
14th Week

Synopsis.
• Quantum Public-Key Cryptosystems
• Quantum Bit Commitment
• Quantum Hardcore
• Quantum List Decoding
• Quantum Functions

Quantum Cryptographic Systems
and Quantum Functions

July 9, 2018. 23:59

Course Schedule: 16 Weeks

• Week 1: Basic Computation Models
• Week 2: NP-Completeness, Probabilistic and Counting Complexity Classes
• Week 3: Space Complexity and the Linear Space Hypothesis
• Week 4: Relativizations and Hierarchies
• Week 5: Structural Properties by Finite Automata
• Week 6: Stype-2 Computability, Multi-Valued Functions, and State Complexity
• Week 7: Cryptographic Concepts for Finite Automata
• Week 8: Constraint Satisfaction Problems
• Week 9: Combinatorial Optimization Problems
• Week 10: Average-Case Complexity
• Week 11: Basics of Quantum Information
• Week 12: BQP, NQP, Quantum NP, and Quantum Finite Automata
• Week 13: Quantum State Complexity and Advice
• Week 14: Quantum Cryptographic Systems and Quantum Functions
• Week 15: Quantum Interactive Proofs and Quantum Optimization
• Week 16: Final Evaluation Day (no lecture)

Subject to Change

YouTube Videos

• This lecture series is based on numerous papers of T.
Yamakami. He gave conference talks (in English) and
invited talks (in English), some of which were video-
recorded and uploaded to YouTube.

• Use the following keywords to find a playlist of those
videos.

• YouTube search keywords:
 Tomoyuki Yamakami conference invited talk playlist

Conference talk video

Main References by T. Yamakami I

✎T. Yamakami. A foundation of programming a multi-tape
quantum Turing machine. In Proc. of MFCS 1999, LNCS,
Vol.1672, pp.430-441 (1999)

✎A. Kawachi and T. Yamakami. Quantum hardcore
functions by complexity-theoretical quantum list decoding.
SIAM Journal on Computing 39, 2941-2969 (2010)

✎A. Kawachi. T. Koshiba, H. Nishimura, and T. Yamakami.
Computational indistinguishability between quantum states
and its cryptographic application. Journal of Cryptology 25,
528-555 (2012)

✎T. Yamakami. Straight construction of non-interactive
quantum bit commitment schemes from indistinguishable
quantum state ensembles. In the Proc. of TPNC 2015,
LNCS, vol. 9477, p. 121-133 (2015)

(To be continued)

Main References by T. Yamakami II

✎T. Yamakami. Quantum list decoding from quantumly
corrupted codewords for classical block codes of
polynomially small rate. Baltic Journal of Modern
Computing 4(4), 753-788 (2016)

✎T. Yamakami. A recursive definition of quantum polynomial
time computability (extended abstract). In Proc. of NCMA
2017, Österreichische Computer Gesellschaft 2017, the
Austrian Computer Society, pp. 243-258 (2017)

1. Quantum Strings or Qustrings
2. Quantum Functions from H∞ to H∞

3. Schematic Definitions of □1
QP

4. Examples of □1
QP-Functions

5. Characterization of □1
QP

I. Schematic Definition of Polynomial-Time
Quantum Computation

Quantum Strings or Quastrings

• Let n be any number in N.
• Hn = Hilbert space of dimension n

• We define the size function ℓ : H∞ → N.
 ℓ(|ϕ〉) = 0 ⇔ |ϕ〉 is the null vector, and
 ℓ(|ϕ〉) = n ⇔ |ϕ〉 is in Hk, where k = 2n and k>0.

• A quantum string of length (or size) n is a unit-norm

vector in the Hilbert space of dimension 2n.
• We simply call it a qustring of size n.
• When n=0, a qustring is the null vector.
• Φn = the set of all qustrings of size n

2
1

n

n

H H∞
≥

=

0
n

n
∞

≥

Φ = Φ

Quantum Functions from H∞ to H∞

• Yamakami (2003) earlier studied quantum functions that
produce the acceptance probabilities of quantum
computation.

• (*) The above notion was discussed in Week 12.

• Different from the above notion, Yamakami (2017)
considered quantum functions that map H∞ to H∞.

• We say that such a quantum function is polynomial-time
computable if there is a P-uniform family {Cn}n∈N of
quantum circuits such that, on any input x, C|x| exactly
produces the quantum state f(x).

Convention for the Bra- and Ket-Notations

• Here, we use the following conventional notation for bra-
and ket-notations.

• Let |ϕ〉 be a quantum state in Hm with m=2n+1:

• 〈0|ϕ〉 denotes

• 〈1|ϕ〉 denotes

• Hence, it follows that

()
1

0 1
{0,1} {0,1}

0 1
n n

s t t
s t

s t tϕ α α α
+∈ ∈

= = +∑ ∑

0
{0,1}

0
n

t
t

tϕ α
∈

= ∑

1
{0,1}

1
n

t
t

tϕ α
∈

= ∑

0 1ϕ ϕ ϕ= +

Schematic Definitions of □1
QP I

• □1
QP consists of quantum functions constructed

recursively from Scheme I and by applying Schemata II-IV.

• □1
QP* is a subclass of □1

QP* defined by all schemes
except for MEAS[].

Schematic Definitions of □1
QP* II

• □1
QP* consists of quantum functions constructed

recursively from Scheme I and by applying Schemata II-IV.

