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YouTube Videos

e This lecture series is based on numerous papers of T.
Yamakami. He gave conference talks (in English) and
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.

« Use the following keywords to find a playlist of those
videos.

 YouTube search keywords:
Tomoyuki Yamakami conference invited talk playlist
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Classical Advice (revisited)

* Recall the notion of advice from Weeks 3 & 5.
* Inthose weeks, we have considered two types of advice:

1. deterministic advice, and
2. randomized advice.

o For clarity, we call such advice classical advice.



Non-Uniform Class P/poly (revisited)

* Recall from Week 3 the non-uniform complexity class
P/poly, which is defined by polynomial-time DTMs
equipped with advice tapes.

l

input/work tape

advice tape

* Recall that non-uniform families of polynomial-size
circuits also characterize P/poly (in Week 3).



Non-Uniform Complexity Class BOQP/poly |

e Recall the quantum polynomial-time complexity class
BOQP from Week 12.

e Nishimura and Yamakami (2004) defined complexity
class BQP/poly, which is a guantum analogue of P/poly.

 Alanguage L is in BQP/poly < there are a positive
polynomial p, an advice function h, and a QTM M
equipped with an advice tape such that, for any input X,

> |h(IxPI < p(lx]) and
» XelL <> M accepts (x,h(|x|)) with probability > 2/3.



Non-Uniform Complexity Class BQP/poly I

e Nishimura and Yamakami (2004) proved the following
nice characterization of BQP/poly in terms of polynomial-
Size quantum circuits.

e Theorem: [Nishimura-Yamakami (2004)]

L € BQP/poly < L has a non-uniform family of
polynomial-size quantum circuits C_, with error probability
at most 1/3.

n=|x|
IX) —] R measurement |[1)
L _ . ags
. om — G [ probability > 2/3
IX) - measurement |0)
Xel —— s — -
’ o™y — C, [ probability > 2/3




Generalization to BQP/F

« By taking a different set F of functions, we can define a
non-uniform complexity class BQP/F as a generalization
of BQP/poly.

e Let F be a set of functions from N — N.

[ A language L over alphabet X is in BOP/F < there are 5
function f € F, an advice alphabet I'", an advice function

h: N - I'*, and a polynomial-time QTM M equipped with
an advice tape such that, for all input xeX*,

> |h(IxPl < 1(]x]) and
k » XelL <> M accepts (x,h(|x|)) with probability > 2/3. /




Properties of BOP/F

 Nishimura and Yamakami (2004) presented the following
properties of BQP/F for various class F of functions.

e Theorem: ESPACE consists of all

_ languages recognized by
1 BQP/pOIW DTMs using 2°M space.
2. ESPACE ¢ BQP/poly
3. BQP. < BQP/log?
4

. BQP/1 € BQP. log® means the set of
functions of the form

clog3(n)+d for
constants c,d > 0.




Computation with Quantum Advice

* Nishimura and Yamakami (2004) first considered
guantum advice for polynomial-time quantum
computation.

 We run a machine that takes two inputs, which are a
standard input and advice.

a family { |¢p) }nen Of
quantum states

guantum
computation

T

standard input X (n=|x|)

€—— |p,) Quantum advice




BQP/Qpoly |

« With the use of quantum advice, Nishimura and
Yamakami (2004) defined complexity class BQP/Qpoly.

KA language L is in BOP/Qpoly < there are a positive \
polynomial p, a family { |e,) },.n Of quantum states, and
a QTM M with an advice tape such that, for any input x
of length n,

> |o,) is a quantum state of dimension 2P,
» X e L »> M accepts (x,|p,)) with probability > 2/3,
K > X ¢ L — Mrejects (X,|o,)) with probability > 2/3. /

 |n the next slide, we will see another characterization of
BQP/Qpoly.



BQP/Qpoly I

* Here is another characterization of BQP/Qpoly using
guantum circuits.

» Recall the characteristic function y, of a language L.

