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Course Schedule: 16 Weeks 

• Week 1:  Basic Computation Models 
• Week 2:  NP-Completeness, Probabilistic and Counting Complexity Classes  
• Week 3:  Space Complexity and the Linear Space Hypothesis 
• Week 4:  Relativizations and Hierarchies 
• Week 5:  Structural Properties by Finite Automata 
• Week 6:  Stype-2 Computability, Multi-Valued Functions, and State Complexity 
• Week 7:  Cryptographic Concepts for  Finite Automata 
• Week 8:  Constraint Satisfaction Problems 
• Week 9:  Combinatorial Optimization Problems 
• Week 10:  Average-Case Complexity 
• Week 11:  Basics of Quantum Information 
• Week 12:  BQP, NQP, Quantum NP, and Quantum Finite Automata 
• Week 13:  Quantum State Complexity and Advice 
• Week 14:  Quantum Cryptographic Systems and Quantum Functions 
• Week 15:  Quantum Interactive Proofs and Quantum Optimization 
• Week 16:  Final Evaluation Day (no lecture) 

Subject to Change 



YouTube Videos 

• This lecture series is based on numerous papers of T. 
Yamakami. He gave conference talks (in English) and 
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.  

• Use the following keywords to find a playlist of those 
videos.  

• YouTube search keywords: 
    Tomoyuki Yamakami  conference  invited talk playlist 
 

Conference talk video 
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I. Schematic Definition of Polynomial-Time 
Quantum Computation 



Quantum Strings or Quastrings 

• Let n be any number in N. 
• Hn = Hilbert space of dimension n 

• We define the size function ℓ : H∞ → N. 
 ℓ(|ϕ〉) = 0  ⇔  |ϕ〉 is the null vector, and  
 ℓ(|ϕ〉) = n  ⇔  |ϕ〉 is in Hk, where k = 2n and k>0. 

 
• A quantum string of length (or size) n is a unit-norm 

vector in the Hilbert space of dimension 2n.  
• We simply call it a qustring of size n. 
• When n=0, a qustring is the null vector. 
• Φn = the set of all qustrings of size n 
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Quantum Functions from H∞ to H∞ 

• Yamakami (2003) earlier studied quantum functions that 
produce the acceptance probabilities of quantum 
computation.  

• (*) The above notion was discussed in Week 12. 

• Different from the above notion, Yamakami (2017) 
considered quantum functions that map H∞ to H∞.  

• We say that such a quantum function is polynomial-time 
computable if there is a P-uniform family {Cn}n∈N  of 
quantum circuits such that, on any input x, C|x| exactly 
produces the quantum state f(x).    



Convention for the Bra- and Ket-Notations 

• Here, we use the following conventional notation for bra- 
and ket-notations. 

• Let |ϕ〉 be a quantum state in Hm with m=2n+1: 

 

 

• 〈0|ϕ〉 denotes  

• 〈1|ϕ〉 denotes 
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Schematic Definitions of □1
QP  I  

• □1
QP  consists of quantum functions constructed 

recursively from Scheme I and by applying Schemata II-IV.  

• □1
QP*  is a subclass of □1

QP* defined by all schemes 
except for MEAS[ ].  



Schematic Definitions of □1
QP*  II 

• □1
QP*  consists of quantum functions constructed 

recursively from Scheme I and by applying Schemata II-IV.  



Examples of □1
QP-Functions  

• Controlled-NOT  
 
 

    CNOT = Branch[I,NOT] 

• Walsh-Hadamard transform 

 
    WH = Comp[ROTπ/4 ,NOT] 
• k-qubit QFT (quantum Fourier transform)  k≥2 
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Characterization of FBQP by □1
QP  I 

• We take the following encoding (with a blank symbol b). 
Let 0* = 00,  1* = 01,  b* = 10, 2* = 11, and  3* = 10. 
For a string s = s1s2...sn with si∈{0,1,b}, we set  s* = 

s1*s2*...sn*. 

• Note that |s*| = 2|s|. 
 

• Take a polynomial p.  Define: 

 |φp(x)〉 = |0p(|x|)019p(|x|)1〉|x〉. 
 |φp,f(x)〉 = |0f(|x|)*〉|φp(x)〉. 
 |φg

p(x)〉 = g(|φp(x)〉) and |φg
p,f(x)〉 = g(|φp,f(x)〉). 

 



Characterization of FBQP by □1
QP  II 

• Yamakami (2017) proved the following characterization of 
FBQP in terms of □1

QP*. 

• Theorem:  [Yamakami (2017)] 
Let f be a function on {0,1}*.  The following 3 statements 
are logically equivalent to each other. 
1. f is computable in polynomial time (i.e., f∈FBQP). 
2. For any constant ε∈[0,1/2), there exists a quantum 

function g in □1
QP*  and a polynomial p such that, for 

all x∈{0,1}*, |f(x)|≤p(|x|) and ||〈f(x)*|φg
p(x)〉||2≥1-ε.  

3. For any constant ε∈[0,1/2), there exists a quantum 
function g in □1

QP and a polynomial p such that, for all 
x∈{0,1}*, |f(x)|≤p(|x|) and ||〈Ψf(x)|φg

p,f(x)〉||2≥1-ε, where 
|Ψf(x)〉 = |f(x)〉|φg

p(x)〉.   
 