Examples of □1
QP-Functions

• Controlled-NOT

 CNOT = Branch[I,NOT]

• Walsh-Hadamard transform

 WH = Comp[ROTπ/4 ,NOT]
• k-qubit QFT (quantum Fourier transform) k≥2

() () if 1,

0 0 1 1 otherwise.
CNOT

ϕ ϕ
ϕ

ϕ ϕ

 ≤=
+

() () ()1 10 0 1 1 0 1
2 2

WH ϕ ϕ ϕ ϕ ϕ= ⊗ + + ⊗ −

()
()

() ()
/2

:| | :| |

 if ,

1 otherwise.
2

k num s num t
kk

t t k s s k

k
F

s t

ϕ ϕ
ϕ

ω ϕ
= =

 <
=

∑ ∑

Characterization of FBQP by □1
QP I

• We take the following encoding (with a blank symbol b).
Let 0* = 00, 1* = 01, b* = 10, 2* = 11, and 3* = 10.
For a string s = s1s2...sn with si∈{0,1,b}, we set s* =

s1*s2*...sn*.

• Note that |s*| = 2|s|.

• Take a polynomial p. Define:

 |φp(x)〉 = |0p(|x|)019p(|x|)1〉|x〉.
 |φp,f(x)〉 = |0f(|x|)*〉|φp(x)〉.
 |φg

p(x)〉 = g(|φp(x)〉) and |φg
p,f(x)〉 = g(|φp,f(x)〉).

Characterization of FBQP by □1
QP II

• Yamakami (2017) proved the following characterization of
FBQP in terms of □1

QP*.

• Theorem: [Yamakami (2017)]
Let f be a function on {0,1}*. The following 3 statements
are logically equivalent to each other.
1. f is computable in polynomial time (i.e., f∈FBQP).
2. For any constant ε∈[0,1/2), there exists a quantum

function g in □1
QP* and a polynomial p such that, for

all x∈{0,1}*, |f(x)|≤p(|x|) and ||〈f(x)*|φg
p(x)〉||2≥1-ε.

3. For any constant ε∈[0,1/2), there exists a quantum
function g in □1

QP and a polynomial p such that, for all
x∈{0,1}*, |f(x)|≤p(|x|) and ||〈Ψf(x)|φg

p,f(x)〉||2≥1-ε, where
|Ψf(x)〉 = |f(x)〉|φg

p(x)〉.

Open Problems
• Here is a nagging open problem associated with the

schematic definitions.

• Find a simpler, more reasonable schematic definition for
□1

QP-functions, which should be capable of precisely
characterizing BQP and FBQP.

1. Permutations and Symmetric Groups
2. Special Quantum States
3. Properties of Quantum States
4. Distinguishability
5. Relevant Background
6. k-QSCD
7. Advantage and Average Advantage

II. An Ensemble of Quantum States

Density Operators or Matrices

• There is another way to express quantum states using
matrices. Let I be any nonempty index set.

• A density operator ρ associated with an ensemble
{ pi,|ψi〉 | i∈I } has the form

 ρ = ∑i∈I pi |ψi〉〈ψi| (provided that ∑i∈I pi = 1)

• Equivalently, ρ satisfies the following two conditions:
1. ρ has trace equal to one, and
2. ρ is a positive operator.

• A completely mixed state ι is of the form
1

| | z I
z z

I
ι

∈

= ∑

An Ensemble of Special Quantum States

• For a later use, we want to introduce an ensemble of
special quantum states, which are obtained in a group-
theoretical manner.

• We start with symmetric groups consisting of
permutations.

Permutations and Symmetric Groups

• n: security parameter (even and n/2 is odd)
• Sn : the symmetric group of degree n (i.e., the set of all

permutations on {1,2,…,n})
• Each permutation π can be expressed in binary using

O(nlog(n)) bits.
• Define Kn = { π∈Sn | π2 = id, ∀i [π(i) ≠ i] } ⊆ Sn
• In what follows, we take an arbitrary permutation π in Kn.

1 2 3 4 5 6

4 5 1 2 6 3

permutation π

n = 6

∀i [π(i) ≠ i]

Special Quantum States I

• n: security parameter (even and n/2 is odd)
• Choose a hidden permutation π∈Kn and a bit b∈{0,1}.

• We define |φ(π)
σb〉, |Φ(π)

b〉, and ρ(π)
b as follows.

 |φ(π)
σb〉 = (1/√2)(|σ〉 + (−1)b|σπ〉)

 |Φ(π)
b〉 = (1/|Sn|)Σσ∈Sn|σ〉|φ(π)

σb〉

…

|σ〉 |φ(π)
σb〉

1st register 2nd register

(1/|Sn|) Σσ∈Sn ⊗

… |Φ(π)
b〉 =

Special Quantum States II

• Trace out the first register of |Φ(π)
b〉 to obtain:

 ρ(π)
b = tr1(|Φ(π)

b〉〈Φ(π)
b|).

• Note that ρ(π)
b = tr1(|Φ(π)

b〉〈Φ(π)
b|) = tr2(|Φ(π)

b〉〈Φ(π)
b|).

• In other words,
 ρ(π)

0
 = (1/2n!)∑σ∈Sn(|σ〉+|σπ〉)(〈σ|+〈σπ|)

 ρ(π)
1
 = (1/2n!)∑σ∈Sn(|σ〉−|σπ〉)(〈σ|−〈σπ|)

…

|σ〉 |φ(π)
σb〉

1st register 2nd register

(1/|Sn|) Σσ∈Sn ⊗

… |Φ(π)
b〉 =

Properties of the Quantum States

• We have defined quantum states ρ(π)
0 and ρ(π)

1.
Distinguishing these two quantum states is in general
difficult for a quantum computer.

• More precisely, it is hard to distinguish between ρ(π)
0 and

ρ(π)
1 with high probability using polynomial-time quantum

computation.