 Theorem: [Nishimura-Yamakami (2004)]

L € BQP/Qpoly < there exist a positive polynomial p, a
non-uniform family { C, },_y Of polynomial-size quantum

circuits, and a series { U,, },,.y Of unitary operators acting
on p(n) qubits such that, for any length n and any input x
of length n,

Prob[Cn (x,Un Op(”)>) = ;(L(X)} > 2

3




Generalization to BQP/Q(F)

o Similarly to BQP/F, we can generalize BQP/Qpoly to
BQP/Q(F) by taking a different set F of functions.

e Let F be a set of functions from N — N.

KA language L over alphabet X is in BOP/Q(F) < there \
are a function f € F, a family { |o,) },,cn Of quantum

states, and a polynomial-time QTM M equipped with an
advice tape such that, for all input xexn,

> |o,) is a quantum state of dimension 21",
> X e L — M accepts (x,|¢,)) with probability > 2/3,
K > X ¢ L — Mrejects (X,|o,)) with probability > 2/3. /

o For example, we can obtain BQP/Qlog and BQP/Q(1).




Properties of BQP/Q(f)

Concerning quantum advice, Nishimura and Yamakami
(2004) proved the following properties.

Theorem:

1. BQP/Qlog < BQP/poly

2. BQP/log # BOP/Qlog = BQP/poly
3. Pllog? € BQP/Qlog

4. EESPACE € BQP/Qpoly

EESPACE consists of all
languages recognized by
DTMs using space 220<n>




Open Problems

 Here is a short list of open problems associated with
BQP/poly and BQP/Qpoly.
1. Is BQP/poly = BQP/Qpoly?
2. I1s BQP < EQP/Qpoly?
3. Is PSPACE £ BQP/poly?

* In the above list, EQP/Qpoly denotes the non-uniform
complexity class defined by EQP and polynomial-size
guantum advice, similarly to BQP/Qpoly.
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Track Notation for Advice (revisited)

 More precisely, we use the following two-track representation
of [Tadaki-Yamakami-Lin0O4].

X . Xl X2 Xi Xn i X:X1X2.“Xi“'xn
W - W1 W2 Wi Wn ! W:W1W2...Wi...wn

Each of them X
IS treated as a >
new symbol
new symbol. W, ew Sy
When written on an input tape: ‘
Uppertrack | | sssus X, | omeees
¢ $

Lower track | |  aaaaa W: | =ssas




Classical Advice for Finite Automata (revisited)

Let I" be any advice alphabet.
Let t(n) be a length function.

In the case of deterministic advice, an advice string is
given for each length t(n).

In the case of randomized advice, for each length n, all
possible strings of length n are given according to an
advice probability distribution D, over I (",

X €X" is an input and

D, generates an advice X
string y eI ™ with ¢ $
probability D, (y). y

Advice string y Is given in the lower track of the tape.



Advised Language Families (revisited)

Let L be any language over an alphabet .

LeREG/n < dM:1dfa dI:advice alphabet Fh:N—>I™
1. YneN[|h(n)|=n].
2. VxeX"[xelL <> M accepts [x h(|x]]"].

LeCFL/n < dM:1npda 3dI':advice alphabet Fh:N—>I™*
1. YneN[|h(n)|=n].
2. VxeX"[xelL <> M accepts [x h(|x])]"].

LeREG/RnN

< dM:1dfa Je€[0,%) IT" I{D, },: advice prob. distribution

1. YneN [ D,, generates advice strings yel™ |.
2. VxeX" [ xeL — M accepts [x D,]" with prob. > 1-g ].
3. VxeZ" [ x¢L — M rejects [x D, ]" with prob. > 1-¢].



Inclusions and Separations (revisited)

-~
-_—

e The following figure shows known class —
separations among advised language families.