Open Problems 
• Here is a nagging open problem associated with the 

schematic definitions. 
 

• Find a simpler, more reasonable schematic definition for 
□1

QP-functions, which should be capable of precisely 
characterizing BQP and FBQP. 



1. Permutations and Symmetric Groups 
2. Special Quantum States 
3. Properties of Quantum States 
4. Distinguishability 
5. Relevant Background 
6. k-QSCD 
7. Advantage and Average Advantage 

II. An Ensemble of Quantum States 



Density Operators or Matrices 

• There is another way to express quantum states using 
matrices. Let I be any nonempty index set. 

• A density operator ρ associated with an ensemble 
{ pi,|ψi〉 | i∈I } has the form  

             ρ = ∑i∈I pi |ψi〉〈ψi|      (provided that  ∑i∈I pi = 1) 

• Equivalently, ρ satisfies the following two conditions: 
1. ρ has trace equal to one, and 
2. ρ is a positive operator. 

• A completely mixed state ι is of the form  
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An Ensemble of Special Quantum States 

• For a later use, we want to introduce an ensemble of 
special quantum states, which are obtained in a group-
theoretical manner. 

• We start with symmetric groups consisting of 
permutations. 



Permutations and Symmetric Groups 

• n: security parameter (even and n/2 is odd) 
• Sn : the symmetric group of degree n (i.e., the set of all 

permutations on {1,2,…,n}) 
• Each permutation π can be expressed in binary using 

O(nlog(n)) bits. 
• Define Kn = { π∈Sn | π2 = id, ∀i [ π(i) ≠ i ] } ⊆ Sn 
• In what follows, we take an arbitrary permutation π in Kn.  

 

1    2    3    4    5    6 

4    5    1    2    6    3 

permutation π 

n = 6 

∀i [ π(i) ≠ i ] 



Special Quantum States I 

• n: security parameter (even and n/2 is odd) 
• Choose a hidden permutation π∈Kn and a bit b∈{0,1}. 

• We define  |φ(π)
σb〉, |Φ(π)

b〉, and ρ(π)
b as follows. 

 |φ(π)
σb〉 = (1/√2)( |σ〉 + (−1)b|σπ〉 ) 

 |Φ(π)
b〉 = (1/|Sn|)Σσ∈Sn|σ〉|φ(π)

σb〉 

… 

|σ〉 |φ(π)
σb〉 

1st register 2nd register 

(1/|Sn|) Σσ∈Sn ⊗ 

… |Φ(π)
b〉 =  



Special Quantum States II 

• Trace out the first register of |Φ(π)
b〉 to obtain: 

 ρ(π)
b = tr1(|Φ(π)

b〉〈Φ(π)
b|). 

• Note that  ρ(π)
b = tr1(|Φ(π)

b〉〈Φ(π)
b|) = tr2(|Φ(π)

b〉〈Φ(π)
b|).   

• In other words,     
 ρ(π)

0
 = (1/2n!)∑σ∈Sn(|σ〉+|σπ〉)(〈σ|+〈σπ|) 

 ρ(π)
1
 = (1/2n!)∑σ∈Sn(|σ〉−|σπ〉)(〈σ|−〈σπ|) 

 

 
… 

|σ〉 |φ(π)
σb〉 

1st register 2nd register 

(1/|Sn|) Σσ∈Sn ⊗ 

… |Φ(π)
b〉 =  



Properties of the Quantum States 

• We have defined quantum states ρ(π)
0 and ρ(π)

1. 
Distinguishing these two quantum states is in general 
difficult for a quantum computer.  

• More precisely, it is hard to distinguish between ρ(π)
0 and 

ρ(π)
1 with high probability using polynomial-time quantum 

computation.  

ρ+(π) ρ(π)
0

 ρ+(π) ρ(π)
1

 

Which one 
did I receive? 

ρ 

quantum computer 



What is Easy to Do? 

• It is easy to generate ρ(π)
0 from π∈Kn (by Hadamard and 

Controlled-π). 
• It is easy to convert ρ(π)

0 to ρ(π)
1 and keep ι as it is with 

certainty (by phase encoding). 
• It is easy to distinguish between ρ(π)

0 and ρ(π)
1 with 

certainty if π is known (by Hadamard, Controlled-π, and 
the property π2=id). (trapdoor property) 
 
 
 

• However, it seems difficult to distinguish them if we do 
not know  π   

π ρ(π)
1

 ρ(π)
0

 ? 



What is a Graph Automorphism?  I  

• The distinction problem between ρ(π)
0 and ρ(π)

1 is related 
to the graph isomorphism problem. 

• An automorphism of a graph G = (V,E) is a permutation 
σ of the vertex set V, such that the pair of vertices (u,v) 
form an edge iff the pair (σ(u),σ(v)) also form an edge.  

1 

4 

3 
2 

3 

4 

1 
2 

σ(1) = 3 
σ(2) = 2 
σ(3) = 1 
σ(4) = 4 

σ 



What is a Graph Automorphism?  II  

• There are practical applications of graph automorphism. 
• For example,  

1. graph drawing and other visualization tasks,  
2. solving structured instances of Boolean satisfiability 

arising in the context of formal verification  



Graph Automorphism Problem (GA) 

• Graph Automorphism Problem (GA) 

 Input: an undirected graph G=(V,E); 

 Output: YES if G has a non-trivial automorphism, 
and NO otherwise. 

