currently Developing Quantum Computers I 

• A number of companies have been trying to build 
quantum computers.  

D-Wave’s quantum computer 



Currently Developing Quantum Computers II 

Google’s 
quantum 
computer 

Microsoft’s quantum computer 

IBM’s quantum computer 

NTT’s quantum computer 



What is a Qubit?  
Unit of Quantum Information 

• The elementary unit of classical information is bit.  
 

• Quantum bit (qubit) is used in quantum information theory. 
• Dirac’s ket notation, |ψ〉, is used to describe those “qubits.”  

• Conventionally, we write |0〉 for bit 0 and |1〉  for bit 1.   

|1〉 - spin head down |0〉  - spin head up 



Bloch Sphere Representation of a Qubit  I 

( )2 2cos 0 sin 1i ie eγ ϕθ θψ = +

0 1ψ α β= +

Geometric representation 

2 2cos 0 sin 1ie ϕθ θψ = +

The numbers θ and ϕ define a 
point in the Bloch sphere. 

If a phase factor eiγ  is  ignored, we can 
write |ψ〉 effectively as: 

1 qubit 

1i = −

A quantum bit (qubit) is a quantum analogue of a classical bit. 

A qubit is a linear combination of 
|0〉 and |1〉  s.t. |α|2+|β|2 = 1.  



Bloch Sphere Representation of a Qubit  II 

|1〉  

|0〉 |φ〉 = α|0〉 + β|1〉  

|0〉  represents classical bit 0 
|1〉  represents classical bit 1 

A qubit is a linear combination of |0〉 and |1〉  s.t. |α|2+|β|2 = 1.  



Physical Representation of Qubits 

|1〉  

|0〉 
|φ〉 = α|0〉 + β|1〉  

|0〉  represents classical bit 0 
|1〉  represents classical bit 1 

nucleus 

electron electron 

atom 

Two electronic 
levels in an atom 

An electron 
exists in a 

superposition 



A Quantum State over n Qubits 

|φ〉 = |φ1〉|φ2〉 … |φn〉 

one qubit / each 

Note that each qubit in |φ〉  may not 
independent. 

1 2 3 n …….. 

One qubit can be extended to a system of n qubits. 

|φ1〉 |φn〉 |φ2〉 |φ3〉 



Mathematical Definition of a Qubit 

A qubit |φ〉 is a linear combination of |0〉 
and |1〉 (called a superposition) of the 
vector form: 
                |φ〉 = α|0〉 + β|1〉 
 where α,β∈C with |α|2+|β|2=1.  

β
ϕ

α 
=  
 

0
0

1 
=  
 

1
1

0 
=  
 

1 0
0 1

0 1α β α β
   

= + = +   
   

superposition 

α,β are called amplitudes 



Computational Basis of 1 Qubit System 

• A quantum state of 1 qubit can be expressed by 
using two orthnormal basis states.   

• To express 1 qubit systems, we use  B = { |0〉, |1〉 }, 
which is called the computational basis. 
 
 

0

1

0 1ϕ α β= +

A standard coordinate system 



Quantum Information vs Classical Information 
How much information can we store in a quantum state? 

• Question: How many classical bits can n qubits encode? 
• Quick Answers: 

• Holevo’s Theorem says n bits. 
• Dense coding with quantum teleportation encodes 2n bits. 
• Quantum fingerprinting encodes 2O(n) bits. 
• Complex amplitudes encode infinitely many bits. 

n qubits 

1 2 n 3 …… 



Multi Qubits 

• To express multiple qubit systems, we use the notation 
of ⊗ (tensor product). 

• For example, |0〉⊗|0〉, |0〉⊗|1〉, |1〉⊗|0〉, and |1〉⊗|1〉. 
• For convenience, we often write |00〉, |01〉, |10〉, and 

|11〉 instead. 
• Qubit |01〉, for example, can be calculated as follows:  

 0 0
1

11 0 1
01 0 1

0 1 00
0

01

    ⊗            = ⊗ = ⊗ = =            ⊗         



How Do We Obtain Quantum Information? 