1-C_LIN/RIin = 1-PLIN/RIlin = ALL

CFL/Rn

\

<«— proper inclusion
<\~ hoinclusion

/' CFL/n /

1-PLIN/lin

1-BPLIN/RIin X

- REG/RN / \

“\>

co-1-C_LIN/lin

\ 1-C_LIN/lin
= REG/n A

LL = the class fo all languages




Reversible (Finite) Automata |

« A one-way deterministic reversible (finite) automaton (1rfa)

M = (Q.Z,{¢,$},6,00,Qa:Qye) is a restricted version of a
1dfa, which satisfies the following reversibility condition.

e Reversibility condition: for every inner state geQ and every A
symbol e, there exists at most one inner state peQ s.t.
6(p,0)=0.

O O

allowed

p#p

C#0C




Reversible (Finite) Automata Il

» Reversible finite automata are considered as the error-
free version of quantum finite automata.

» Because reversible finite automata are reversible and so
are quantum finite automata.



1RFA/n and 1RFA/RnN

« Similarly to REG/n and REG/Rn, we define the following.
Computation with deterministic advice

e LelRFA/n < 3 M: 1rfa 3 h: advice function s.t.
1. vn[|h(n)]=n] and
2. VxeX* [ M([x h(IxD]") = x.(X) 1.

Computation with randomized advice

e LelRFA/RN < 3 M: 1rfade€[0,Y2) 3T 3{D,},:advice prob.
dist. s.t.

1.vn e)l\l] [ every advice string yeI™ is generated with prob.
D(y) |
2.VxeX" [ xeL - M accepts [x D,]" with probability > 1-¢ ].

3.VxeZ" [ x¢L —» M rejects [x D, ]" with probability > 1-¢ ].



Power of Advice

Pal, = { w#wR | we{0,1}* }. (marked palindrome)
» (Known) Pal, ¢ REG/n.
» (Claim) Pal, isin 1IRFA/Rn. [Yamakami (2014)]

* Consider the context-free language:

« Consider the context-sensitive language:
Dup ={ww | we{0,1}* }. (duplicated words)
» (Known) Dup ¢ CFL/n.
» (Claim) Dup isin 1RFA/Rn. [Yamakami (2014)]



Proof of the First Claim

« Consider a language:

Pal, = { x#x® | xe{ 0,1 }* } (¢ DCFL)

o Fact: Pal,zREG/n [YamakamiO8].

* We claim that Pal,,e 1RFA/RN.

e Let our randomized advice
D, be s.t.

(1/2™ if n=2m and w= y#y~

D,(w)=1 1 if n=2m+landw=#"
0 otherwise.

e Let our 1rfa be s.t.

Compute xey and zeyR,
Accept x#z iff xey =, zeyR,

It |x|=|z| x | #| z

D, y | #| ¢

e We run this procedure twice independently to reduce the

error probability to Ya.



Separation Results ﬂ

4

1RFA/RnN is quite powerful, compared with REG/n.

Lemma: [Yamakami (2014)]
DCFLN1RFA/Rn € REG/n.

Yamakami (2014) further obtained the following class
separations among the aforementioned advised
language families.

= 1RFA/Rn &€ CFL/n

= 1RFA/n # 1RFA/RN



Characterization of 1RFA/n 44@

 Here is a machine-independent characterization of
languages in 1RFA/n given by Yamakami (2014).

« Theorem: Let S be any language over X. The following
two statements are logically equivalent.
1. Sisin 1RFA/n.
2. There is an equivalence relation =g over A s.t.
» the set A/=q Is finite, where A = { (x,n) | [Xx| £n}, and

» for any length parameter n, any symbol ceX, and any
two strings x,yeZ* with |x| = |y| <n, the following holds:

= when |Xo| £ n, (Xo,n) = (Yo,n) iff (x,n) =5 (y,n), and
= 1f (X,n) =5(y,n), then S(xz) = S(yz) for all strings z with
IXz| = n.

e This is an analogue of Myhill-Nerode theorem for REG.



Open Problems

e There is few literature, which covers reversible finite
automata with advice.

« Answer the following general questions.