GA is not known to be in P or NP∩coNP.  

NP coNP 

P 



How Difficult is it to Distinguish Quantum States? 

• Theorem:  [Kawachi- Koshiba- Nishimura-Yamakami 
(2012)] 
If we can efficiently distinguish between those two 
quantum states on the average (for a uniformly random 
π), then we can distinguish them even in the worst case. 

• Theorem:  [Kawachi- Koshiba- Nishimura-Yamakami 
(2012)]  
If we can efficiently distinguish those two quantum states, 
then we can efficiently solve the graph automorphism 
problem.   



Relevant Background 

• Our distinction problem (between ρ(π)
0 and ρ(π)

1) is 
closely related to the so-called hidden subgroup problem 
(HSP) on the symmetric groups.  
This HSP seems very hard to solve even on a 

quantum computer. 
• It is shown that a “natural” extension of Shor’s algorithm 

cannot solve the distinction problem between ρ(π)
0  and ι 

(completely mixed state) [Hallgren-Moore-Rötteler-
Russell-Sen (2006)]. 
We can show that our distinguishability problem can 

be reduced from the distinguishability between ρ(π)
0 

and ι. 



k-Quantum State Computational Distinction 
Problem (k-QSCD) 

• We introduce our distinction problem on k quantum 
states. 

• k-Quantum State Computational Distinction Problem  
 Instance: 1n, ρ⊗k with ρ∈{ ρ(π)

0(n), ρ(π)
1(n) } for a fixed 

but hidden permutation π∈Kn. 
 Output:  YES, if ρ = ρ(π)

0(n); NO, otherwise. 

… 

… ρ(π)
0(n) 

ρ(π)
1(n) 

Can we distinguish 
these two reduced 
states? 



Advantage and Average Advantage 

• M: quantum algorithm, π: permutation in Kn  
• M solves k-QSCD with advantage p(n)  w.r.t. π  ⇔  M 

distinguishes between {ρ(π)
0(n)⊗k}n and {ρ(π)

1(n) ⊗k}n with 
advantage p(n); that is, for every n,  
 
 

• M solves k-QSCD with average advantage γ for length n 
⇔  γ = the expectation, over all π∈Kn chosen uniformly at 
random, of the advantage with which A distinguishes 
between {ρ(π)

0(n)⊗k}n and {ρ(π)
1(n) ⊗k}n. 

( ) ( )
0 1( ) Prob[ (1 , ( ) ) 1] Prob[ (1 , ( ) ) 1]n k n kp n A n A nπ πρ ρ⊗ ⊗= = − =



1. A Scheme of PKC 
2. Can We Distinguish Two Quantum States? 
3. How Difficult to Distinguish Quantum States? 
4. How to Build a Secure Cryptosystem? 

III. Quantum Public-Key Cryptosystems 



A Scheme of PKC 

• We want to construct a presumably secure quantum 
public-key cryptosystem (QPKC).  

• We quickly mention a scheme of PKC. 
• Assume that Alice wants to send a bit b to Bob securely.  

 Alice 
1. She encodes b to an encoded string χb.  
2. She sends χb to Bob through an unsecure channel. 

 Bob 
1. He receives χb.  
2. He decodes χb back to b. 

• Requirement: Eavesdropper Eve cannot know what b is.  



Why Public-Key Cryptosystems? 
SKCs vs. PKCs 

• Advantages and disadvantages of symmetric-key 
cryptosystems (SKCs) and public-key cryptosystems 
(PKCs) 
1. Quantum key distribution protocol BB84 achieves 

unconditionally secure sharing of secret keys for 
SKCs using an authenticated communication channel.   

2. However, SKCs require a number of secret keys in a 
large scale network. 

3. By contrast, PKCs can save a number of secret keys 
in such a large network. 

4. It is known that PKCs are vulnerable to the man-in-
the-middle attack. 



How to Build a Secure quantum PKC 

• We can build a “secure” quantum public-key 
cryptosystem (quantum PKC) against the chosen 
plaintext quantum attack (during message 
transmission) using the quantum state 
indistinguishability. 

• Our cryptosystem works as follows. 

Alice Bob 

Bob transmits ρ+(π). 

Eve eavesdrops 
the conversation. 

quantum channel 

Alice returns 
ρ+(π) or ρ-(π). 

Eve 

Alice encodes 
0 to ρ+(π) and 

1 to ρ-(π). 

Alice want to 
send one bit 

b to Bob. 

Bob randomly 
chooses a 

decryption key 
π and an 

encryption key 
ρ+(π). 

Bob decodes 
the message to 

obtain bit b. ? 



• Studying quantum cryptographic primitives  
 Quantum one-way functions and quantum hardcores 
 Quantum commitment  
 Quantum oblivious transfer 
 Quantum zero-knowledge proof systems 

• Finding relationships to other complexity issues 
 Black-box oracle computation 
 Quantum state distinguishability 

• Building secure quantum cryptosystems 
 Public-key encryption schemes 

Open Problems 



1. Bit Commitment 
2. Quantum Bit Commitment 
3. Hiding Conditions 
4. Binding Conditions 
5. Limitation of QBC Schemes 
6. First Theorem 
7. Second Theorem 

IV. Quantum Bit Commitment 



Bit Commitment 

• Bit commitment (BC) is a fundamental cryptographic 
primitive. 