✑The measurement is 
the way to find out 
what is going on 
inside the quantum 
system. 

✑When a qubit is 
measured, quantum 
mechanics requires 
the result to be always 
a classical bit. 

measurement 

|0〉 

|1〉 

Sphere representation 



Projection Measurements 

0 1
α

ϕ α β
β
 

= + =  
 

2α

0

1

2β

By measurement, we obtain 
|0〉 with probability |α|2. 

By measurement, we obtain 
|1〉 with probability |β|2. 

2 2 1α β+ =

projection 



What is Quantum Entanglement?  

( )0 11
2

1 0ψ = +

If Bob measures |ψ〉 and obtain |0〉, then 
Alice must obtain |1〉 after measurement. 

If Bob measures |ψ〉 and obtain |1〉, then 
Alice must obtain |0〉 after measurement. 

An Bell pair |ψ〉 

Bob’s 
qubit 

Alice’s 
qubit 

• In certain 2-qubit systems, two qubits can be strongly 
correlated. 

• Such correlation is called quantum entanglement.   



Entangled States: EPR Pair 

• Consider the EPR pair 
• This quantum state can be expressed as: 

 
 
 
 
 
 

• The EPR pair will be discussed later in conducting 
quantum teleportation. 

( )1 00 11
2

ϕ = +

1 0 1 2
0 0 01 1 1 100 11
0 0 02 2 2 2
0 1 1 2

ϕ

    
    
    = + = + =     
    
      



Bra Notation 

• Given a matric A, we write A+ (dagger) for the 
transposed conjugate of A. 

• Since |ϕ〉 is expressed as a column vector, we can 
consider (|ϕ〉)+, which we express as 〈ϕ| (bra notation). 

• The inner product between |ϕ〉 and |ψ〉 is expressed as  
〈ϕ|ψ〉.  

• The outer product is expressed as |ϕ〉〈ψ|, which is a 
matrix. 



Examples 

• We show some examples of how to use the bra notion. 

1 0
0 0

0 0
 

=  
 

0 0
1 0

1 0
 

=  
 

0 1
0 1

0 0
 

=  
 

0 0
1 1

0 1
 

=  
 

( ) ( )1 10 1    and   0 1   
2 2

ϕ ψ= + = −

( )( ) ( )

( )

1 10 1 0 1 0 0 0 1 1 0 1 1
2 2
1         1 0 0 1 0
2

ϕ ψ = + − = − + −

= − + − =

( )( ) ( )1 10 1 0 1 0 0 0 1 1 0 1 1
2 2

1 11         
1 12

ϕ ψ = + − = − + −

− 
=  − 

Let 

inner product 

outer product 
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Logical Gates and Logical Circuits   

AND ( ) { }m n ,: , ia bA bD aN →

( ) { }m ,: , axO a b a bR →

: 1aN T aO → −

NOT OR 

NOT 

AND 

OR 

OR 

1 1 1 1 0 

1 

Logical circuit 
Logical gates a b

NOT 

a

OR 

a b



What are Quantum Gates? 

ϕ 1U

ϕ
2U

1-qubit quantum gates 

ψ

1

a b
U

c d
 

=  
 

1 0
0 1

0 1
ϕ α β α β

   
= + = +   

   

1 1 10 1
a b a b

U U U
c d c d

α
ϕ α β α β

β
      

= = + = ⋅ + ⋅      
      

2-qubit quantum gates 

ψ

11 12 13 4

21 22 23 24
2

31 32 33 34

41 42 43 44

a a a a
a a a a

U
a a a a
a a a a

 
 
 =
 
 
 



Examples of 1-Qubit Quantum Gates  I 

• Here are two examples of simple quantum 
gates that handle one qubit: 
• I (identity) 
• NOT (negation) 

1 0
0 1

I  
=  
 

0 1
1 0

NOT  
=  
 

0 0
:

1 1
I
 →
 →

0 1
:

1 0
NOT

 →
 →

0

1



Examples of 1-Qubit Quantum Gates  II 

1

2

1 1
1 1

H  
=  − 

0

1
1 10 0 1
2 2

H = +

1 11 0 1
2 2

H = −

H: Walsh-Hadamard Gate 

1 1 1 1 1 01 1 1 1
1 1 0 1 0 1

1 10 0 1
2 2 2 22 2

H         
= = = + =        −        

+

1 1 0 11 1 01 1 1 1
1 1 1 1 0 12 2 2

1
22

11 0
2

H         
= = = − =        − −        

−



Examples of 1-Qubit Quantum Gates  III 

Phase Shift: S 

cos sin
2 2( )

sin cos
2 2

x

i
R

i

θ θ

θ
θ θ

 − 
=  
 − 
 

( )
cos sin

2 2

sin cos
2 2

yR

θ θ

θ
θ θ

 − 
=  
  
 

( )
/ 2

/ 2

0
0

i

z i

e
R

e

θ

θ
θ

− 
=  
 

1 0
0 i

S  
=  
 

1 0 1 1
0 0

0 0 0i
S     

= = =    
    

1 0 0 0
1 1

0 1
S i

i i
    

= = =    
    

1i = −

Rotations: Rx(θ),Ry(θ),Rz(θ) 



Examples of 1-Qubit Quantum Gates  IV 

Phase Shift: Z1,θ, Z2,θ 

1,
0

0 1

ie
Z

θ

θ

 
=  
 

1i = −

1,

1 0
0 iZ

eθ θ

 
=  
 

1, 2,(2 )zR Z Zθ θθ =

2, 2S Z π=

We then obtain: 



Examples of 2-Qubit Quantum Gates 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

CNOT

 
 
 =
 
 
 

Controlled-NOT: CNOT 

0 0CNOT a a=

1 1 1CNOT a a= −

ϕ

Controlled bit 

{ }0,1a∈



What is a Quantum Circuit? 

• To manipulate quantum information, we use unitary 
operations, which are realized by quantum circuits made of a 
finite set of “simple” quantum gates. 

• In particular, we use quantum circuits whose circuitry can be 
“efficiently” designed in a reasonable amount of time (say, 
polynomial time). 

• Such a quantum circuit transforms qubits as follows: 

input qubits output qubits 

A quantum circuit 



Quantum Fourier Transform (QTF) 

• We show one example of quantum circuit, which 
computes the quantum Fourier transform (QTF). 

2 1
2 /2

0

1 ,  where 0 2 1
2

n
nijk n

n
k

QTF j e k jπ
−

=

= ≤ ≤ −∑

2 /2

1 0

0
kk i

R
e π

 
≡  
 

1 11
1 12

H  
≡  − 



No-Cloning Theorem 

• The no-cloning theorem gives a significant limitation to 
quantum computation. 

No-Cloning Theorem:  
No quantum algorithm makes an exact copy of 

any quantum state. 

• “Making an exact copy” means that a certain unitary 
transformation U satisfies U|φ〉|0〉 = |φ〉|φ〉 for any |φ〉.  

copy 

U 

|ϕ〉 |0〉 |ϕ〉 |ϕ〉 



Proof of the No-Cloning Theorem 

• Theorem: There is no quantum computation U such 
that, for any quantum state |φ〉, U|φ〉|0〉 = |φ〉|φ〉.  

 Proof:  
• Assume that there exists a unitary operator U such 

that U|φ〉|0〉 = |φ〉|φ〉 for any |φ〉.  
• Consider two unit vectors |φ〉 and |ψ〉 satisfying 

0<|〈φ|ψ〉|<1. Obviously, |〈φ|ψ〉|2<|〈φ|ψ〉|.  
• Since U is unitary, we obtain: 
 

 〈φ|ψ〉 = 〈φ,0|ψ,0〉 = 〈Uφ0|Uψ0〉 = 〈φ,φ|ψ,ψ〉 = |〈φ|ψ〉|2. 
 

• This is clearly a contradiction.           QED 



Sets of Universal Quantum Gates 

 
 

• There are infinitely many quantum gates to consider. 
• However, it is possible to take a fixed set of quantum 

gates in order to realize all the other quantum gates in 
an approximate way. 