ρ+(π) ρ(π)
0

 ρ+(π) ρ(π)
1

Which one
did I receive?

ρ

quantum computer

What is Easy to Do?

• It is easy to generate ρ(π)
0 from π∈Kn (by Hadamard and

Controlled-π).
• It is easy to convert ρ(π)

0 to ρ(π)
1 and keep ι as it is with

certainty (by phase encoding).
• It is easy to distinguish between ρ(π)

0 and ρ(π)
1 with

certainty if π is known (by Hadamard, Controlled-π, and
the property π2=id). (trapdoor property)

• However, it seems difficult to distinguish them if we do
not know π

π ρ(π)
1

 ρ(π)
0

 ?

What is a Graph Automorphism? I

• The distinction problem between ρ(π)
0 and ρ(π)

1 is related
to the graph isomorphism problem.

• An automorphism of a graph G = (V,E) is a permutation
σ of the vertex set V, such that the pair of vertices (u,v)
form an edge iff the pair (σ(u),σ(v)) also form an edge.

1

4

3
2

3

4

1
2

σ(1) = 3
σ(2) = 2
σ(3) = 1
σ(4) = 4

σ

What is a Graph Automorphism? II

• There are practical applications of graph automorphism.
• For example,

1. graph drawing and other visualization tasks,
2. solving structured instances of Boolean satisfiability

arising in the context of formal verification

Graph Automorphism Problem (GA)

• Graph Automorphism Problem (GA)

 Input: an undirected graph G=(V,E);

 Output: YES if G has a non-trivial automorphism,
and NO otherwise.

GA is not known to be in P or NP∩coNP.

NP coNP

P

How Difficult is it to Distinguish Quantum States?

• Theorem: [Kawachi- Koshiba- Nishimura-Yamakami
(2012)]
If we can efficiently distinguish between those two
quantum states on the average (for a uniformly random
π), then we can distinguish them even in the worst case.

• Theorem: [Kawachi- Koshiba- Nishimura-Yamakami
(2012)]
If we can efficiently distinguish those two quantum states,
then we can efficiently solve the graph automorphism
problem.

Relevant Background

• Our distinction problem (between ρ(π)
0 and ρ(π)

1) is
closely related to the so-called hidden subgroup problem
(HSP) on the symmetric groups.
This HSP seems very hard to solve even on a

quantum computer.
• It is shown that a “natural” extension of Shor’s algorithm

cannot solve the distinction problem between ρ(π)
0 and ι

(completely mixed state) [Hallgren-Moore-Rötteler-
Russell-Sen (2006)].
We can show that our distinguishability problem can

be reduced from the distinguishability between ρ(π)
0

and ι.

k-Quantum State Computational Distinction
Problem (k-QSCD)

• We introduce our distinction problem on k quantum
states.

• k-Quantum State Computational Distinction Problem
 Instance: 1n, ρ⊗k with ρ∈{ ρ(π)

0(n), ρ(π)
1(n) } for a fixed

but hidden permutation π∈Kn.
 Output: YES, if ρ = ρ(π)

0(n); NO, otherwise.

…

… ρ(π)
0(n)

ρ(π)
1(n)

Can we distinguish
these two reduced
states?

Advantage and Average Advantage

• M: quantum algorithm, π: permutation in Kn
• M solves k-QSCD with advantage p(n) w.r.t. π ⇔ M

distinguishes between {ρ(π)
0(n)⊗k}n and {ρ(π)

1(n) ⊗k}n with
advantage p(n); that is, for every n,

• M solves k-QSCD with average advantage γ for length n
⇔ γ = the expectation, over all π∈Kn chosen uniformly at
random, of the advantage with which A distinguishes
between {ρ(π)

0(n)⊗k}n and {ρ(π)
1(n) ⊗k}n.

() ()
0 1() Prob[(1 , ()) 1] Prob[(1 , ()) 1]n k n kp n A n A nπ πρ ρ⊗ ⊗= = − =

1. A Scheme of PKC
2. Can We Distinguish Two Quantum States?
3. How Difficult to Distinguish Quantum States?
4. How to Build a Secure Cryptosystem?

III. Quantum Public-Key Cryptosystems

A Scheme of PKC

• We want to construct a presumably secure quantum
public-key cryptosystem (QPKC).

• We quickly mention a scheme of PKC.
• Assume that Alice wants to send a bit b to Bob securely.

 Alice
1. She encodes b to an encoded string χb.
2. She sends χb to Bob through an unsecure channel.

 Bob
1. He receives χb.
2. He decodes χb back to b.

• Requirement: Eavesdropper Eve cannot know what b is.

Why Public-Key Cryptosystems?
SKCs vs. PKCs

• Advantages and disadvantages of symmetric-key
cryptosystems (SKCs) and public-key cryptosystems
(PKCs)
1. Quantum key distribution protocol BB84 achieves

unconditionally secure sharing of secret keys for
SKCs using an authenticated communication channel.

2. However, SKCs require a number of secret keys in a
large scale network.

3. By contrast, PKCs can save a number of secret keys
in such a large network.

4. It is known that PKCs are vulnerable to the man-in-
the-middle attack.

How to Build a Secure quantum PKC

• We can build a “secure” quantum public-key
cryptosystem (quantum PKC) against the chosen
plaintext quantum attack (during message
transmission) using the quantum state
indistinguishability.

• Our cryptosystem works as follows.

Alice Bob

Bob transmits ρ+(π).

Eve eavesdrops
the conversation.

quantum channel

Alice returns
ρ+(π) or ρ-(π).

Eve

Alice encodes
0 to ρ+(π) and

1 to ρ-(π).