• BC consists of two phases. 
 Committing phase 
 Opening (or Revealing) phase 

• BC has various applications to: 
 Secure coin flipping 
 Zero-knowledge proofs 
 Secure multiparty protocols 
 Signature schemes 
 Secret sharing 



Quantum Bit Commitment 

• A quantum bit commitment (QBC) scheme consists of 
the following two phases. 

• Committing Phase 
 Alice commits to a bit a∈{0,1}. 
 She encrypts a to a quantum state. 
 She sends a reduced quantum state χ to Bob.    

• Opening Phase 
 Alice reveals a to Bob.  
 Additionally, she sends extra information on a and χ.  
 Bob verifies that a is correct, using χ.    



Hiding Conditions for QBC Schemes  I 

• QBC schemes must satisfy the hiding and binding 
conditions. 

• Here, we use the formalism of Dumais, Mayers, and 
Salvail (2000). 

• Let A be a QBC scheme and n be a security parameter 

• In Committing Phase, Alice starts with |0〉. 
• She commits to a bit a∈{0,1}.  
• She applies a quantum operator U1 to encrypt a. 
• She sends a reduced quantum state χa  to Bob. 

• The hiding condition ensures that Bob cannot know 
Alice’s committed bit before the opening phase. 



Hiding Conditions for QBC Schemes  II 

• Recall that A is a QBC scheme and n is a security 
parameter 

• In the committing phase, Bob receives a reduced 
quantum state, either χ0 or χ1. 

• Computationally hiding 
• For any positive polynomial p, no polynomial-time 

quantum algorithm outputs a from instance χa with 
success probability at least 1/2+1/p(n) for all n in N. 

• Perfectly hiding 
• χ0 = χ1  



Binding Conditions for QBC Schemes  I 

• Let A be a QBC scheme, and n be a security parameter 
• Let U = (U1,U2

(0),U2
(1))  be Alice’s cheating strategy 

• From the beginning, Alice plans to deceive Bob by 
revealing a willfully chosen bit b∈{0,1}.  

• Let U2
(b)  be the operator Alice secretly applies, according 

to  b. 
• Let Tb

(U)(n) be the probability that Bob convinces himself 
that b is her committed bit after she applies U2

(b), 
provided that Bob faithfully follows the scheme 

• Note that                                               (average value) 

• The binding condition says that Alice cannot change her 
mind to cheat Bob during the whole scheme.  

( )( ) ( )1
0 120 ( ) ( ) 1U UT n T n≤ + ≤



Binding Conditions for QBC Schemes  II 

• Recall that A is a QBC scheme and n is a security 
parameter. 

• U = (U1,U2
(0),U2

(1)) : Alice’s cheating strategy 

• Computationally binding 
• There exists a negligible function ε(n) s.t., for any poly-

time computable cheating strategy U = (U1,U2
(0),U2

(1)), 
the average success probability (1/2)(T0

(U)(n)+ T1
(U)(n)) is 

at most 1/2+ ε(n) for every n in N. 

• Statistically binding 
• In the above definition, Alice can use time-unbounded 

cheating strategy.  



Limitation of QBC Schemes 

• We say that a QBC scheme is unconditionally secure if it 
is both statistically hiding and statistically binding. 

• Unfortunately, it is known that we cannot achieve the 
unconditional security. 

 

• Theorem:  [Lo-Chau (1997), Mayers (2001)] 
No QBC scheme is unconditionally secure (that is). 

 



First Theorem 

• We obtain the following results. 
 

• Theorem:  [Yamakami (2015)] 
1) There exists a scheme for non-interactive QBC for 

which the scheme is polynomial-time executable and 
has an explicit, direct construction from the 
ensembles {ρ(π)

0(n),ρ(π)
1(n)}n,π.   

2) Moreover, if no quantum algorithm solves k-QSCD in 
polynomial time with non-negligible average 
advantage for a certain k≥2, then the scheme 
achieves perfect hiding and computational binding.  

 



Second Theorem 

• Similarly to the first main theorem, we obtain the 
following. 

• Theorem:  [Yamakami (2015)] 
1) There exists a scheme for non-interactive QBC for 

which the scheme is polynomial-time executable and 
has an explicit, direct construction from the 
ensembles {ρ(π)

0(n),ρ(π)
1(n)}n,π.   

2) Moreover, if no quantum algorithm solves k-QSCD in 
polynomial time with non-negligible average 
advantage for a certain k≥2, then the scheme 
achieves computational hiding and statistical binding.  



Open Problems 
 

1. Construct much more efficient QBC schemes.  
• The proposed schemes use O(nlog(n)) qubits.   

2. Find other applications of the quantum state ensemble. 
• Currently known applications are quantum public-key 

cryptosystems and quantum bit commitment. 
3. Explore more interesting features of the quantum state 

ensemble. 
• We used only a few features of the ensemble. There 

might be more features to explore.   