• A set of those specific quantum gates is called 
universal. 

• Examples of sets of universal gates:  

1) CNOT  +  all 1-qubit gates 
2) Walsh-Hadamard  +  CNOT  +  Z2,π/4  

     [Boykin-Mor-Pulver-Roychowdhury-Vatan (1999)] 



Uniform Families of Quantum Circuits 

• We fix a finite family of universal quantum gates: for 
example,  

        Walsh-Hadamard gate + CNOT gate + Z2,π/4  gate. 

• We then consider appropriate encoding of these gates. 
We consider families {Cn}n∈N  of quantum circuits, where 
each Cn takes n inputs. 

•  We say that a family {Cn}n∈N  of quantum circuits is 
called P-uniform if there exists a polynomial-time DTM 
M with an output tape such that, for every index n∈N,  M 
on input 1n produces an encoding of Cn.    

                M:  1n →  description 〈Cn〉 of circuit Cn 



Polynomial-Time Quantum Computation 

• A decision problem (or a language) L is said to be 
polynomial-time solvable if there exists a P-uniform 
family {Cn}n∈N  of polynomial-size quantum circuits such 
that, for each n∈N and any x∈Σn,    
1. if x ∈ L ↔  Cn(x) = 1 with probability ≥ 2/3, and  
2. if x ∉ L ↔  Cn(x) = 0 with probability ≥ 2/3.  

• A function f : Σ* → Σ* is polynomial-time computable if   
there exists a P-uniform family {Cn}n∈N  of polynomial-
size quantum circuits with outputs such that, for each 
n∈N and any input x∈Σn, Cn outputs exactly f(x) with 
probability ≥ 2/3. 
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Black-Box Model of Quantum Computation I 

• Unlike the model of quantum 
circuits, we discuss a black-
box model of quantum 
computation. 

• In this mode, input information 
is given by way of queries to 
an external source, called an 
oracle.  

• We are concerned about how 
many times a computation 
accesses the input information.  

 

A query 

An answer 

Oracle 

Quantum 
computer 



Black-Box Model of Quantum Computation II 

A query 

An answer 

Oracle: Of 

Quantum 
computer 

U1 Ob U2 Ob U3 

|r〉|s〉 

|r〉|s⊕f(r)〉 

Let f be any function from {0,1}n to {0,1}l. 
Oracle Of is used to represent this function f. 

An oracle computation proceeds 
as a chain of unitary operations 

and oracle queries. 

|0m〉 

|0n〉 
|ϕ〉 

Instead of starting standard input x, the input information is given 
through oracle queries.  



Deutsch’s XOR Problem 

• A function f: {0,1} → {0,1} is  
 balanced if |f-1(0)|=|f-1(1)| (i.e., f(0)⊕f(1)=1) 
 constant if either |f-1(0)|=2 or |f-1(1)|=2 (i.e., f(0)⊕f(1)=0) 

Deutsch’s XOR problem 
Input: a function f : {0,1} → {0,1} 
Question: Is f balanced? 

f(0)=0 
f(1)=0 

f(0)=0 
f(1)=1 

f(0)=1 
f(1)=0 

f(0)=1 
f(1)=1 

There are four possibilities. 

balanced balanced constant constant 

How many 
times should 
we access f? 



A Quantum Algorithm for Deutsch’s Problem 

 Here is a quantum algorithm of Cleve, Ekert, Macchiavello, 
and Mosca (1998) 
1. Initially, prepare |0〉|1〉. 
2. Apply H⊗H. 
3. Apply Of. 
4. Apply H⊗H. 
5. Observe the first register w.r.t. computational basis {|0〉,|1〉}. 
6. If 1 is observed, then output YES, or else NO. 

H H 

Of 

|0〉 

|1〉 H H 

measurement 

This gate may be 
eliminated. 

We query only once! 