Alice want to
send one bit

b to Bob.

Bob randomly
chooses a

decryption key
π and an

encryption key
ρ+(π).

Bob decodes
the message to

obtain bit b. ?

• Studying quantum cryptographic primitives
 Quantum one-way functions and quantum hardcores
 Quantum commitment
 Quantum oblivious transfer
 Quantum zero-knowledge proof systems

• Finding relationships to other complexity issues
 Black-box oracle computation
 Quantum state distinguishability

• Building secure quantum cryptosystems
 Public-key encryption schemes

Open Problems

1. Bit Commitment
2. Quantum Bit Commitment
3. Hiding Conditions
4. Binding Conditions
5. Limitation of QBC Schemes
6. First Theorem
7. Second Theorem

IV. Quantum Bit Commitment

Bit Commitment

• Bit commitment (BC) is a fundamental cryptographic
primitive.

• BC consists of two phases.
 Committing phase
 Opening (or Revealing) phase

• BC has various applications to:
 Secure coin flipping
 Zero-knowledge proofs
 Secure multiparty protocols
 Signature schemes
 Secret sharing

Quantum Bit Commitment

• A quantum bit commitment (QBC) scheme consists of
the following two phases.

• Committing Phase
 Alice commits to a bit a∈{0,1}.
 She encrypts a to a quantum state.
 She sends a reduced quantum state χ to Bob.

• Opening Phase
 Alice reveals a to Bob.
 Additionally, she sends extra information on a and χ.
 Bob verifies that a is correct, using χ.

Hiding Conditions for QBC Schemes I

• QBC schemes must satisfy the hiding and binding
conditions.

• Here, we use the formalism of Dumais, Mayers, and
Salvail (2000).

• Let A be a QBC scheme and n be a security parameter

• In Committing Phase, Alice starts with |0〉.
• She commits to a bit a∈{0,1}.
• She applies a quantum operator U1 to encrypt a.
• She sends a reduced quantum state χa to Bob.

• The hiding condition ensures that Bob cannot know
Alice’s committed bit before the opening phase.

Hiding Conditions for QBC Schemes II

• Recall that A is a QBC scheme and n is a security
parameter

• In the committing phase, Bob receives a reduced
quantum state, either χ0 or χ1.

• Computationally hiding
• For any positive polynomial p, no polynomial-time

quantum algorithm outputs a from instance χa with
success probability at least 1/2+1/p(n) for all n in N.

• Perfectly hiding
• χ0 = χ1

Binding Conditions for QBC Schemes I

• Let A be a QBC scheme, and n be a security parameter
• Let U = (U1,U2

(0),U2
(1)) be Alice’s cheating strategy

• From the beginning, Alice plans to deceive Bob by
revealing a willfully chosen bit b∈{0,1}.

• Let U2
(b) be the operator Alice secretly applies, according

to b.
• Let Tb

(U)(n) be the probability that Bob convinces himself
that b is her committed bit after she applies U2

(b),
provided that Bob faithfully follows the scheme

• Note that (average value)

• The binding condition says that Alice cannot change her
mind to cheat Bob during the whole scheme.

()() ()1
0 120 () () 1U UT n T n≤ + ≤

Binding Conditions for QBC Schemes II

• Recall that A is a QBC scheme and n is a security
parameter.

• U = (U1,U2
(0),U2

(1)) : Alice’s cheating strategy

• Computationally binding
• There exists a negligible function ε(n) s.t., for any poly-

time computable cheating strategy U = (U1,U2
(0),U2

(1)),
the average success probability (1/2)(T0

(U)(n)+ T1
(U)(n)) is

at most 1/2+ ε(n) for every n in N.

• Statistically binding
• In the above definition, Alice can use time-unbounded

cheating strategy.

Limitation of QBC Schemes

• We say that a QBC scheme is unconditionally secure if it
is both statistically hiding and statistically binding.

• Unfortunately, it is known that we cannot achieve the
unconditional security.

• Theorem: [Lo-Chau (1997), Mayers (2001)]
No QBC scheme is unconditionally secure (that is).

First Theorem

• We obtain the following results.

• Theorem: [Yamakami (2015)]
1) There exists a scheme for non-interactive QBC for

which the scheme is polynomial-time executable and
has an explicit, direct construction from the
ensembles {ρ(π)

0(n),ρ(π)
1(n)}n,π.

2) Moreover, if no quantum algorithm solves k-QSCD in
polynomial time with non-negligible average
advantage for a certain k≥2, then the scheme
achieves perfect hiding and computational binding.

Second Theorem

• Similarly to the first main theorem, we obtain the
following.

• Theorem: [Yamakami (2015)]
1) There exists a scheme for non-interactive QBC for

which the scheme is polynomial-time executable and
has an explicit, direct construction from the
ensembles {ρ(π)

0(n),ρ(π)
1(n)}n,π.

2) Moreover, if no quantum algorithm solves k-QSCD in
polynomial time with non-negligible average
advantage for a certain k≥2, then the scheme
achieves computational hiding and statistical binding.

Open Problems

1. Construct much more efficient QBC schemes.
• The proposed schemes use O(nlog(n)) qubits.

2. Find other applications of the quantum state ensemble.
• Currently known applications are quantum public-key

cryptosystems and quantum bit commitment.
3. Explore more interesting features of the quantum state

ensemble.
• We used only a few features of the ensemble. There

might be more features to explore.