1. A New Encoding and List-Decoding Scheme 
2. Quantumly Corrupted Words 
3. Presence of Codewords 
4. Quantum List-Decoding Problems 
5. Phase Orthogonality 

V. Quantum List Decoding 



Classical Block Codes and Codewords 
• We follow the general framework of Akavia, Goldwasser, 

and Safra (2003).  
• A code (family) C consists of codewords of different 

lengths. 
• An (M(n),n)q(n)-code C is viewed as a function:  

C: {0,…,q-1}nx{0,1}log(M(n))→ {0,…,q-1}. 
• A codeword Cx of message x is a function defined by: 

Cx(•) = C(x,•): {0,1}log(M(n))→ {0,…,q-1}.  
• If the minimal (Hamming) distance d(n) of C is given, we 

call C an (M(n),n,d(n))q(n)-code. 
• Example: the q-ary Hadamard Code HAD(q) = 

{HAD(q)
x}x∈{0,1}*. 

HAD(q)
x(r) = x ● r  mod q,  

where x and r are expressed in q-ary  
and ● denotes the (standard) inner product.  

This is also 
known as 
the GL 
predicate. 



Classical Codes and Codewords 

(*) Slightly different from a standard coding-theoretical 
formulation, here uses a complexity-theoretical formulation 
of codes and codewords.  

• A code (family) C consists of codewords of different lengths. 
• An (M,n)q-code C is a function with two arguments:  

C: {0,…,q-1}nx{0,1}log(M)→ {0,…,q-1}. 
• A codeword Cx of message x is a function defined from C 

by fixing x: 
Cx(•) = C(x,•): {0,1}log(M)→ {0,…,q-1}.  

message x 

codeword Cx(•) size M 

size n encoding 

value  Cx(r) 

index  r 



Example: Hadamard Codes 

q-ary Hadamard code HAD(q) ={HAD(q)
x}x∈{0,1}*. 

HAD(q)
x(r) = x ● r  (mod q),  

where x and r are expressed in q-ary  
and ● denotes the (standard) inner product.  

This is also 
known as 
the GL 
predicate. 

message x=101 

codeword Cx=(0,1,0,1,1,0,1,0) size 23=8 

size 3 
encoding 

q = a prime number (for simplicity) 

Example: q=2 (binary) 

In other words, Cx(000)=0, Cx(001)=1, Cx(010)=0, …., Cx(110)=1, Cx(111)=0 



How to Access Input Information (revisited) 
Implicit Input is Given as an Oracle 

query 

answer 

Oracle: Ob 

Quantum 
computer 

U1 Ob U2 Ob U3 

|r〉|s〉 

|r〉|s⊕b(r)〉 

Let b be any function from {0,1}n to {0,1}l. 
Oracle Ob is used to represent this function b. 

A computation proceeds as a chain 
of unitary operations and oracles. 

|0m〉 

|0n〉 
|ϕ〉 

Instead of starting standard input x, the input information is given 
through oracle queries.  



Classical Encoding and List-Decoding 

List decoder 

Encoder 

A query  r 

A corrupted 
answer C’(r) 

A list of 
candidates 

x1,x2,…,xm 

Encoding Cx(r) 

A message x 

• Here is a schematics of the standard (complexity-
theoretical) setting of encoding and list-decoding of a code. 
Let e be an error bound. 

Given as 
an oracle. 

Satisfying 
d(C’,Cx) ≤ e 

Received 
word C’ 



Various Decoding Problems 
• Here are 5 methods of algorithmically decoding of classical 

codes. e denotes error bound and r is a received word. 
1. Maximum Likelyhood Decoding (MLD) 

Given a distribution D on the error patterns, output a 
single codeword c that gives the maximal probability of 
obtaining r. 

2. Nearest Codeword Problem (NCP) 
Output a single codeword c that is closest to r in 
distance. 

3. List Decoding Problem (LDP) 
Output the set of all codewords within distance e from r. 

4. Bounded Distance Decoding (BDD) 
Output a single vector c within distance e from r if one 
exists or an empty set otherwise. 

5. Unambiguous Decoding Problem (UDP) 
BDD with distance e set to (d(C)-1)/2. 

hard 

easy 

complexity 

Here, we focus on 
this problem. 



What if an Encoder Produces Errors? 
Introduction of Quantumly Corrupted Codewords 

Perfect Encoder 

Imperfect Encoder 

O|r〉|s〉 = |r〉|s⊕Cx(r)〉 

                O|r〉|s〉|t〉 = αr,C(r)|r〉|s⊕Cx(r)〉|t⊕vr,C(r) 〉  
                                                  + Σz≠C(r)αr,z|r〉|s⊕z〉|t⊕vr,z 〉  

An imperfect encoder O produces a quantum state 
including erroneous terms. 

Error term 

Correct term 

For convenience, we call this O a 
quantumly corrupted codeword.  



Message-Encoding and Quantum List-Decoding 

List decoder 

Encoder 

A query  |r〉|ϕ〉 

A corrupted 
answer |Φ(r,ϕ)〉 

A list of 
candidates 

x1,x2,…,xm 

Encoding Cx(r) 

A message x 

• In our quantum setting, we consider the following scenario 
of encoding and list-decoding of a classical code. 