Analysis of the Quantum Algorithm  I 

( ) ( ) ( )1 10 1 0 1 0 1 0 1
2 2

H H H H⊗ = ⊗ = + ⊗ −

( ) ( ) ( )1 10 0 1 0 0 1 1 1 0 0 1 1 0 1
2 2

 = + − − = − + − 

Step 2 

( ) ( ) ( )10 1 0 0 (0) 1 (0) 1 0 (1) 1 (1)
2fO H H f f f f ⊗ = ⊕ − ⊕ + ⊕ − ⊕ 

( ) ( ) ( )(0) (1)1 1 0 1 1 0 1
2

f f = − + − − 

Step 3 oracle query/answer 

oracle query/answer 



Analysis of the Quantum Algorithm  II 

( ) ( ) ( ) ( )(0) (1)10 1 1 0 1 1 0 1
2

f f
fH H O H H H H H H ⊗ ⊗ = − + − ⊗ −   

Step 4 

( ) ( ) ( ) ( ) ( ) ( )(0) (1)1 1 0 1 1 0 1 0 1 0 1
4

f f   = − + + − − ⊗ + − −  

( ) ( )( ) ( ) ( )( )(0) (1) (0) (1)1 1 1 0 1 1 1 1
2

f f f f = − + − + − − − ⊗
 

( ) (0)1 (0) (1) 1f f f= − ⊕

Step 5 

( ) ( )
( )

(0)
(0)

(0)

1 1   if   (0) (1)
1 (0) (1) 1

1 1   if    (0) (1

0 0

1 1)

f
f

f

f f
f f

f f

 − ⊕ =− ⊕ = 
− ⊕ =

Measurement 



Quantum State Identity Testing 

• Let us consider the problem of determining if given two 
(classical) binary strings s and t are identical.  

• How can we solve this question? 

• A simple solution is to look at these strings and check 
each pair of corresponding bits are exactly the same.  

• What if we are given two unknown quantum states 
instead of the two binary strings? 

• Unfortunately, we cannot physically look at the quantum 
states because the observation destroys the original 
quantum states! 



Quantum State Identity Testing Problem 

• Is there any way to check the identity of two unknown 
quantum states without looking at them? 

• More specifically, let us consider the following promise 
problem. 

• Quantum State Identity Testing Problem (2QSITP) 
 Input: two quantum states |ϕ〉 and |ψ〉 of the same 

dimension. 
 Promise: |ϕ〉 and |ψ〉 are either equal or orthogonal 
 Question: are |ϕ〉 and |ψ〉 identical? 

• In the next slide, we will give a simple quantum 
algorithm that solves this 2QSITP. 



SWAP TEST Algorithm for 2QSITP  I  

• The following SWAP TEST algorithm solves 2QSITP. 

 SWAP TEST 
1. Start with the three registers that contain |0〉⊗|ϕ〉⊗|ψ〉. 
2. Apply H to the first register. 
3. Conditionally swap the second and third registers; 

namely, if the first register contains 1, then swap the 
two registers; otherwise, do nothing. We do not need 
to look at the quantum states! 

4. Apply H again to the first register. 
5. Measure the first register. If we observe 0, then 

output 1 (YES); otherwise, output 0 (NO). 



SWAP TEST Algorithm for 2QSITP  II  

• SWAP TEST algorithm enjoys the following properties. 

• Proposition:  [Kada-Nishimura-Yamakami (2008)] 
For any YES instance to 2QSITP, SAWP TEST outputs 
YES with certainty and, for any NO instance, it outputs 
NO with error probability exactly 1/2.  

• One-sided error requirement says that, for any YES 
instance to 2QSITP, a given algorithm must output YES 
(1) with certainty (i.e., probability 1). 

• Proposition:  [Kobayashi-Matsumoto-Yamakami (2009)] 
Under the one-sided error requirement, SWAP TEST is 
an optimal operation to solve 2QSITP. 



Analysis of SAWP TEST  I 

( ) ( )2 10 0 0 1
2

H I Hϕ ψ ϕ ψ ϕ ψ⊗ = ⊗ = + ⊗

1 10 1 .
2 2

ϕ ψ ϕ ψ= +

Step 2 

( )2 1 10 0 1 .
2 2

CSWAP H I ϕ ψ ϕ ψ ψ ϕ⊗ = +

Step 3 Swap 

Step 1 0 ϕ ψ⊗

• To show the first proposition, we give a close analysis 
of SAWP TEST algorithm. 