1. Find much simpler characterizations of languages in
1REF/n and 1RFA/RnN.

2. Explore natural properties of 1RFA/n and 1RFA/RN.

— Y
£
v

Y
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[Il. Quantum Finite Automata with Advice

QFAs with Deterministic Advice
Inclusions and Separations
Power of Advice

Limitations of Advice



Language Families (revisited)

* Recall the following notation.
1gfa = one-way quantum finite automaton

1QFA = collection of all languages recognized by
1gfa’s with bounded error (i.e., error bound < 1% - g)

e (NOTE) In Week 12, the above 1QFA was written as
1BQFA.

o (Claim) 1RFA c 1QFA c REG [Kondacs-Watrous (1997)]



QFAs with Deterministic Advice |

e To run a 1-way quantum finite automaton (1qgfa) with
deterministic advice, we first provide an advice string to
the lower track of an input tape.

»M = (Q’Za{¢’$}’8’qO’Qacc’Qrej): 1qfa
» I'. advice alphabet

»h: N —> I'* . advice function with |h(n)| = n

X: standard input string
E> one way h(n): advice string

¢ $

h(lxI)




QFAs with Deterministic Advice |l

By adding deterministic advice to 1qgfa’s, we immediately
obtain the advised complexity class 1QFA/N.

Let L be any language over an alphabet X.

Le1QFA/N D
< dM:1gfa 3 €€[0,%2) dI.advice alphabet Fh:N—>I™*
1. VneN [ |h(n)|=n].
2. VxeX" [ xelL <> M accepts [x h(|x])]" with prob >
1-¢ ]. -

Recall that reversible automata are considered as an
error-free version of quantum automata. Thus, 1RFA/n ¢
1QFA/n holds.



Relationships between 1RFA/n and 1QFA/n

Yamakami (2014) proved the following statements.

The non-advice relations 1RFA < 1QFA < REG can
transfer to the advice case.

Lemma: 1RFA/n < 1QFA/n < REGI/n. A M\
/\;‘\%

There is a limitation of 1RFA/nN. (u\v%)
¥_/

Proposition: 1QFA € 1RFA/n.

The above proposition immediately yields the following
class separation.

Corollary: 1QFA/n # 1RFA/n.



Limitation of 1QFA/n

There is a limitation of 1QFA/n.

 Theorem: REG € 1QFA/n. [Yamakami (2014)]
o Corollary: 1QFA/n # REG/n. [Yamakami (2014)]

e This result extends Kodacs-Watrous (1997)’s result of
1QFA = REG. However, we employ a totally different
proof technique, because their argument does not work.

Why?

« Kondacs-Watrous (1997) used L, ={ xO | xe{0,1}* },
which separates 1QFA from REG. But, L, is already In
1QFA/n and it is no use to separate REG from 1QFA/n.



Necessary Condition for 1QFA/n

 Here is a machine-independent condition that is necessary for a
language to be in 1QFA/n given by Yamakami (2014).

« Theorem: If Sisin 1QFA/n, then the following condition holds:

There are two constants c,d > 0, an equivalence relation =g over A,
a partial order <5 over A, and a closeness relation ~ over A that
satisfy the following. Let (x,n),(y,n)e A, zeZ*, and ceX with |x| =
lyl, where A = { (x,n) | |X] £n}. Define (x,n) =g (y,m) < (X,n) <g
(y,m) and (x,n) <g (y,m).

1. The set A/=g is finite.

2. If (x,n) = (y,n), then (x,n) =5 (y,n).

3. If |Xo| £n, then (Xo,n) <5 (X,N).

4. If |xz| £n, (xX,n) =g (xz,n), (y,n) =g (yz,n), and (xz,n) = (yz,n),
then (x,n) =¢ (y,n).
If (X,n) =5(y,n) iff S(xz) = S(yz) for all z with |xz| = n.
Any strictly descending chain (w.r.t. <5 ) in A has length < c.
7. Any =-discrepancy subset of A has cardinality < d.

o 01



Separation Results ﬁ

4

 Yamakami (2014) presented the following
separation results.

= 1QFA € 1RFA/n.
= 1RFA/n = 1QFA/n.
= REG € 1QFA/n.