1. A New Encoding and List-Decoding Scheme
2. Quantumly Corrupted Words
3. Presence of Codewords
4. Quantum List-Decoding Problems
5. Phase Orthogonality

V. Quantum List Decoding

Classical Block Codes and Codewords
• We follow the general framework of Akavia, Goldwasser,

and Safra (2003).
• A code (family) C consists of codewords of different

lengths.
• An (M(n),n)q(n)-code C is viewed as a function:

C: {0,…,q-1}nx{0,1}log(M(n))→ {0,…,q-1}.
• A codeword Cx of message x is a function defined by:

Cx(•) = C(x,•): {0,1}log(M(n))→ {0,…,q-1}.
• If the minimal (Hamming) distance d(n) of C is given, we

call C an (M(n),n,d(n))q(n)-code.
• Example: the q-ary Hadamard Code HAD(q) =

{HAD(q)
x}x∈{0,1}*.

HAD(q)
x(r) = x ● r mod q,

where x and r are expressed in q-ary
and ● denotes the (standard) inner product.

This is also
known as
the GL
predicate.

Classical Codes and Codewords

(*) Slightly different from a standard coding-theoretical
formulation, here uses a complexity-theoretical formulation
of codes and codewords.

• A code (family) C consists of codewords of different lengths.
• An (M,n)q-code C is a function with two arguments:

C: {0,…,q-1}nx{0,1}log(M)→ {0,…,q-1}.
• A codeword Cx of message x is a function defined from C

by fixing x:
Cx(•) = C(x,•): {0,1}log(M)→ {0,…,q-1}.

message x

codeword Cx(•) size M

size n encoding

value Cx(r)

index r

Example: Hadamard Codes

q-ary Hadamard code HAD(q) ={HAD(q)
x}x∈{0,1}*.

HAD(q)
x(r) = x ● r (mod q),

where x and r are expressed in q-ary
and ● denotes the (standard) inner product.

This is also
known as
the GL
predicate.

message x=101

codeword Cx=(0,1,0,1,1,0,1,0) size 23=8

size 3
encoding

q = a prime number (for simplicity)

Example: q=2 (binary)

In other words, Cx(000)=0, Cx(001)=1, Cx(010)=0, …., Cx(110)=1, Cx(111)=0

How to Access Input Information (revisited)
Implicit Input is Given as an Oracle

query

answer

Oracle: Ob

Quantum
computer

U1 Ob U2 Ob U3

|r〉|s〉

|r〉|s⊕b(r)〉

Let b be any function from {0,1}n to {0,1}l.
Oracle Ob is used to represent this function b.

A computation proceeds as a chain
of unitary operations and oracles.

|0m〉

|0n〉
|ϕ〉

Instead of starting standard input x, the input information is given
through oracle queries.

Classical Encoding and List-Decoding

List decoder

Encoder

A query r

A corrupted
answer C’(r)

A list of
candidates

x1,x2,…,xm

Encoding Cx(r)

A message x

• Here is a schematics of the standard (complexity-
theoretical) setting of encoding and list-decoding of a code.
Let e be an error bound.

Given as
an oracle.

Satisfying
d(C’,Cx) ≤ e

Received
word C’

Various Decoding Problems
• Here are 5 methods of algorithmically decoding of classical

codes. e denotes error bound and r is a received word.
1. Maximum Likelyhood Decoding (MLD)

Given a distribution D on the error patterns, output a
single codeword c that gives the maximal probability of
obtaining r.

2. Nearest Codeword Problem (NCP)
Output a single codeword c that is closest to r in
distance.

3. List Decoding Problem (LDP)
Output the set of all codewords within distance e from r.

4. Bounded Distance Decoding (BDD)
Output a single vector c within distance e from r if one
exists or an empty set otherwise.

5. Unambiguous Decoding Problem (UDP)
BDD with distance e set to (d(C)-1)/2.

hard

easy

complexity

Here, we focus on
this problem.

What if an Encoder Produces Errors?
Introduction of Quantumly Corrupted Codewords

Perfect Encoder

Imperfect Encoder

O|r〉|s〉 = |r〉|s⊕Cx(r)〉

 O|r〉|s〉|t〉 = αr,C(r)|r〉|s⊕Cx(r)〉|t⊕vr,C(r) 〉
 + Σz≠C(r)αr,z|r〉|s⊕z〉|t⊕vr,z 〉

An imperfect encoder O produces a quantum state
including erroneous terms.

Error term

Correct term

For convenience, we call this O a
quantumly corrupted codeword.

Message-Encoding and Quantum List-Decoding

List decoder

Encoder

A query |r〉|ϕ〉

A corrupted
answer |Φ(r,ϕ)〉

A list of
candidates

x1,x2,…,xm

Encoding Cx(r)

A message x

• In our quantum setting, we consider the following scenario
of encoding and list-decoding of a classical code.

Given as
an oracle.

Satisfying
Pre(Cx)≥1/q+ε

Quantumly corrupted
codeword

Presence of Codewords

 O|r〉|s〉|t〉 = αr,C(r)|r〉|s⊕Cx(r)〉|t⊕vr,C(r) 〉
 + Σz≠C(r)αr,z|r〉|s⊕z〉|t⊕vr,z 〉

Error term

Correct term

PreO(Cx) = (1/M)(M - d(Cx,O)) = (1/M)(M - eM) = 1 – e.

• In classical decoding, the error rate e is expressed by our presence
notion as follows:

• We introduce the notion of presence of a codeword.
• First, recall a quantumly corrupted codeword O:

• The average success probability of receiving Cx is (1/M)∑r=1
M|αr,C(r)|2.

PreO(Cx) = (1/M)∑r=1
M|αr,C(r)|2.

• We call this value the presence of Cx in O and denote it by

Quantum Johnson Bounds
• How many message candidates are there?

• In classical list-decoding, Johnson bound gives an upper
bound of the number of message candidates within distance e.