( ) ( )2 2 0H I CSWAP H I ϕ ψ⊗ ⊗

Step 4 
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Measurement 

1 10 1 0 1
2 2

ϕ ψ ψ ϕ= + ⊗ + − ⊗      

Measurement 

Analysis of SAWP TEST  II 

• If 〈ϕψ〉=0 (orthogonal), it follows that |||ϕ〉|ψ〉−|ψ〉|ϕ〉||=√2. 
Thus, 1 is observed with probability (√2 / 2)2 = 1/2.  



Identity Testing of n Objects 

• Kada, Nishimura, and Yamakami (2008) studied the 
identity testing of n objects, where n ≥ 2.  

• n Quantum State Identity Testing Problem (nQSITP) 
 Input: n quantum states |ϕ1〉, |ϕ2〉,..., |ϕn〉 of the same 

dimension 
 Promise: any pair of the quantum states is either 

equal or orthogonal 
 Question: are all of |ϕ1〉, |ϕ2〉,..., |ϕn〉 identical? 

• Kada, Nishimura, and Yamakami (2008) proposed 
several quantum algorithms to solve this nQSITP. 



PERMUTATION TEST 
• Here is one of quantum algorithms proposed by Kada, 

Nishimura, and Yamakami (2008) to solve nQSITP for any 
n ≥ 2.  

 PERMUTATION TEST 
1.Start with the n+1 registers that contain |0〉⊗|ϕ1〉⊗...⊗|ϕn〉. 
2.Apply QFT  Fn!  over n! elements to |0〉. 
3.Apply a controlled-σ operator; i.e., if the first register is 

i∈{0,1,...,n!-1}, transform |ϕ1〉⊗...⊗|ϕn〉 to 
|ϕσi(1)〉⊗...⊗|ϕσi(n)〉, where σi is the i-th permutation over n! 
elements. 

4.Apply  ( Fn! )-1  to the first register. 
5.Measure the first register. If we observe 0, then output 1 

(YES); otherwise, output 0 (NO). 
 



CIRCLE TEST 

• We see another quantum algorithm of Kada, Nishimura, 
and Yamakami (2008) for nQSITP.  

 CIRCLE TEST 
1.Start with the n+1 registers that contain |0〉⊗|ϕ1〉⊗...⊗|ϕn〉. 
2.Apply QFT  Fn  over n elements to |0〉. 
3.Apply a controlled-σ operator; i.e., if the first register is 

i∈{0,1,...,n-1}, transform |ϕ1〉⊗...⊗|ϕn〉 to |ϕσi(1)〉⊗...⊗|ϕσi(n)〉, 
where σ(k)=k+1 and σ(n)=1 for all k∈[n-1], and σi is 
obtained by the i applications of σ. 

4.Apply  ( Fn )-1  to the first register. 
5.Measure the first register. If we observe 0, then output 1 

(YES); otherwise, output 0 (NO). 
 



Efficiency of the Quantum Algorithms 

• Proposition:  [Kada-Nishimura-Yamakami (2008)] 
Let n≥2. For any YES instance to nQSITP, PERMUTATION 
TEST outputs YES with certainty and, for any NO instance, 
it outputs NO with error probability at most 1/n.  

• Proposition:  [Kada-Nishimura-Yamakami (2008)] 
Let n be any prime number. For any YES instance to 
nQSITP, PERMUTATION TEST outputs YES with certainty 
and, for any NO instance, it outputs NO with error 
probability at most 1/n.  

• Proposition:  [Kada-Nishimura-Yamakami (2008)] 
Under the one-sided error requirement, PERMUTATION  
TEST is an optimal operation to solve nQSITP for n≥2. 



Important Quantum Algorithms 

• Shor’s integer factorization algorithm 
 Find all factors of each given natural 

number. 
 The fastest classical algorithm (so far) 

requires exponential time. 
 A quantum algorithm takes O(n2log2n) time. 