= 1QFA/n = REG/n.



A Quick Overview

 Here is a quick overview of inclusions and

separations.

1QFA 1/5.1//Qn = 1QFA ), 1,»/Rn = 1-PLIN/RIin = ALL

e /v

1-BQLIN/QIin

4

A

1QFA/n

1QFA/RN ...

1QFA/Qn J

| 1-BPLIN/RIin
- REG/Rn

<

1 1RFA/RN

t — =ReEGN

A

CFL/Rn

/ CFL/n

;

1-DLIN/lin

4—

4____

4_\_

N

proper inclusion
simple inclusion

no inclusion

D




Power of 1QFA/RN

We exhibit another example of the power of randomized
advice.

Proposition: [Yamakami (2014)]
1QFA1/2.1/2/RN = ALL.

In other words, the advised language family
1QFA112.12/Rn consists of all languages.



Why 1QFA ), 1»/Rn = ALL?

L Proof Sketch

 LetL be any language over X. For simplicity, assume
LNX" = 2N, Let our randomized advice D, be

D.(y) = 1/|Z"-L| if yeZn-L; D, (y) =0 if yeLnZ".

Input string X

D,, generates Yy

 Letour 1gfa M be s.t.
If Xx=y, then reject x;
If X2y, then accept/reject with equal probability 4.

 Itis easy to check that xeL <> Prob[ M([x D, ]") = 1 ]=1/2.
* Hence, Le1QFA; 1/RN.

QED




1QFA/Rn vs. REG/n

o Proposition: [Yamakami (2014)]
1QFA/Rn ¢ REG/Rn.

e NOTE: This inclusion is not immediate from 1QFA c
REG [KW97], because “advice” does not automatically
commute the inclusion relationship between two
language families.

4 Proof Idea: This Iis done by a direct simulation of a 1qgfa
on a 1gfa together with a careful treatment of a given
advice probablility ensemble.

QED




Power of 1QFA/RN

« Randomized advice may give more power than
deterministic advice does.

 Recall that DCFLN1RFA/Rn € REG/n.
 Moreover, we can show the following.

e Proposition: [Yamakami (2014)]
1QFA/n = 1QFA/RN.

L Proof Sketch
e Assume that 1QFA/n = 1QFA/RnN.
 From the above claim, it follows that 1RFA/Rn € REG/n.

e Since 1RFA/Rn < 1QFA/RnN, we obtain 1QFA/Rn &
REG/n, and thus 1QFA/n € REG/n.

e This contradicts the fact that 1QFA/n < REG/n.

QED




Open Problems

« In guantum automata theory, there are still a lot of
Interesting open problems to solve.

» Give a complete characterization of 1QFA/n.
* Prove or disprove each of the following statements.

1. 1QFA/Rn # REG/Rn
2. 1RFA/Rn = 1QFA/RnN

g ' )
£
v
Y’l
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How to Define Quantum Advice

We extend random advice to quantum advice by
replacing probability distributions with guantum states.

Advice alphabet T’

H, = Hilbert space spanned by { |s) | seI™ }

A quantum advice state |¢,) = a unit vector in H,
That iS, ‘¢n>: 20‘5‘5>

sel™

P
where aeC and 0

D laf=1

sel™




lllustration: Quantum Advice

* A quantum advice state ) =2 %ls) is given to the

sel™

lower track of an input tape in parallel to a standard input
string xex".

superposition of the

/ content of an input tape
m> where |4,) =Y a.s)

Isl=n

/ amplitude

Ole

amplitude

1
S x
1
1
|
N4 @ P o4

2]
=
Q
%
3




A Possible Candidate of 1QFA/Qn

e |n analogy to 1QFA/n, we may possibly define 1QFA/Qn
In the following way.

« 10FA/On may consist of all languages L for which

» 3 M: 1gfa with read-only input tape 3 I': advice
alphabet 3 €€[0,1/2) 3 { |4, },: quantum advice states

s.t. VneN V xeX" Prob[M([x ¢,]") = A(X)] > 1-¢.