Given as 
an oracle. 

Satisfying 
Pre(Cx)≥1/q+ε 

Quantumly corrupted 
codeword 



Presence of Codewords 

   O|r〉|s〉|t〉 = αr,C(r)|r〉|s⊕Cx(r)〉|t⊕vr,C(r) 〉  
                                     + Σz≠C(r)αr,z|r〉|s⊕z〉|t⊕vr,z 〉  

Error term 

Correct term 

PreO(Cx) = (1/M)(M - d(Cx,O)) = (1/M)(M - eM) = 1 – e. 

• In classical decoding, the error rate e is expressed by our presence 
notion as follows: 

• We introduce the notion of presence of a codeword. 
• First, recall a quantumly corrupted codeword O: 

• The average success probability of receiving Cx is (1/M)∑r=1
M|αr,C(r)|2. 

PreO(Cx) = (1/M)∑r=1
M|αr,C(r)|2. 

• We call this value the presence of Cx in O and denote it by 



Quantum Johnson Bounds 
• How many message candidates are there? 

• In classical list-decoding, Johnson bound gives an upper 
bound of the number of message candidates within distance e.  

• Here, we give a quantum version of Johnson bound. 
• Let l(n) = (1-1/q(n))[1-d(n)/M(n)(1+1/(q(n)-1))]1/2. 

• Theorem:  [Kawachi-Yamakami (2010)] 
For any (M(n),nd(n))q(n)-code C and quantumly corrupted 
codeword O, it holds the following. 
1. If ε(n) > l(n), then there are at most J(n) messages x ∈Γn 

such that PreO(Cx) ≥ 1/q(n) + ε(n), where Q(n) = 1-1/q(n) 
and  

     J(n) = min{M(n)(q(n)-1), [d(n)Q(n)]/[d(n)Q(n)+M(n)ε(n)2-M(n)Q(n)2]}. 
2. If ε(n) = l(n), then there are at most J(n) messages x ∈Γn 

such that PreO(Cx) ≥ 1/q(n) + ε(n), where    
         J(n) = 2M(n)(q(n)-1) -1 



Quantum List-Decoding Problems (QLDPs) 

• We formally define a quantum list-decoding problem for 
code C. 

• Let C be any (M,n,d)q-code consisting of codewords Cx 
with  hidden messages x. 

• ε-Quantum List Decoding Problem (QLDP) for C  
 Input: two parameters, n and 1/ε 

 Implicit Input: a quantumly corrupted codeword O 
Output: a list of messages including all x’s s.t. PreO(Cx) 
≥ 1/q + ε. 

• Now, our task is to solve this QLDP for code C with high 
probability with access to a quantumly corrupted 
codeword O. 



How to Solve the QLDP 
Introduction of Quantum Codeword States 

• To solve the QLDP, we introduce a new notion of quantum 
codeword states, which are useful to deal with erroneous 
computation. 

• For simplicity, we consider only the following types of 
quantum codes. Let ωL

 = e2πi/L . 
 For each message x∈{0,1}n, a quantum codeword state 

of x is a  quantum state |Cx〉 = (1/√M)∑r ωL
C(x,r)|r〉, where 

r∈{0,1}m(n) , M=2m(n), and L=2l(n) .  (We can further 
generalize this notion!) 

(1n,ε,δ) x 

Obx(.) 

|Cx〉  

Obx(.) 
We want to 
solve the 

QLDP. 

Generating a quantum codeword state. 

Our 
strategy. 



Robust Quantum Computation 

• We can prove the following useful theorem. 

• Theorem: [Kawachi-Yamakami (2010)] 
If we can decode quantum codeword state |Cx〉 to x with 
high success probability, then we can solve the QLDP 
for Cx  with noticeable probability. 

• This theorem follows from the next lemma on a robust 
generation of a quantum codeword state. 

• Key Lemma: [Kawachi-Yamakami (2010)] 
There is an efficient quantum algorithm that can 
generate the quantum codeword state |Cx〉 with access 
to a quantumly corrupted codeword OCx for Cx.   

A real function ε(n) is noticeable if 
ε(n)≥1/p(n) for a certain polynomial p 
and for almost all positive integers n. 



Three Quantum List-Decodable Codes 

• Using our theorem, we can prove that the following three 
codes are quantum list decodable. 

1. q-ary Hadamard Code (for fixed prime q) 
HADx

(q)(r) = ∑i=1
|r|-1xiri 

2. Shifted Legendre Symbol Code (for fixed prime p) 
SLSx

(p)(r) = 1 if x+r mod p is not a quadratic residue for p.  
SLSx

(p)(r) = 0 otherwise. 
 

3. Pairwise Equality Code 
PEQx(r) = ⊕i=0

n/2EQ(x2ix2i+1,r2ir2i+1), where EQ is the 
equality predicate. 

This q is a quadratic residue (mod p) iff ∃x s.t. x2≡q (mod p).) 



1. Polynomially Small Rate 
2. Guruswami-Sudan Polynomial Interpolation 
3. Concatenated Codes 
4. Direct Consequences 
5. Application to Quantum Search Problems 
6. How to Use Quantum List-Decoders 

VI. Complexity of Codes 



Codes with Polynomially Small Rate  

message x 

codeword Cx size M 

size n 

encoding 

If M=poly(n), then the rate is 1/poly(n), polynomially small in n. 