• Grover’s database search algorithm 
 Find a unique key in database of N 

locations. 
 The classical algorithm needs N-1 

accesses in worst case. 
  A quantum algorithm needs (π/4)√N 

accesses. 



What is Integer Factorization Problem? 

Example:  
Let n = 33957.  
The prime factors are {3,7,11} because 33957 = 32×73×11.  

Integer Factorization Problem (IFP) 
Input: nonnegative integer n 
Output: all prime factors of n 

Unfortunately, the Integer Factorization Problem seems 
very difficult to solve; there is no known fast classical 
algorithm that solves the problem.  



Why is Factorization Difficult? 

2799783391122132787082946763872260162107044678
6955428537560009929326128400010760934567105295
5360856061822351910951365788637105954482006576
7750985805576135790987349501441788631789462951
87237869221823983 

Computational Problem: Find all the prime 
factors of the following number. 

3532461934402770121272604
9781984643686711974001976
2502364930346877612125367
9423200058547956528088349 

7925869954478333033347085
8414800596877379758573642
1996073433034145576787281
8152135381409304740185467 

× = 

We needed to run 80 computers for 3 months to obtain the above factors. 



How Fast does Factoring Go?  

Future factoring times on networks of 1000 classical 
workstations (whose power increases by Moore’s law). 

Factoring on quantum computers with minimal clock 
speed of 100MHz. 

Classical Case 

Quantum Case 



1. First Quantum Crypto Machine 
2. Quantum Teleportation Basics 
3. A Quantum Teleportation Circuit 
4. Analysis of Quantum Circuit 
5. Another Teleportation Circuit 

IV. Quantum Teleportation 



First Quantum Crypto Machine 

The first quantum cryptography machine built by IBM in 1989. 



Quantum Teleportation Basics 

( )1
2

0 0 1 1ψ = +

An 
unknown 

qubit An EPR pair 

Alice Bob 

1. Alice applies CNOT. 
2. Alice applies H⊗I. 
3. Alice measures two qubits. 

4. Alice tells Bob about 
her measured results ab. 

5. Bob receives two bits ab. 
6. Bob applies two quantum gates. 
7. Bob creates |ϕ〉. 

ab ab 

|ϕ〉 

|ϕ〉 |ϕ〉 

Quantum teleportation is a way of sending quantum 
information without actually sending qubits. 



A Quantum Teleportation Circuit 

H |ϕ〉 

|ϕ〉 
|ψ〉 

Measurement 
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I b
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1 0
0 1

Z  
=  − 

0 1
1 0

NOT  
=  
 

1 0
0 1

I  
=  
 

• Quantum teleportation can be realized by the following 
quantum circuit. 

|ψ〉 = the EPR pair 

|ϕ〉= unknown qubit 



Analysis of Quantum Circuit  I 

H |ϕ〉 

|ϕ〉 
|ψ〉 

NOTb Za 

b 

a 

• Let us analyze the given quantum circuit. 

(1) (2) (3) (4) (5) 

Assume that  0 1ϕ α β= +

( )1 00 11
2

ψ = +Recall that  



Analysis of Quantum Circuit  II 

Step (2) 
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Analysis of Quantum Circuit  III 

Step (3) 
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Analysis of Quantum Circuit  IV 
Step (4) 

Step (5) 

( )4
b aNOT Zξ ϕ= ⋅

• After measurement, assume that we obtain |ab〉 with 
probability 1/4. 

• We then obtain a normalized quantum state |ξ4〉. 

• We then apply Za⋅NOTb to  |ξ4〉. 
• We then obtain a quantum state |ξ5〉. 

( )
( )( )

5 4

     

a b

a b b a

Z NOT

Z NOT NOT Z
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ϕ ϕ

= ⋅
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Another Teleportation Circuit  

1 11
1 12

L
− 

=  
 

1 11
1 12

R  
=  − 

• Here is a different quantum circuit that can teleport any  
unknown state from Alice to Bob. 

0
0 1
i

S  
=  
 

1 0
0

T
i

− 
=  − 





Q & A 
I’m happy to take your question! 



 
 

                                 END 
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