Weakness of Read-Only Advice Tracks

e Unfortunately, the previous definition does not provide
any extra power to the underlying 1qgfa’s.

« Lemma: [Yamakami (2014)]
Let A be any language over . The following two
statements are equivalent.
1. AelQFA/Rn.

2. 3 M: 1qgfa with read-only input tape 3 I': advice

alphabet 3 €€[0,1/2) 3 { |4, },: quantum advice
states s.t.

vneN ¥ xeX" Prob[M([x ¢.]7) = AX)] > 1-¢.

e |n other words, quantum advice is reduced to random
advice as far as we use read-only advice tracks.



Rewritable Advice Tracks

 To make use of quantum advice, we need a certain
modification of 1gfa’s.

 We allow a 1gfa to alter the content of an advice track.

 However, a tape head cannot move back or stay still.

 Moreover, input strings must be unchanged.

guantum transition

o o

T Ty

« “Rewritable track” is used as a “garbage tape,” into which
unwanted information can be dumped



Advised Class 1QFA/Qn

A rewritable 1gfa means a 1dfa eqipped with a rewritable
advice track.

~
We formally define 1QFA/Qn as the collection of all

languages recognized by rewritable 1gfa’s with bounded
error probabillity.

)

NOTE: In a 1dfa case, rewritable tracks do not increase

the computational power of 1dfa’s, because it is known
that

1-DLIN/lin = REG/n  [Tadaki-Yamakami-Lin (2004)].

| T

2-way 1DTMs 1-way dfa’s
with rewritable with read-only
tapes tapes




Power of 1QFA/Qn = !

./
——.’

o Surprisingly, the rewritability of the lower tracks of input
tapes increases the computational power of 1gfa’s.

e Proposition: [Yamakami (2014)]
REG/Rn < 1QFA/Qn < 1-BQLIN/QIin.

e For comparison, recall that 1QFA ¢ REG [Kndacs-
Watrous (1997)].



Closure Properties of 1QFA/On

We consider closure properties of 1QFA and 1QFA/Qn.

(Claim) 1QFA s not closed under union or intersection.
[Ambainis-Kikusts-Valdats (2001)]

By contrast, 1QFA/Qn enjoys the following closure
properties.

Proposition: [Yamakami (2014)]

1QFA/Qn is closed under Boolean operations (i.e.,
complementation, union, and intersection).

s%!
NOTE: Such closure properties (except for L/\

complementation) are not known for 1QFA. \ § i



A Quick Review (again)

 Here is a quick review of inclusions and

separations that we have already discussed.

1QFA 1/5.1//Qn = 1QFA ), 1,»/Rn = 1-PLIN/RIin = ALL

A

1-BOLIN/QIin
) P CFL/RnNn
1QFA/QnJ / |
_ CFL/n
{ 1-BPLIN/RIin
B v =REG/RNn
1QFA/Rn o
A s
1RFf/Rn 1-DLIN/lin
' — | —REG/n
1QFAIN
T~ 1RFA/n

4—

4____

4_\_

N

proper inclusion
simple inclusion

no inclusion

D




Open Problems

In quantum automata theory, there are still many
Interesting open problems to solve.

Prove or disprove each of the following statements.

1. 1QFA/Qn # REG/Rn

2. 1QFA/Qn ¢ 1-PLIN/Iin
3. CFL/n ¢ 1QFA/Qn

)
[V
Yﬂc{



V. Quantum State Complexity

Conservative State Complexity

Intrinsic State Complexity

Quantum State Complexity.