• Here, we give a quantum version of Johnson bound.
• Let l(n) = (1-1/q(n))[1-d(n)/M(n)(1+1/(q(n)-1))]1/2.

• Theorem: [Kawachi-Yamakami (2010)]
For any (M(n),nd(n))q(n)-code C and quantumly corrupted
codeword O, it holds the following.
1. If ε(n) > l(n), then there are at most J(n) messages x ∈Γn

such that PreO(Cx) ≥ 1/q(n) + ε(n), where Q(n) = 1-1/q(n)
and

 J(n) = min{M(n)(q(n)-1), [d(n)Q(n)]/[d(n)Q(n)+M(n)ε(n)2-M(n)Q(n)2]}.
2. If ε(n) = l(n), then there are at most J(n) messages x ∈Γn

such that PreO(Cx) ≥ 1/q(n) + ε(n), where
 J(n) = 2M(n)(q(n)-1) -1

Quantum List-Decoding Problems (QLDPs)

• We formally define a quantum list-decoding problem for
code C.

• Let C be any (M,n,d)q-code consisting of codewords Cx
with hidden messages x.

• ε-Quantum List Decoding Problem (QLDP) for C
 Input: two parameters, n and 1/ε

 Implicit Input: a quantumly corrupted codeword O
Output: a list of messages including all x’s s.t. PreO(Cx)
≥ 1/q + ε.

• Now, our task is to solve this QLDP for code C with high
probability with access to a quantumly corrupted
codeword O.

How to Solve the QLDP
Introduction of Quantum Codeword States

• To solve the QLDP, we introduce a new notion of quantum
codeword states, which are useful to deal with erroneous
computation.

• For simplicity, we consider only the following types of
quantum codes. Let ωL

 = e2πi/L .
 For each message x∈{0,1}n, a quantum codeword state

of x is a quantum state |Cx〉 = (1/√M)∑r ωL
C(x,r)|r〉, where

r∈{0,1}m(n) , M=2m(n), and L=2l(n) . (We can further
generalize this notion!)

(1n,ε,δ) x

Obx(.)

|Cx〉

Obx(.)
We want to
solve the

QLDP.

Generating a quantum codeword state.

Our
strategy.

Robust Quantum Computation

• We can prove the following useful theorem.

• Theorem: [Kawachi-Yamakami (2010)]
If we can decode quantum codeword state |Cx〉 to x with
high success probability, then we can solve the QLDP
for Cx with noticeable probability.

• This theorem follows from the next lemma on a robust
generation of a quantum codeword state.

• Key Lemma: [Kawachi-Yamakami (2010)]
There is an efficient quantum algorithm that can
generate the quantum codeword state |Cx〉 with access
to a quantumly corrupted codeword OCx for Cx.

A real function ε(n) is noticeable if
ε(n)≥1/p(n) for a certain polynomial p
and for almost all positive integers n.

Three Quantum List-Decodable Codes

• Using our theorem, we can prove that the following three
codes are quantum list decodable.

1. q-ary Hadamard Code (for fixed prime q)
HADx

(q)(r) = ∑i=1
|r|-1xiri

2. Shifted Legendre Symbol Code (for fixed prime p)
SLSx

(p)(r) = 1 if x+r mod p is not a quadratic residue for p.
SLSx

(p)(r) = 0 otherwise.

3. Pairwise Equality Code
PEQx(r) = ⊕i=0

n/2EQ(x2ix2i+1,r2ir2i+1), where EQ is the
equality predicate.

This q is a quadratic residue (mod p) iff ∃x s.t. x2≡q (mod p).)

1. Polynomially Small Rate
2. Guruswami-Sudan Polynomial Interpolation
3. Concatenated Codes
4. Direct Consequences
5. Application to Quantum Search Problems
6. How to Use Quantum List-Decoders

VI. Complexity of Codes

Codes with Polynomially Small Rate

message x

codeword Cx size M

size n

encoding

If M=poly(n), then the rate is 1/poly(n), polynomially small in n.

Rate of codeword = n / M

The rate of a codeword is a ratio between message length and
codeword length.

Remark: All known quantum list-decodable codes have exponentially
small rates.

Question: Is there any quantum list-decodable code with polynomially
small rate?

Concatenated Codes CGRS-H

C(1) : (M1,n,d1)q1-code
C(2) : (M2,n,d2)q2-code

C=C(1)C(2) : (M1M2,n,≥d1d2)q-code
This is a designed
distance.

CGRS-H = HAD(q)GRS(q)

C(1)(x,r)

C(2)(y,s)

C(x,r,s) = C(2)(C(1)(x,r),s)

Inner code Outer code

• We introduce CGRS-H by concatenating Hadamard
Codes and Generalized Reed-Solomon Codes

Concatenated codes

A Key Lemma
quantum reduction between quantumly corrupted codewords

• Lemma: [Yamakami (2016)]
Let D = HADC and let OD be any quantumly corrupted
codeword for D. There exists a polynomial-time quantum
algorithm B and a quantumly corrupted codeword OC for C
such that
1) If PreOD(Dx) ≥ 1/q+ε, then PreOC(Cx) ≥ 1/qm+ε3q2/(q-1)3-

1/q2m.
2) B realizes OC with access to OD as an oracle.

• Corollary: [Yamakami (2016)]
If GRS is quantumly list decodable, then CGRS-H is also
quantumly list decodable.