Rate of codeword = n / M  

The rate of a codeword is a ratio between message length and 
codeword length. 

Remark: All known quantum list-decodable codes have exponentially 
small rates. 

Question: Is there any quantum list-decodable code with polynomially 
small rate? 



Concatenated Codes CGRS-H  

C(1) : (M1,n,d1)q1-code  
C(2) : (M2,n,d2)q2-code  

C=C(1)C(2) : (M1M2,n,≥d1d2)q-code  
This is a designed 
distance. 

CGRS-H = HAD(q)GRS(q)  

C(1)(x,r) 

C(2)(y,s) 

C(x,r,s) = C(2)(C(1)(x,r),s) 

Inner code Outer code 

• We introduce CGRS-H by concatenating Hadamard 
Codes and Generalized Reed-Solomon Codes 

Concatenated codes 



A Key Lemma 
quantum reduction between quantumly corrupted codewords 

• Lemma:  [Yamakami (2016)] 
Let D = HADC and let OD be any quantumly corrupted 
codeword for D. There exists a polynomial-time quantum 
algorithm B and a quantumly corrupted codeword OC for C 
such that 
1) If PreOD(Dx) ≥ 1/q+ε, then PreOC(Cx) ≥ 1/qm+ε3q2/(q-1)3-

1/q2m. 
2) B realizes OC with access to OD as an oracle. 

• Corollary:  [Yamakami (2016)] 
If GRS is quantumly list decodable, then CGRS-H is also 
quantumly list decodable. 



Polynomial Reconstruction Problem 

• Polynomial Reconstruction Problem 
 instance: 3 integers m’,n’,t>0, m’ points {(xi,yi)}i∈[m’] 

⊆[q]×[q] 
 output: all univariate polynomials p of degree ≤n’ that 

lie on at most t points, provided that t ≥√m’n’ 

p 



Guruswami-Sudan Polynomial Interpolation 

• Theorem:  [Guruswami-Sudan (1999)]  
There exists a classical algorithm that solves the 
polynomial reconstruction problem in time polynomial in 
(m,log(q)).  

A quantum algorithm for 
GRS: 
1. Query all points; 
2. Observe their oracle 

answers; 
3. Apply the GS algorithm. 



Direct Consequences 

• Relatively large bias case 
• Theorem:  [Yamakami (2016)] 

There exists a polynomial-time quantum algorithm that 
solves the QLDP for CGRS-H when its bias is only 
polynomially small. 

• Arbitrary small bias case 
• Theorem:  [Yamakami (2016)] 

If there is a polynomial-time quantum algorithm for the 
QLDP for CGRS-H for arbitrary bias, then NP can be 
solved on quantum computers in polynomial time. 



Application to Quantum Search Problems 

• We apply our quantum list-decoding to complexity theory. 
• L is in QCMA   ⇔    for any x,  
 If x∈L, then ∃y∈{0,1}p(n) s.t. M(x,y) outputs 1 with prob. 
≥2/3, and 

 If x∉L, then ∀y∈{0,1}p(n), M(x,y) outputs 1 with prob. ≤1/3. 
 
 
 
 

• A solution function f for (L,M)  ⇔ 
 f(x) ∈{0,1}p(n)∪{⊥}, 
 If x∈L, then M(x,f(x)) outputs 1 with prob ≥2/3, and 
 If x∉L, then f(x)=⊥. 

M(x,y) outputs 1 

M(x,z) outputs 0 

{0,1}p(n) 
y 

z 



How to Use Quantum List-Decoders 

• Theorem:  [Yamakami (2016)] 
Assume that QCMA ≠ BQP. Let p,p’ be any polynomials 
with p’(n)>p(n) for all n. There exists a QCMA search 
problem such that, for any solution function f, no 
polynomial-time quantum algorithm finds y, on each input x 
of length n, the relative distance ∆(y,f(x)) is at most 1/2-
1/p(n) with probability at least 1-2p(n)/(p’(n)(p(n)+2)).   
 

 Proof Strategy: 
1. Encode a solution into CGRS-H. 
2. Quantum list decode a quantumly corrupted codeword for 

CGRS-H. 
3. Check if candidates are truly solutions. 



• Challenging Reed-Solomon Codes 
1. Find a truly “quantum” list-decoding algorithm for GRS 

codes. 
2. Find its non-trivial relationships to other known 

problems. 
• Developing a Theory of Quantum List-Decoding 

1. Find quantum algorithms for popular codes, such as 
algebraic-geometric codes. 

2. Cultivate the foundations of this theory. 
3. Show tight bounds of presence. 
4. Find useful applications to quantum complexity theory. 

Open Problems 



Open Problems 

• We formulate the notion of quantum codes and quantum 
codewords for erroneous communication. 

• For simplicity, we consider only the following types of 
quantum codes. Let ωL

 = e2πi/L . 
1. For each word x∈{0,1}n, a quantum codeword 

(qucodeword) of x is a pure quantum state |Cx〉 = (1/√M) × 
∑r ωL

C(x,r)|r〉, where r∈{0,1}m(n) , M=2m(n), and L=2l(n) .  
2. A quantum code (qucode) CQ is a series {|Cx〉}x∈{0,1}* of 

qucodewords. 