Definitions of 10SC/20QSC

Basic Properties

Union/Intersection

State Complexity vs. Advice

State Complexity vs. Approximate Rank



Conservative State Complexity

Conservative (or traditional) state complexity concerns

» the minimum number of inner states of M working on all
Inputs xex*

Such conservative state complexity of quantum finite
automata has been studied for many years.
Ambanis and Freivalds (1998)
= studied L, ={1": n|p } for a fixed prime p
» O(log p) inner states on 1qgfa
» At least p inner states on 1pfa
Mereghetti, Palano, and Pighizzini (2001)
Freivalds, Ozols, and Mancinska (2009)
Yakaryilmaz and Say (2010)
Zheng, Gruska, and Qiu (2014)




Intrinsic State Complexity

« Intrinsic (or non-traditional) state complexity concerns

» for each length neN, the minimum number of inner
states of M working on inputs xeX" (or xeXx=")

e Such intrinsic state complexity of quantum finite
automata has been studied by:

 Ambainis, Nayak, Ta-Shma, and Vazirani (2002)
= EachL,={wO0|we{O0,1}* |wO|<n}(neN)requires
» O(n) inner states on ldfa

» 294" inner states on bounded-error 1gfa @



Quantum State Complexity | S
\
/

We define quantum state complexity QSC

» M =(Q,%,8,00,Qqcc: Qre) * €ither 1gfa or 2qgfa
» L :alanguage over ¥, neN, L,=LNX"
» ¢&.N —[0,1/2) error bound, K :amplitude set cC

State complexity of M: sc(M) = |Q]| (the # of inner states)

M recognizes L at n with error e using K <

1. M has K-amplitudes
2. VxelL, [ M accepts x with prob. > 1-¢(n) ]
3. VxeXn- L [ M rejects x with prob. > 1-g(n) ]

No requirement is imposed on the outside of X".
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Quantum State Complexity Il

L
We define quantum state complexity QSC
» M =(Q,%,6,00,Qqcc:Qrej) - €1ther 1gfa or 2qgfa
» L :alanguage over ¥, neN, N L
> L, = LAZ -

M recognizes L up to n with error € using K
1. M has K-amplitudes

2. Vxel., [ M accepts x with prob. > 1-g(n) |
3. VxeZX="-L_, [ M rejects x with prob. > 1-g(n) ]

N

No requirement is imposed on the outside of =",



Definitions of 1QSC/2QSC @‘é{)\é

« Villagra and Yamakami (2015) introduced two state
complexity measure functions: 1QSCy [L]() and 2QSC, . [L]().

« L :alanguage over X, neN
e ¢:N —[0,1/2) error bound, K :amplitude set cC

» 1QSCy [L](n) = miny, { sc(M) : 1qfa M recognizes L at n }
» 2QSCy [L](n) = miny, { sc(M) : 2qfa M recognizes L at n }

» 1QSCy [LI(=n) = miny, { sc(M) : 1gfa M recognizes L up to n }
» 2QSCy [LI(=n) = miny, { sc(M) : 2gfa M recognizes L up to n }

o Lemma: [Villagra-Yamakami (2015)]
1QSCy ([LI(n) < 1QSCy [L](sn), 2QSCy [L](n) < 2QSCy [L](<n)



State Complexity of 2BQFA

 To emphasize the “bounded error”’ property, we write
1BQFA and 2BQFA for 1QFA and 2QFA, respectively.

« The following properties hold for alphabet X with |Z|>2.

 Lemma: [Villagra-Yamakami (2015)]
VLe2BQFA over X (|Z]=2)

Je€[0,1/2) s.t. 2QSC, [L](sn) = O(1)
[ Proof Sketch

« Since Le2BQFA implies dM:2qgfa 3¢ [ M recognizes L
with prob. >1-¢, the traditional state complexity of M

equals O(1). Therefore, 2QSC [L](=n) = O(1).

QED




Basic Properties

The following properties hold for alphabet ~ with |X|>2.

Lemma: [Villagra-Yamakami (2015)]
1. 1<2QSCy JL](n) < [Z"+ 1
2. 2QSCy  [L¢](n) = 2QSC . [L](n), where L¢=X* — L.
3. 2QSCc [L](n) < 2QSCg [L](n) < 2x2QSC [L](n)

There is an exponential gap between 1QSC. [L](<n) and
1QSCc [L](n).