Polynomial Reconstruction Problem

• Polynomial Reconstruction Problem
 instance: 3 integers m’,n’,t>0, m’ points {(xi,yi)}i∈[m’]

⊆[q]×[q]
 output: all univariate polynomials p of degree ≤n’ that

lie on at most t points, provided that t ≥√m’n’

p

Guruswami-Sudan Polynomial Interpolation

• Theorem: [Guruswami-Sudan (1999)]
There exists a classical algorithm that solves the
polynomial reconstruction problem in time polynomial in
(m,log(q)).

A quantum algorithm for
GRS:
1. Query all points;
2. Observe their oracle

answers;
3. Apply the GS algorithm.

Direct Consequences

• Relatively large bias case
• Theorem: [Yamakami (2016)]

There exists a polynomial-time quantum algorithm that
solves the QLDP for CGRS-H when its bias is only
polynomially small.

• Arbitrary small bias case
• Theorem: [Yamakami (2016)]

If there is a polynomial-time quantum algorithm for the
QLDP for CGRS-H for arbitrary bias, then NP can be
solved on quantum computers in polynomial time.

Application to Quantum Search Problems

• We apply our quantum list-decoding to complexity theory.
• L is in QCMA ⇔ for any x,
 If x∈L, then ∃y∈{0,1}p(n) s.t. M(x,y) outputs 1 with prob.
≥2/3, and

 If x∉L, then ∀y∈{0,1}p(n), M(x,y) outputs 1 with prob. ≤1/3.

• A solution function f for (L,M) ⇔
 f(x) ∈{0,1}p(n)∪{⊥},
 If x∈L, then M(x,f(x)) outputs 1 with prob ≥2/3, and
 If x∉L, then f(x)=⊥.

M(x,y) outputs 1

M(x,z) outputs 0

{0,1}p(n)
y

z

How to Use Quantum List-Decoders

• Theorem: [Yamakami (2016)]
Assume that QCMA ≠ BQP. Let p,p’ be any polynomials
with p’(n)>p(n) for all n. There exists a QCMA search
problem such that, for any solution function f, no
polynomial-time quantum algorithm finds y, on each input x
of length n, the relative distance ∆(y,f(x)) is at most 1/2-
1/p(n) with probability at least 1-2p(n)/(p’(n)(p(n)+2)).

 Proof Strategy:
1. Encode a solution into CGRS-H.
2. Quantum list decode a quantumly corrupted codeword for

CGRS-H.
3. Check if candidates are truly solutions.

• Challenging Reed-Solomon Codes
1. Find a truly “quantum” list-decoding algorithm for GRS

codes.
2. Find its non-trivial relationships to other known

problems.
• Developing a Theory of Quantum List-Decoding

1. Find quantum algorithms for popular codes, such as
algebraic-geometric codes.

2. Cultivate the foundations of this theory.
3. Show tight bounds of presence.
4. Find useful applications to quantum complexity theory.

Open Problems

Open Problems

• We formulate the notion of quantum codes and quantum
codewords for erroneous communication.

• For simplicity, we consider only the following types of
quantum codes. Let ωL

 = e2πi/L .
1. For each word x∈{0,1}n, a quantum codeword

(qucodeword) of x is a pure quantum state |Cx〉 = (1/√M) ×
∑r ωL

C(x,r)|r〉, where r∈{0,1}m(n) , M=2m(n), and L=2l(n) .
2. A quantum code (qucode) CQ is a series {|Cx〉}x∈{0,1}* of

qucodewords.

Challenges:
• Show robustness of code generation through noisy channels.
• Cultivate a general framework for decoding quantum codes.
• Find useful applications in error correction and cryptography.

1. Constructing Quantum Hardcore Functions
2. How to Obtain Quantum Hardcores
3. New Quantum Hardcore Functions

VI. Quantum Hardcore Functions

Constructing Quantum Hardcore Functions for any
Quantum One-Way Function

• Consider a quantum hardcore function P(x,r) for any
quantum one-way function (of the form f’(x,r)=(f(x),r)).

• Such a quantum hardcore function actually exists!

• Adcock and Cleve (2002) showed that the inner-product-
mod-2 function GL(x,r) = x•r mod 2 is a quantum
hardcore predicate for any quantum one-way function.

Are there any other quantum hardcore functions?

First, we need to explore a close relationship between quantum
hardcores and quantum list-decoding of classical block codes.
YES

How to Obtain Quantum Hardcores
Quantum list-decoding implies quantum hardcores

• Let C(x,r) be any function.
• Assumption: Assume that there is an efficient quantum

algorithm that quantumly list-decodes code C with
noticeable probability for any x and r.

• Consequence: This function C is indeed a quantum
hardcore function for the function f’ induced by f’(x,r)=(f(x),r)
for any quantum one-way function f.

list-
decoding hardcore

Showing quantum list-
decodability of code C.

Proving C to be a quantum
hardcore for any QOWF.

implies

New Quantum Hardcore Functions

• Using our theorem, since the following three codes are
quantum list decodable, they are also quantum hardcore
predicates for any quantum one-way function.

1. q-ary Hadamard Code (for fixed prime q)
HADx

(q)(r) = ∑i=1
|r|-1xiri

2. Shifted Legendre Symbol Code (for fixed prime p)
SLSx

(p)(r) = 1 if x+r mod p is not a quadratic residue for p.
SLSx

(p)(r) = 0 otherwise.
3. Pairwise Equality Code
PEQx(r) = ⊕i=0

n/2EQ(x2ix2i+1,r2ir2i+1), where EQ is the
equality predicate.

• The last two predicates have not been known as classical
hardcores.

• Find more natural quantum hardcore functions.
• Find useful applications of quantum hardcore functions.

Open Problems

Q & A
I’m happy to take your question!

 END

Key Operations

● We define three important quantum operations.

● P1* transforms |0〉|π〉|id〉|id〉 to |0〉|π〉|Φ(π)
0〉.