Challenges: 
• Show robustness of code generation through noisy channels. 
• Cultivate a general framework for decoding quantum codes. 
• Find useful applications in error correction and cryptography. 



1. Constructing Quantum Hardcore Functions 
2. How to Obtain Quantum Hardcores 
3. New Quantum Hardcore Functions 

VI. Quantum Hardcore Functions 



Constructing Quantum Hardcore Functions for any 
Quantum One-Way Function 

• Consider a quantum hardcore function P(x,r) for any 
quantum one-way function (of the form f’(x,r)=(f(x),r)). 

• Such a quantum hardcore function actually exists! 

• Adcock and Cleve (2002) showed that the inner-product-
mod-2 function GL(x,r) = x•r mod 2 is a quantum 
hardcore predicate for any quantum one-way function. 

Are there any other quantum hardcore functions? 

First, we need to explore a close relationship between quantum 
hardcores and quantum list-decoding of classical block codes. 
YES 



How to Obtain Quantum Hardcores 
Quantum list-decoding implies quantum hardcores 

• Let C(x,r) be any function. 
• Assumption: Assume that there is an efficient quantum 

algorithm that quantumly list-decodes code C with 
noticeable probability for any x and r. 

• Consequence: This function C is indeed a quantum 
hardcore function for the function f’ induced by f’(x,r)=(f(x),r) 
for any quantum one-way function f.  

list-
decoding hardcore 

Showing quantum list-
decodability of code C. 

Proving C to be a quantum 
hardcore for any QOWF. 

implies 



New Quantum Hardcore Functions 

• Using our theorem, since the following three codes are 
quantum list decodable, they are also quantum hardcore 
predicates for any quantum one-way function. 

1. q-ary Hadamard Code (for fixed prime q) 
HADx

(q)(r) = ∑i=1
|r|-1xiri 

2. Shifted Legendre Symbol Code (for fixed prime p) 
SLSx

(p)(r) = 1 if x+r mod p is not a quadratic residue for p.  
SLSx

(p)(r) = 0 otherwise. 
3. Pairwise Equality Code 
PEQx(r) = ⊕i=0

n/2EQ(x2ix2i+1,r2ir2i+1), where EQ is the 
equality predicate. 

• The last two predicates have not been known as classical 
hardcores. 



• Find more natural quantum hardcore functions. 
• Find useful applications of quantum hardcore functions. 

Open Problems 





Q & A 
I’m happy to take your question! 
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Key Operations 

● We define three important quantum operations. 
 

● P1*  transforms  |0〉|π〉|id〉|id〉  to  |0〉|π〉|Φ(π)
0〉. 

● P2   transforms  |σ〉|φ(π)
σb〉  to  |σ〉|φ(π)

σb-1〉  
                 without knowing (b,π). 
● PSPA  partitions  χ   to  χ0 ⊕ χ1  s.t.  χ = χ0 ⊕ χ1,  

           where   χb = Σσ∈Sn pσb |φ(π)
σb〉〈φ(π)

σb |  (b∈{0,1}). 



Committing Phase Protocol Acom 

(C1) Alice starts with |0〉 in Hall. Choose a secret key π∈Kn  
uniformly at random from Hopen2. 
(C2) She starts with |id〉|id〉 in Hopen1⊗Hcom. Generate 
(1/|Sn|)Σσ∈Sn|σ〉 from |id〉. Create |Φ(π)

0〉 in Hopen. 
(C3) She chooses a committed bit a∈{0,1} in Hbit. 
Transform |a〉|Φ(π)

0〉 in Hopen1⊗Hcom  to |a〉|Φ(π)
a〉.  

(C4) She sends a subsystem Hcom to Bob. He receives a 
reduced quantum state χ = ρ(π)

a. 

HA,private HB,private Hbit Hopen1 Hcom Hopen2 

Hall 

Hopen Alice Bob 



Opening Phase Protocol Aopen  I 

Assume that Bob received χ in Hcom in the previous phase. 

(R1) Alice sends Hbit⊗ Hopen to Bob. 
(R2) Hbit⊗ Hopen2  contains (a,π) in superposition. If π∉Kn, 
then Bob knows Alice has cheated.  
(R3) Bob applies PSPA to |0〉〈0|⊗χ in HB,private⊗Hcom.  

HA,private HB,private Hbit Hopen1 Hcom Hopen2 

Hall 

Hopen Alice Bob 



Opening Phase Protocol Aopen  II 

(R3) Bob applies PSPA to |0〉〈0|⊗χ in HB,private⊗Hcom.  
(R4) Bob measures HB,private. If the obtained bit does not 
match a in Hbit, Alice has cheated. Assume otherwise.  
(R5) If a=1, Bob changes |Φ(π)

1〉 to |Φ(π)
0〉. Bob applies P1

*-1 
and observes Hbit to obtain a. Bob measures Hopen1⊗Hcom in 
state |0〉|id〉. If (0,id) is observed, Bob accepts a as Alice’s 
committed bit. Otherwise, Bob knows Alice has cheated. 

HA,private HB,private Hbit Hopen1 Hcom Hopen2 

Hall 

Hopen Alice Bob 
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