Lemma: [Villagra-Yamakami (2015)]

dLeREG Vee(0,1/2)

1QSC.. [L](<n) = 9Q(1Q5Cc ,[L1(M))



Union/Intersection (1QFAS)

e Recall that 1IBQFA is not closed under union or
Intersection.

e Proposition: [Villagra-Yamakami (2015)]
Vv L,L, Ve (0<g(n) < (35)/2) vee{n, u}l.
Let 1QSCq,[L,](n) = ky(n) and 1QSCc [L,I(n) = ky(n).
1QSCe [L;5L,](n) < 8(n+3)k, (N)ky(N),

where ) _ 8(n)(2—8(n))2
1+ &(n)—&(n)

L Proof Sketch

e By a direct simulation of minimal 1gfa’s M; and M, for L,
and L, respectively.



Union/Intersection (2QFAS)

 |tis not yet known whether 2BQFA is closed
under union or intersection.

e [n other words, we do not know that, for L,L,

c2BQFA,, o

2QSCc [L,°L,](n) = O(1)
where oc{ N, U }. ‘.’

« Proposition: [Villagra-Yamakami (2015)]
VL,,L, € 2BQFA, over X (|X|>2)

ZQSCA’O[L1 o Lz](n) _ 20(|0g2 n)




1BQFA/n and 2BQFA/n (revisited) £7%

Recall the advised classes 1BQFA/n and 2BQFA/n.
Let L be any language over an alphabet X.

Le1BOQFA/n <

dM:1gfa 3 £€[0,%2) dI':advice alphabet Fh:N—->I™*
1. VneN [ |h(n)| =n].
2. VxeXh [ xeL — M accepts [x h(|x])]" with prob. > 1-¢].
3. VxeX" [ xe¢L — M rejects [x h(|x])]" with prob. > 1-¢].

Le2BQFA/n <

dM:2gfa 3 £€[0,%2) dI':advice alphabet Fh:N—->I™*
1. VneN [ |h(n)| =n].
2. VxeXh [ xeL — M accepts [x h(|x])]" with prob. > 1-¢].
3. VxeX" [ xe¢L — M rejects [x h(|x])]" with prob. > 1-¢].

S
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State Complexity vs. Advice

o Proposition: [Villagra-Yamakami (2015)]

vLe2BQFAM over I (j3[22) 3e€[0,1/2) |2 Jsir;get;ﬂng

s.t. 2QSC¢ [L](n) = O(n) is somewhat
\ equivalent to

O(n) extra
Inner states.

* This result can be compared to:
e (Claim) VLe2BQFA over X (|2]|=2) F¢€][0,1/2)
s.t. 2QSC¢ [L](n) = O(1)




Approximate Matrix Rank

Lc>* . alanguage over alphabet X

M, : characteristic matrix forL <

vXx,yex* -
g M, (X,y)= Lifxyel This means that
0 it xyel IP-M(M)l., < &

M, (n) : arestriction of M, on strings (X,y) with |xy| <n

Fix a quantum algorithm A.

P, = (Pyy)xy With [xy| < n : a'matrix
s.t. py = acceptance probability of A on input xy

(Claim)
P, e-approximates M (n) < Arecognizes L_,
with error prob. <e¢



State Complexity vs. Approximate Rank

« The following statements hold.

 Theorem: [Villagra-Yamakami (2015)]
Vvt functionon N VL Ve, g (0<e'<e<l/2),

Jrank®(M_(n))
JU() () +D(n+2)

where t'(n)=] t(n)/(s-¢) ],

2Q5C},, [LI(<n) >

o Corollary: [Villagra-Yamakami (2015)]
L € 2BQFA(t-time), where t(n) = 2"6/n2,




Open Problems

« In elementary automata theory, there are still a lot of
Interesting open problems to solve.

* Prove or disprove each of the following statements.

1. For any two languages L,,L, e2BQFA,
2QSC¢ [L,°L,](n) = O(1)
where oc{ N, U }.

e






= ..ﬂ;ﬁm happy to take your question!
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