● P2 transforms |σ〉|φ(π)
σb〉 to |σ〉|φ(π)

σb-1〉
 without knowing (b,π).
● PSPA partitions χ to χ0 ⊕ χ1 s.t. χ = χ0 ⊕ χ1,

 where χb = Σσ∈Sn pσb |φ(π)
σb〉〈φ(π)

σb | (b∈{0,1}).

Committing Phase Protocol Acom

(C1) Alice starts with |0〉 in Hall. Choose a secret key π∈Kn
uniformly at random from Hopen2.
(C2) She starts with |id〉|id〉 in Hopen1⊗Hcom. Generate
(1/|Sn|)Σσ∈Sn|σ〉 from |id〉. Create |Φ(π)

0〉 in Hopen.
(C3) She chooses a committed bit a∈{0,1} in Hbit.
Transform |a〉|Φ(π)

0〉 in Hopen1⊗Hcom to |a〉|Φ(π)
a〉.

(C4) She sends a subsystem Hcom to Bob. He receives a
reduced quantum state χ = ρ(π)

a.

HA,private HB,private Hbit Hopen1 Hcom Hopen2

Hall

Hopen Alice Bob

Opening Phase Protocol Aopen I

Assume that Bob received χ in Hcom in the previous phase.

(R1) Alice sends Hbit⊗ Hopen to Bob.
(R2) Hbit⊗ Hopen2 contains (a,π) in superposition. If π∉Kn,
then Bob knows Alice has cheated.
(R3) Bob applies PSPA to |0〉〈0|⊗χ in HB,private⊗Hcom.

HA,private HB,private Hbit Hopen1 Hcom Hopen2

Hall

Hopen Alice Bob

Opening Phase Protocol Aopen II

(R3) Bob applies PSPA to |0〉〈0|⊗χ in HB,private⊗Hcom.
(R4) Bob measures HB,private. If the obtained bit does not
match a in Hbit, Alice has cheated. Assume otherwise.
(R5) If a=1, Bob changes |Φ(π)

1〉 to |Φ(π)
0〉. Bob applies P1

*-1
and observes Hbit to obtain a. Bob measures Hopen1⊗Hcom in
state |0〉|id〉. If (0,id) is observed, Bob accepts a as Alice’s
committed bit. Otherwise, Bob knows Alice has cheated.

HA,private HB,private Hbit Hopen1 Hcom Hopen2

Hall

Hopen Alice Bob

	14th Week
	Course Schedule: 16 Weeks
	YouTube Videos
	Main References by T. Yamakami I
	Main References by T. Yamakami II
	I. Schematic Definition of Polynomial-Time Quantum Computation
	Quantum Strings or Quastrings
	Quantum Functions from H to H
	Convention for the Bra- and Ket-Notations
	Schematic Definitions of □1QP I
	Schematic Definitions of □1QP* II
	Examples of □1QP-Functions
	Characterization of FBQP by □1QP I
	Characterization of FBQP by □1QP II
	Open Problems
	II. An Ensemble of Quantum States
	Density Operators or Matrices
	An Ensemble of Special Quantum States
	Permutations and Symmetric Groups
	Special Quantum States I
	Special Quantum States II
	Properties of the Quantum States
	What is Easy to Do?
	What is a Graph Automorphism? I
	What is a Graph Automorphism? II
	Graph Automorphism Problem (GA)
	How Difficult is it to Distinguish Quantum States?
	Relevant Background
	k-Quantum State Computational Distinction Problem (k-QSCD)
	Advantage and Average Advantage
	III. Quantum Public-Key Cryptosystems
	A Scheme of PKC
	Why Public-Key Cryptosystems?�SKCs vs. PKCs
	How to Build a Secure quantum PKC
	Open Problems
	IV. Quantum Bit Commitment
	Bit Commitment
	Quantum Bit Commitment
	Hiding Conditions for QBC Schemes I
	Hiding Conditions for QBC Schemes II
	Binding Conditions for QBC Schemes I
	Binding Conditions for QBC Schemes II
	Limitation of QBC Schemes
	First Theorem
	Second Theorem
	Open Problems
	V. Quantum List Decoding
	Classical Block Codes and Codewords
	Classical Codes and Codewords
	Example: Hadamard Codes
	How to Access Input Information (revisited)�Implicit Input is Given as an Oracle
	Classical Encoding and List-Decoding
	Various Decoding Problems
	What if an Encoder Produces Errors?�Introduction of Quantumly Corrupted Codewords
	Message-Encoding and Quantum List-Decoding
	Presence of Codewords
	Quantum Johnson Bounds
	Quantum List-Decoding Problems (QLDPs)
	How to Solve the QLDP�Introduction of Quantum Codeword States
	Robust Quantum Computation
	Three Quantum List-Decodable Codes
	VI. Complexity of Codes
	Codes with Polynomially Small Rate
	Concatenated Codes CGRS-H
	A Key Lemma�quantum reduction between quantumly corrupted codewords
	Polynomial Reconstruction Problem
	Guruswami-Sudan Polynomial Interpolation
	Direct Consequences
	Application to Quantum Search Problems
	How to Use Quantum List-Decoders
	Open Problems
	Open Problems
	VI. Quantum Hardcore Functions
	Constructing Quantum Hardcore Functions for any Quantum One-Way Function
	How to Obtain Quantum Hardcores�Quantum list-decoding implies quantum hardcores
	New Quantum Hardcore Functions
	Open Problems
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Key Operations
	Committing Phase Protocol Acom
	Opening Phase Protocol Aopen I
	Opening Phase Protocol Aopen II

